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Preface

The present book contains fifteen contributions on various topics related to
Number Theory, Physics and Geometry. It presents, together with a forthcom-
ing second volume, most of the courses and seminars delivered at the meeting
entitled “Frontiers in Number Theory, Physics and Geometry”, which took
place at the Centre de Physique des Houches in the french Alps March 9-21,
2003.

The relation between mathematics and physics has a long history. Let us
mention only ordinary differential equations and mechanics, partial differential
equations in solid and fluid mechanics or electrodynamics, group theory is
essential in crystallography, elasticity or quantum mechanics. . .

The role of number theory and of more abstract parts of mathematics
such as topological, differential and algebraic geometry in physics has become
prominent more recently. Diverse instances of this trend appear in the works
of such scientists as V. Arnold, M. Atiyah, M. Berry, F. Dyson, L. Faddeev,
D. Hejhal, C. Itzykson, V. Kac, Y. Manin, J. Moser, W. Nahm, A. Polyakov,
D. Ruelle, A. Selberg, C. Siegel, S. Smale, E. Witten and many others.

In 1989 a first meeting took place at the Centre de Physique des Houches.
The triggering idea was due at that time to the late Claude Itzykson (1938-
1995). The meeting gathered physicists and mathematicians, and was the
occasion of long and passionate discussions.

The seminars were published in a book entitled “Number Theory and
Physics”, J.-M. Luck, P. Moussa, and M. Waldschmidt editors, Springer Pro-
ceedings in Physics, Vol. 47, 1990. The lectures were published as a second
book entitled “From Number Theory to Physics”, with C. Itzykson joining
the editorial team, Springer (2nd edition 1995).

Ten years later the evolution of the interface between theoretical physics
and mathematics prompted M. Waldschmidt, P. Cartier and B. Julia to re-
new the experience. However the emphasis was somewhat shifted to include
in particular selected chapters at the interface of physics and geometry, ran-
dom matrices or various zeta- and L- functions. Once the project of the new
meeting entitled “Frontiers in Number Theory, Physics and Geometry” re-
ceived support from the European Union the High level scientific conference
was organized in Les Houches.
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The Scientific Committee for the meeting “Frontiers in Number The-
ory, Physics and Geometry”, was composed of the following scientists: Frits
Beukers, Jean-Benôıt Bost, Pierre Cartier, Predrag Cvitanovic, Michel Duflo,
Giovanni Gallavotti, Patricio Leboeuf, Werner Nahm, Ivan Todorov, Claire
Voisin, Michel Waldschmidt, Jean-Christophe Yoccoz, and Jean-Bernard Zu-
ber. The Organizing Committee included:

Bernard Julia (LPTENS, Paris scientific coordinator),
Pierre Moussa (SPhT CEA-Saclay), and
Pierre Vanhove (CERN and SPhT CEA-Saclay).

During two weeks, five lectures or seminars were given every day to about
seventy-five participants. The topics belonged to three main domains:

1. Dynamical Systems, Number theory, and Random matrices,
with lectures by E. Bogomolny on Quantum and arithmetical chaos, J. Conrey
on L-functions and random matrix theory, J.-C. Yoccoz on Interval exchange
maps, and A. Zorich on Flat surfaces;

2. Polylogarithms and Perturbative Physics,
with lectures by P. Cartier on Polylogarithms and motivic aspects, W. Nahm
on Physics and dilogarithms, and D. Zagier on Polylogarithms;

3. Symmetries and Non-pertubative Physics, with lectures by
A. Connes on Galoisian symmetries, zeta function and renormalization,
R. Dijkgraaf on String duality and automorphic forms,
P. Di Vecchia on Gauge theory and D-branes,
E. Frenkel on Vertex algebras, algebraic curves and Langlands program,
G. Moore on String theory and number theory,
C. Soulé on Arithmetic groups.

In addition seminars were given by participants many of whom could have
given full sets of lectures had time been available. They were: Z. Bern, A.
Bondal, P. Candelas, J. Conway, P. Cvitanovic, H. Gangl, G. Gentile, D.
Kreimer, J. Lagarias, M. Marcolli, J. Marklof, S. Marmi, J. McKay, B. Pioline,
M. Pollicott, H. Then, E. Vasserot, A. Vershik, D. Voiculescu, A. Voros, S.
Weinzierl, K. Wendland, A. Zabrodin.

We have chosen to reorganize the written contributions in two parts ac-
cording to their subject. These naturally lead to two different volumes. The
present volume is the first one, let us now briefly describe its contents.

This volume is itself composed of three parts including each lectures and
seminars covering one theme. In the first part, we present the contributions
on the theme “Random matrices : from Physics to Number Theory”. It begins
with lectures by E. Bogomolny, which review three selected topics of quan-
tum chaos, namely trace formulas with or without chaos, the two-point spec-
tral correlation function of Riemann zeta function zeroes, and the two-point
spectral correlation functions of the Laplace-Beltrami operator for modular
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domains leading to arithmetic chaos. The lectures can serve as a non-formal
introduction to mathematical methods of quantum chaos. A general introduc-
tion to arithmetic groups will appear in the second volume. There are then
lectures by J. Conrey who examines relations between random-matrix theory
and families of arithmetic L-functions (mostly in characteristics zero), that is
Dirichlet series satisfying functional equations similar to those obeyed by the
Riemann zeta-function. The relevant L-functions are those associated with
cusp-forms. The moments of L-functions are related to correlation functions
of eigenvalues of random matrices.

Then follow a number of seminar presentations: by J. Marklof on some
energy level statistics in relation with almost modular functions; by H. Then
on arithmetic quantum chaos in a particular three-dimensional hyperbolic
domain, in relation to Maass waveforms. Next P. Wiegmann and A. Zabrodin
study the large N expansion for normal and complex matrix ensembles. D.
Voiculescu reviews symmetries of free probability models. Finally A. Vershik
presents some random (resp. universal) graphs and metric spaces.

In the second part “Zeta functions: a transverse tool”, the theme is zeta-
functions and their applications.

First the lectures by A. Connes were written up in collaboration with M.
Marcolli and have been divided into two parts.

The second one will appear in the second volume as it relates to renor-
malization of quantum field theories. In their first chapter they introduce
the noncommutative space of commensurability classes of Q-lattices and the
arithmetic properties of KMS states in the corresponding quantum statistical
mechanical system. In the 1-dimensional case this space gives the spectral
realization of zeroes of zeta-functions. They give a description of the multiple
phase transitions and arithmetic spontaneous symmetry breaking in the case
of Q-lattices of dimension two. The system at zero temperature settles onto a
classical Shimura variety, which parametrizes the pure phases of the system.
The noncommutative space has an arithmetic structure provided by a ratio-
nal subalgebra closely related to the modular Hecke algebra. The action of
the symmetry group involves the formalism of superselection sectors and the
full noncommutative system at positive temperature. It acts on values of the
ground states at the rational elements via the Galois group of the modular
field.

Then we report seminars given by A. Voros on zeta functions built on
Riemann zeroes; by J. Lagarias on Hilbert spaces of entire functions and
Dirichlet L-functions; and by M. Pollicott on Dynamical zeta functions and
closed orbits for geodesic and hyperbolic flows.

In the third part “ Dynamical systems: interval exchanges, flat surfaces and
small divisors”, are gathered all the other contributions on dynamical systems.
The lectures by A. Zorich provide an extensive self-contained introduction to
the geometry of Flat surfaces which allows a description of flows on compact
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Riemann surfaces of arbitrary genus. The course by J.-C. Yoccoz analyzes
Interval exchange maps such as the first return maps of these flows. Ergodic
properties of maps are connected with ergodic properties of flows. This leads
to a generalization to surfaces of higher genus of the irrational flows on the
two dimensional torus. The adaptation of a continued fraction like algorithm
to this situation is a prerequisite to extension of small divisors techniques to
higher genus cases.

Finally we conclude this volume with seminars given by G. Gentile on Br-
juno numbers and dynamical systems and by S. Marmi on Real and Complex
Brjuno functions. In both talks either perturbation of irrational rotations or
twist maps are considered, with fine details on arithmetic conditions (Brjuno
condition and Brjuno numbers) for stability of trajectories under perturba-
tions of parameters, and on the size of stability domains in the parametric
space (Brjuno functions).

The following institutions are most gratefully acknowledged for their gen-
erous financial support to the meeting:

Département Sciences Physiques et Mathématiques and the Service de
Formation permanente of the Centre National de la Recherche Scientifique;
École Normale Supérieure de Paris; Département des Sciences de la matière du
Commissariat à l’Énergie Atomique; Institut des Hautes Etudes Scientifiques;
National Science Foundation; Ministère de la Recherche et de la Technolo-
gie and Ministère des Affaires Étrangères; The International association of
mathematical physics and most especially the Commission of the European
Communities.

Three European excellence networks helped also in various ways. Let
us start with the most closely involved “Mathematical aspects of Quantum
chaos”, but the other two were “Superstrings” and “Quantum structure of
spacetime and the geometric nature of fundamental interactions”.

On the practical side we thank CERN Theory division for allowing us
to use their computers for the webpage and registration process. We are also
grateful to Marcelle Martin, Thierry Paul and the staff of les Houches for their
patient help. We had the privilege to have two distinguished participants:
Cécile de Witt-Morette (founder of the Les Houches School) and the late
Bryce de Witt whose communicative and critical enthusiasm were greatly
appreciated.

Paris, July 2005 Bernard Julia
Pierre Cartier
Pierre Moussa

Pierre Vanhove
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Roma, Italy
• S.Marmi, Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa,

Italy



X List of Contributors
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Summary. The lectures are centered around three selected topics of quantum
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Quantum and Arithmetical Chaos 5

Introduction

Quantum chaos is a nickname for the investigation of quantum systems which
do not permit exact solutions. The absence of explicit formulas means that
underlying problems are so complicated that they cannot be expressed in
terms of known (� simple) functions. The class of non-soluble systems is very
large and practically any model (except a small set of completely integrable
systems) belongs to it. An extreme case of quantum non-soluble problems
appears naturally when one considers the quantization of classically chaotic
systems which explains the word ‘chaos’ in the title.

As, by definition, for complex systems exact solutions are not possible,
new analytical approaches were developed within quantum chaos. First, one
may find relations between different non-integrable models, hoping that for
certain questions a problem will be more tractable than another. Second,
one considers, instead of exact quantities, the calculation of their smoothed
values. In many cases such coarse graining appears naturally in experimental
settings and, usually, it is more easy to treat. Third, one tries to understand
statistical properties of quantum quantities by organizing them in suitable
ensembles. An advantage of such an approach is that many different models
may statistically be indistinguishable which leads to the notion of statistical
universality.

The ideas and methods of quantum chaos are not restricted only to quan-
tum models. They can equally well be applied to any problem whose analytical
solution either is not possible or is very complicated. One of the most spec-
tacular examples of such interrelations is the application of quantum chaos
to number theory, in particular, to the zeros of the Riemann zeta function.
Though a hypothetical quantum-like system whose eigenvalues coincide with
the imaginary part of Riemann zeta function zeros has not (yet!) been found,
the Riemann zeta function is, in many aspects, similar to dynamical zeta func-
tions and the investigation of such relations already mutually enriched both
quantum chaos and number theory (see e.g. the calculation by Keating and
Snaith of moments of the Riemann zeta function using random matrix theory
[43]).

The topics of these lectures were chosen specially to emphasize the inter-
play between physics and mathematics which is typical in quantum chaos.

In Chapter I different types of trace formulas are discussed. The main at-
tention is given to the derivation of the Selberg trace formula which relates
the spectral density of automorphic Laplacian on hyperbolic surfaces gener-
ated by discrete groups with classical periodic orbits for the free motion on
these surfaces. This question is rarely discussed in the Physics literature but
is of general interest because it is the only case where the trace formula is
exact and not only a leading semiclassical contribution as for general dynam-
ical systems. Short derivations of trace formulas for dynamical systems and
for the Riemann zeta function zeros are also presented in this Chapter.
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According to the well-known conjecture [17] statistical properties of eigen-
values of energies of quantum chaotic systems are described by standard ran-
dom matrix ensembles depending only on system symmetries. In Chapter II
we discuss analytical methods of confirmation of this conjecture. The largest
part of this Chapter is devoted to a heuristic derivation of the ‘exact’ two-
point correlation function for the Riemann zeros. The derivation is based on
the Hardy–Littlewood conjecture about the distribution of prime pairs which
is also reviewed. The resulting formula agrees very well with numerical calcu-
lations of Odlyzko.

In Chapter III a special class of dynamical systems is considered, namely,
hyperbolic surfaces generated by arithmetic groups. Though from the view-
point of classical mechanics these models are the best known examples of
classical chaos, their spectral statistics are close to the Poisson statistics typ-
ical for integrable models. The reason for this unexpected behavior is found
to be related with exponential degeneracies of periodic orbit lengths charac-
teristic for arithmetical systems. The case of the modular group is considered
in details and the exact expression for the two-point correlation function for
this problem is derived.

To be accessible for physics students the lectures are written in a non-
formal manner. In many cases analogies are used instead of theorems and
complicated mathematical notions are illustrated by simple examples.
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I. Trace Formulas

Different types of trace formulas are the cornerstone of quantum chaos.
Trace formulas relate quantum properties of a system with their classical
counterparts. In the simplest and widely used case the trace formula expresses
the quantum density of states through a sum over periodic orbits and each
term in this sum can be calculated from pure classical mechanics.

In general, dynamical trace formulas represent only the leading term of
the semiclassical expansion in powers of �. The computation of other terms is
possible though quite tedious [1]. The noticeable exception is the free motion
on constant negative curvature surfaces generated by discrete groups where
the trace formula (called the Selberg trace formula) is exact. The derivation
of this formula is the main goal of this Section.

For clarity, in Sect. 1 the simplest case of the rectangular billiard is briefly
considered and the trace formula for this system is derived. The derivation
is presented in a manner which permits to generalize it to the Selberg case
of constant negative curvature surfaces generated by discrete groups which
is considered in details in Sect. 2. In Sects. 3 and 4 the derivations of the
trace formula for, respectively, classically integrable and chaotic systems are
presented. In Sect. 5 it is demonstrated that the density of Riemann zeta
function zeros can be written as a sort of trace formula where the role of
periodic orbits is played by prime numbers. Section 6 is a summary of this
Chapter.

1 Plane Rectangular Billiard

To clarify the derivation of trace formulas let us consider in details a very
simple example, namely, the computation of the energy spectrum for the plane
rectangular billiard with periodic boundary conditions.

This problem consists of solving the equation

(∆ + En)Ψn(x, y) = 0 (1)

where ∆ = ∂2/∂x2 + ∂2/∂y2 is the usual two-dimensional Laplacian with
periodic boundary conditions

Ψn(x + a, y) = Ψn(x, y + b) = Ψn(x, y) (2)

where a and b are sizes of the rectangle.
The plane wave

Ψn(x, y) = eik1x+ik2y

is an admissible solution of (1). Boundary conditions (2) determine the allowed
values of the momentum k
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k1 =
2π

a
n1, k2 =

2π

b
n2 ,

with n1, n2 = 0,±1,±2, . . ., and, consequently, energy eigenvalues are

En1n2 =
(

2π

a
n1

)2

+
(

2π

b
n2

)2

. (3)

The first step of construction of trace formulas is to consider instead of indi-
vidual eigenvalues their density defined as the sum over all eigenvalues which
explains the word ‘trace’

d(E) ≡
+∞∑

n1,n2=−∞
δ(E − En1n2) . (4)

To transforms this and similar expressions into a convenient form one often
uses the Poisson summation formula

+∞∑
n=−∞

f(n) =
+∞∑

m=−∞

∫ +∞

−∞
e2πimnf(n)dn . (5)

An informal proof of this identity can, for example, be done as follows.
First

+∞∑
n=−∞

f(n) =
∫ +∞

−∞
f(x)g(x)dx

where g(x) is the periodic δ-function

g(x) =
+∞∑

n=−∞
δ(x − n) .

As any periodic function with period 1, g(x) can be expanded into the Fourier
series

g(x) =
+∞∑

m=−∞
e2πimxcm .

Coefficients cm are obtained by the integration of g(x) over one period

cm =
∫ +1/2

−1/2

g(y)e−2πimydy = 1

which gives (5).
By applying the Poisson summation formula (5) to the density of states

(4) one gets
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d(E) =
+∞∑

m1,m2=−∞

∫ ∫
e2πi(m1n1+m2n2) ×

× δ

(
E −

(
2π

a
n1

)2

−
(

2π

b
n2

)2
)

dn1dn2 .

Perform the following substitutions: E = k2, n1 = ar cos ϕ/2π, and n2 =
br sin ϕ/2π. Then dn1dn2 = abrdrdϕ/(2π)2 and

d(E) =
µ(D)
(2π)2

+∞∑
m1,m2=−∞

∫ ∫
ei(m1a cos ϕ+m2b sin ϕ)rδ(k2 − r2)rdrdϕ

=
µ(D)
2(2π)2

+∞∑
m1,m2=−∞

∫ 2π

0

eik
√

(m1a)2+(m2b)2 cos ϕdϕ

=
µ(D)
4π

+∞∑
m1,m2=−∞

J0(kLp) ,

where µ(D) = ab is the area of the rectangle,

J0(x) =
1
2π

∫ 2π

0

eix cos ϕdϕ

is the Bessel function of order zero (see e.g. [32], Vol. 2, Sect. 7), and

Lp =
√

(m1a)2 + (m2b)2

is (as it is easy to check) the length of a periodic orbit in the rectangle with
periodic boundary conditions.

Separating the term with m1 = m2 = 0 one concludes that the eigenvalue
density of the rectangle with periodic boundary conditions can be written as
the sum of two terms

d(E) = d̄(E) + d(osc)(E) ,

where

d̄(E) =
µ(D)
4π

(6)

is the smooth part of the density and

d(osc)(E) =
µ(D)
4π

∑
p.o.

J0(kLp) , (7)

is the oscillating part equal to a sum over all periodic orbits in the rectangle.
As

J0(z) z→∞−→
√

2
πz

cos
(
z − π

4

)
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the oscillating part of the level density in the semiclassical limit k → ∞ takes
the form

d(osc)(E) =
µ(D)√

8πk

∑
p.o.

1√
Lp

cos
(
kLp − π

4

)
. (8)

Let us repeat the main steps which lead to this trace formula. One starts
with an explicit formula (like (3)) which expresses eigenvalues as a function
of integers. Using the Poisson summation formula (5) the density of states (4)
is transformed into a sum over periodic orbits. In Sect. 3 it will be demon-
strated that exactly this method can be applied for any integrable system in
the semiclassical limit where eigenvalues can be approximated by the WKB
formulas.

More Refined Approach

The above method of deriving the trace formula for the rectangular billiard
can be applied only if one knows an explicit expression for eigenvalues. For
chaotic systems this is not possible and another method has to be used.

Assume that one has to solve the equation

(En − Ĥ)Ψn(x) = 0

for a certain problem with a Hamiltonian Ĥ. Under quite general conditions
eigenfunctions Ψn(x) can be chosen orthogonal

∫
Ψn(x)Ψ∗

m(x)dx = δnm

and they form a complete system of functions
∑
n

Ψn(x)Ψ∗
n(y) = δ(x − y) .

The Green function of the problem, by definition, obeys the equation

(E − Ĥ)GE(x,y) = δ(x − y)

and the same boundary conditions as the original eigenfunctions. Its explicit
form can formally be written through exact eigenfunctions and eigenvalues as
follows

GE(x,y) =
∑
n

Ψn(x)Ψ∗
n(y)

E − En + iε
. (9)

The +iε prescription determines the so-called retarded Green function.
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Example

To get used to Green functions let us consider in details the calculation of the
Green function for the free motion in f -dimensional Euclidean space. This
Green function obeys the free equation

(E + �
2∆)G(0)

E (x,y) = δ(x − y) . (10)

Let us look for the solution of the above equation in the form G
(0)
E (x,y) = G(r)

where r = |x − y| is the distance between two points.
Simple calculations shows that for r �= 0 G(r) obeys the equation

d2G

dr2
+

f − 1
r

dG

dr
+

k2

�2
G = 0

where E = k2.
After the substitution

G(r) = r1−f/2g

(
k

�
r

)

one gets for g(z) the Bessel equation (see e.g. [32], Vol. 2, Sect. 7)

d2g

dz2
+

1
z

dg

dz
+

(
1 − ν2

z2

)
g = 0 (11)

with ν = |f/2 − 1|.
There are many solutions of this equation. The above +iε prescription

means that when k → k + iε with a positive ε the Green function has to
decrease at large distances. It is easy to see that G(r) is proportional to
e±ikr/� at large r. The +iε prescription selects a solution which behaves at
infinity like e+ikr/� with positive k. The required solution of (11) is the first
Hankel function (see [32], Vol. 2, Sect. 7)

g(z) = CfH(1)
ν (z) (12)

where Cf is a constant and H
(1)
ν (z) has the following asymptotics for large

and small z

H(1)
ν (z) z→∞−→

√
2
πz

ei(z−πν/2−π/4)

and

H(1)
ν (z) z→0−→

{−i2νΓ (ν)z−ν/π , ν �= 2
2i ln z/π , ν = 2 .

The overall factor in (12) has to be computed from the requirement that the
Green function will give the correct δ-function contribution in the right hand
side of (10). This term can appear only in the result of differentiation of the
Green function at small r where it has the following behaviour
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G(r) r→0−→ G0(r) = Afr2−f

with

Af = Cf
2ν

�
νΓ (ν)

iπkν
.

One should have
�

2∆G0(r) = δ(r) . (13)

Multiplying this equality by a suitable test function f(r) quickly decreasing
at infinity one has

�
2

∫
f(r)∆G0(r)dr = f(0) .

Integrating by parts one obtains

�
2

∫
∂

∂xµ
f(r)

∂

∂xµ
G0(r)dr = −f(0) .

As both functions f(r) and G0(r) depend only on the modulus of r one finally
finds

�
2

∫ ∞

0

df(r)
dr

dG0(r)
dr

rf−1drSf−1 = −f(0)

where Sf−1 is the volume of the (f − 1)-dimensional sphere x2
1 + . . .+x2

f = 1.
Using (13) one concludes that in order to give the δ-function term Af has to
obey

�
2Af (f − 2)Sf−1 = −1 .

One of the simplest method of calculation of Sf−1 is the following identity
∫ ∞

−∞
e−x2

1dx1

∫ ∞

−∞
e−x2

2dx2 . . .

∫ ∞

−∞
e−x2

f dxf = πf/2 .

By changing Cartesian coordinates in the left hand side to hyper-spherical
ones we obtain ∫ ∞

0

e−r2
rf−1drSf−1 = πf/2

which gives

Sf−1 =
2πf/2

Γ (f/2)

where Γ (x) is the usual gamma-function (see e.g. [32], Vol. 1, Sect. 1).
Combining together all terms and using the relation xΓ (x) = Γ (x+1) one

gets the explicit expression for the free Green function in f dimensions

G
(0)
E (x,y) =

kν

4i�2(2π�r)ν
H(1)

ν

(
k

�
|x − y|

)
(14)

where ν = |f/2 − 1|. In particular, in the two-dimensional Euclidean space



Quantum and Arithmetical Chaos 13

G
(0)
E (x,y) =

1
4i�2

H
(1)
0

(
k

�
|x − y|

)
. (15)

Another method of calculation of the free Green function is based on (9) which
for the free motion is equivalent to the Fourier expansion

G
(0)
E (x,y) =

∫
dp

(2π�)f

eip(x−y)/�

E − p2 + iε
. (16)

Performing angular integration one obtains the same formulas as above.

The knowledge of the Green function permits to calculate practically all
quantum mechanical quantities. In particular, using

Im
1

x + iε
ε→0−→ −πδ(x)

one gets that the eigenvalue density is expressed through the exact Green
function as follows

d(E) = − 1
π

Im
∫

D

GE(x,x)dx . (17)

This general expression is the starting point of all trace formulas.
For the above model of the rectangle with periodic boundary conditions

the exact Green function has to obey

(
∂2

∂x2
+

∂2

∂y2
+ E)GE(x, y;x′, y′) = δ(x − x′)δ(y − y′) (18)

and the periodic boundary conditions

GE(x + na, y + mb;x′, y′) = GE(x, y;x′, y′) (19)

for all integer m and n.
The fact important for us later is that the rectangular billiard with periodic

boundary conditions can be considered as the result of the factorization of the
whole plane (x, y) with respect to the group of integer translations

x → x + na, y → y + mb (20)

with integer m and n.
The factorization of the plan (x, y) with respect to these transformations

means two things. First, any two points connected by a group transformation
is considered as one point. Hence (19) fulfilled. Second, inside the rectangle
there is no points which are connected by these transformations. In mathe-
matical language the rectangle with sizes (a, b) is the fundamental domain of
the group (20).
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Correspondingly, the exact Green function for the rectangular billiard with
periodic boundary conditions equals the sum of the free Green function over
all elements of the group of integer translations (20)

GE(x, y;x′, y′) =
∞∑

n,m=−∞
G

(0)
E (x + na, y + mb;x′, y′) .

Here G
(0)
E (x,x′) is the Green function corresponding to the free motion with-

out periodic boundary conditions. To prove formally that it is really the exact
Green function one has to note that (i) it obeys (18) because each term in the
sum obeys it, (ii) it obeys boundary conditions (19) by construction (provided
the sum converges), and (iii) inside the initial rectangle only identity term can
produce a δ-function contribution required in (18) because all other terms will
give δ-functions outside the rectangle.

The next steps are straightforward. The free Green function for the two-
dimensional Euclidean plane has the form (15). From (17) it follows that the
eigenvalue density for the rectangular billiard is

d(E) = − 1
π

Im
∫

D

GE(x,x)dx

=
1
4π

∑
mn

∫
D

Im H
(1)
0

(
k
√

(ma)2 + (nb)2
)

dx

=
µ(D)
4π

+
µ(D)
4π

∑′
p.o.

J0(kLp) (21)

which coincides exactly with (6) and (7) obtained directly from the knowledge
of the eigenvalues.

The principal drawback of all trace formulas is that the sum over periodic
orbits does not converge. Even the sum of the squares diverges. The simplest
way to treat this problem is to multiply both sides of (21) by a suitable test
function h(E) and integrate them over E. In this manner one obtains

∑
n

h(En) =
µ(D)
4π

∫ ∞

0

h(E)dE +
µ(D)
4π

∑
p.o.

∫ ∞

0

h(E)J0(
√

ELp)dE .

When the Fourier harmonics of h(E) decrease quickly the sum over periodic
orbits converges and this expression constitutes a mathematically well de-
fined trace formula. Nevertheless for approximate calculations of eigenvalues
of energies one can still use ‘naive’ trace formulas by introducing a cut-off on
periodic orbit sum. For example, in Fig. 1 the result of numerical application
of the above trace formula is presented. In performing this calculation one
uses the asymptotic form of the oscillating part of the density of state (8)
with only 250 first periodic orbits. Though additional oscillations are clearly
seen, one can read off this figure the positions of first energy levels for the
problem considered. In the literature many different methods of resummation
of trace formulas were discussed (see e.g. [19] and references therein).
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Fig. 1. The trace formula for the rectangular billiard with periodic boundary con-
ditions calculated by taking into account 250 different periodic orbits. Dotted lines
indicate the position of exact energy levels.

2 Billiards on Constant Negative Curvature Surfaces

The crucial point in the second method of derivation of the trace formula for
the rectangular billiard with periodic boundary conditions was a representa-
tion of the exact Green function as a sum of a free Green function over all
images of the initial point. This method of images can be applied for any
problem which corresponds to a factorization of a space over the action of a
discrete group. In the Euclidean plane (i.e. the space of zero curvature) there
exist only a few discrete groups. Much more different discrete groups are pos-
sible in the constant negative curvature (hyperbolic) space. Correspondingly,
one can derive the trace formula (called the Selberg trace formula) for all
hyperbolic surfaces generated by discrete groups.

The exposition of this Section follows closely [20]. In Sect. 2.1 hyperbolic
geometry is non-formally discussed. The important fact is that on hyperbolic
plane there exist an infinite number of discrete groups (see e.g. [42]). Their
properties are mentioned in Sect. 2.2. In Sect. 2.3 the classical mechanics on
hyperbolic surfaces is considered and in Sect. 2.4 the notion of quantum prob-
lems on such surfaces is introduced. The construction of the Selberg trace
formula for hyperbolic surfaces generated by discrete groups consists of two
steps. The first is the explicit calculation of the free hyperbolic Green func-
tion performed in Sect. 2.5. The second step includes the summation over all
group transformations. In Sect. 2.6 it is demonstrated that the identity group
element gives the mean density of states. Other group elements contribute to
the oscillating part of the level density and correspond to classical periodic
orbits for the motion on systems considered. The relation between group ele-
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ments and periodic orbits is not unique. All conjugated matrices correspond
to one periodic orbit. The summation over classes of conjugated elements is
done in Sect. 2.7. Performing necessary integrations in Sect. 2.8 one gets the
famous Selberg trace formula. Using this formula in Sect. 2.9 we compute the
asymptotic density of periodic orbits for discrete groups. In Sect. 2.10 the
construction of the Selberg zeta function is presented. The importance of this
function follows from the fact that its non-trivial zeros coincide with eigenval-
ues of the Laplace–Beltrami operator automorphic with respect to a discrete
group (see Sect. 2.11). Though the Selberg zeta function is defined formally
only in a part of the complex plan, it obeys a functional equation (Sect. 2.12)
which permits the analytical continuation to the whole complex plane.

2.1 Hyperbolic Geometry

The standard representation of the constant negative curvature space is the
Poincaré upper half plane model (x, y) with y > 0 (see e.g. [7] and [42]) with
the following metric form

ds2 =
1
y2

(dx2 + dy2) .

The geodesic in this space (= the straight line) connecting two points is the
arc of circle perpendicular to the abscissa axis which passes through these
points (see Fig. 2). The distance d(x,y) between two points x = (x1, y1) and

B

x

y

A

Fig. 2. The Poincaré model of constant negative curvature space. Solid line indicates
the geodesic passing through points A and B.

y = (x2, y2) is defined as the length of the geodesic connecting these points.
Explicitly
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cosh d(x,y) = 1 +
(x1 − x2)2 + (y1 − y2)2

2y1y2
= 1 +

|z1 − z2|2
2Im z1Im z2

(22)

where in the last equation one combined coordinates (x, y) into a complex
number z = x + iy.

In the Euclidean plane the distance between two points remains invariant
under 3-parameter group of rotations and translations. For constant negative
curvature space the distance (22) is invariant under fractional transformations

z → z′ = g(z) ≡ az + b

cz + d
(23)

with real parameters a, b, c, d. This invariance follows from the following rela-
tions

z′1 − z′2 =
az1 + b

cz1 + d
− az2 + b

cz2 + d
= (ad − bc)

z1 − z2

(cz1 + d)(cz2 + d)
,

and
y′ =

1
2i

(z′ − z′∗) = (ad − bc)
y

|cz + d|2 .

Substituting these expressions to (22) one concludes that the distance between
two transformed points z′1, z

′
2 is the same as between initial points z1, z2.

As fractional transformations are not changed under the multiplication of
all elements a, b, c, d by a real factor, one can normalize them by the require-
ment

ad − bc = 1 .

In this case the distance preserving transformations are described by 2 × 2
matrices with real elements and unit determinant

g =
(

a b
c d

)
, and det g ≡ ad − bc = 1 .

It is easy to check that the result of two successive fractional transformations
(23) corresponds to the usual multiplication of the corresponding matrices.

The collection of all such matrices forms a group called the projective spe-
cial linear group over reals and it is denoted by PSL(2,IR). ‘Linear’ in the name
means that it is a matrix group, ‘special’ indicates that the determinant equals
1, and ‘projective’ here has to remind that fractional transformations (23) are
not changed when all elements are multiplied by ±1 which is equivalent that
two matrices ±1 corresponds to the identity element of the group.

The free classical motion on the constant negative curvature surface is
defined as the motion along geodesics (i.e. circles perpendicular to the abscissa
axis). The measure invariant under fractional transformations is the following
differential form

dµ =
dxdy

y2
. (24)
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This measure is invariant in the sense that if two regions, D and D′, are related
by a transformation (23), D′ = g(D), the measures of these two regions are
equal, µ(D′) = µ(D).

The operator invariant with respect to distance preserving transformations
(23) is called the Laplace–Beltrami operator and it has the following form

∆LB = y2

(
∂2

∂x2
+

∂2

∂y2

)
. (25)

Its invariance means that

∆LBf(g(z)) = ∆LBf(z)

for any fractional transformation g(z).
Practically all notions used for the Euclidean space can be translated to

the constant negative curvature case (see e.g. [7]).

2.2 Discrete groups

A rectangle (a torus) considered in Sect. 1 was the result of the factorization
of the free motion on the plane by a discrete group of translations (20). Ex-
actly in the same way one can construct a finite constant negative surface by
factorizing the upper half plane by the action of a discrete group ∈ PSL(2,IR).

A group is discrete if (roughly speaking) there is a finite vicinity of every
point of our space such that the results of all the group transformations (except
the identity) lie outside this vicinity. The images of a point cannot approach
each other too close.

Example

The group of transformation of the unit circle into itself. The group consists
of all transformations of the following type

z → g(n)z, and g(n) = exp(2πiαn) ,

where α is a constant and n is an integer. If α is a rational number α = M/N ,
g(n) can take only a finite number of values (g(n))N = 1 and the corresponding
group is discrete. But if α is an irrational number, the images of any point
cover the whole circle uniformly and the group is not discrete.

Modular Group

Mathematical fact: in the upper half plane there exists an infinite number of
discrete groups (see e.g. [42]). As an example let us consider the group of 2×2
integer matrices with unit determinant

(
m n
k l

)
, m, n, k, l are integers and ml − nk = 1 .
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This is evidently a group. It is called the modular group PSL(2,ZZ) (ZZ means
integers) and it is one of the most investigated groups in mathematics.

This group is generated by the translation T : z → z+1 and the inversion
S : z → −1/z (see e.g. [42]) which are represented by the following matrices

T :
(

1 1
0 1

)
, S :

(
0 1
−1 0

)
.

These matrices obey defining relations

S2 = −1 , (ST )3 = 1

and are generators in the sense that any modular group matrix can be repre-
sented as a product of a certain sequence of matrices corresponding to S and
T .

Fundamental Region

Similarly to the statement that the rectangular billiard is a fundamental do-
main of integer translations, one can construct a fundamental domain for any
discrete group.

By definition the fundamental domain of a group is defined as a region on
the upper half plane such that (i) for all points outside the fundamental do-
main there exists a group transformation that puts it to fundamental domain
and (ii) no two points inside the fundamental domain are connected by group
transformations.

The fundamental domain for the modular group is presented in Fig. 3. In
general, the fundamental region of a discrete group has a shape of a polygon
built from segments of geodesics. Group generators identify corresponding
sides of the polygon.

T

−1 −1/2 0 1/2 1

S

Fig. 3. Fundamental domain of the modular group. The indicated parts are identi-
fied by the corresponding generators
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2.3 Classical Mechanics

Assume that we have a discrete group G with corresponding matrices M ∈
G ∈ PSL(2,IR)

M =
(

a b
c d

)
.

The factorization over action of the group means that points z and z′ where

z′ =
az + b

cz + d
(26)

are identified i.e. they are considered as one point. The classical motion on the
resulting surface is the motion (with unit velocity) on geodesics (semi-circles
perpendicular to the real axis) inside the fundamental domain but when a
trajectory hits a boundary it reappears from the opposite side as prescribed
by boundary identifications.

For each hyperbolic matrix M ∈ G with |Tr M | > 2 one can associate
a periodic orbit defined as a geodesics which remains invariant under the
corresponding transformation. The equation of such invariant geodesics has
the form

c(x2 + y2) + (d − a)x − b = 0 . (27)

This equation is the only function which has the following property. If z =
x + iy belongs to this curve then

z′ =
az + b

cz + d

also belongs to it.
The length of the periodic orbit is the distance along these geodesics be-

tween a point and its image. Let z′ as above be the result of transformation
(26) then the distance between z and z′ is

cosh lp = 1 +
|z − z′|2

2yy′ .

But y′ = y/|cz + d|2 and

z − az + b

cz + d
=

c(x + iy)2 − (d − a)(x + iy) − b

cz + d
= y

−2cy + i(d − a + 2cx)
cz + d

.

Here we have used the fact that point z belongs to the periodic orbit (i.e. its
coordinates obey (27)). Therefore

cosh lp = 1 +
1
2
| − 2cy + i(d − a + 2acx)|2

= 1 +
1
2
[4bc + (d − a)2] =

1
2
(a + d)2 − 1 .
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Notice that the length of periodic orbit does not depend on an initial point
and is a function only of the trace of the corresponding matrix.

Finally one gets

2 cosh
lp
2

= |Tr M | . (28)

Periodic orbits are defined only for hyperbolic matrices with |Tr M | > 2. For
discrete groups only a finite number of elliptic matrices with |Tr M | < 2 can
exist (see [42]).

To each hyperbolic group matrix one can associate only one periodic orbit
but each periodic orbit corresponds to infinitely many group matrices. This
is due to the fact that z and g(z) for any group transformation have to be
considered as one point. Therefore all matrices of the form

SMS−1

for all S ∈ G give one periodic orbit. These matrices form a class of conju-
gated matrices and periodic orbits of the classical motion are in one-to-one
correspondence with classes of conjugated matrices.

2.4 Quantum Problem

The natural ‘quantum’ problem on hyperbolic plane consists in considering
the same equation as in (1) but with the substitution of the invariant Laplace–
Beltrami operator (25) instead of the usual Laplace operator

(
y2(

∂2

∂x2
+

∂2

∂y2
) + En

)
Ψn(x, y) = 0

for the class of functions invariant (= automorphic) with respect to a given
discrete group G

Ψn(x′, y′) = Ψn(x, y)

where z′ = x′ + iy′ is connected with z = x + iy by group transformations

z′ =
az + b

cz + d
.

It is easy to check that the Laplace–Beltrami operator (25) is self-adjoint with
respect to the invariant measure (24), i.e.

∫
Ψ∗(∆Ψ)dµ =

∫
(∆Ψ∗)Ψdµ

and all eigenvalues En are real and En ≥ 0.
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2.5 Construction of the Green Function

As in the case of plain rectangular billiards the construction of the Green
function requires two main steps.

• The computation of the exact Green function for the free motion on the
whole upper half plane.

• The summation of the free Green function over all images of the initial
point under group transformations.

The free hyperbolic Green function obeys the equation

(∆LB + E)G(0)
E (x,x′) = δ(x − x′)

and should depend only on the (hyperbolic) distance between points x,x′

u = cosh d(x,x′) = 1 +
(x − x′)2 + (y − y′)2

2yy′ .

After simple calculations one gets that G(y) with y �= 0 obeys the equation
for the Legendre functions (see e.g. [32], Vol.1, Sect. 3)

(1 − u2)
d2G

du2
− 2u

dG

du
+ l(l + 1)G = 0

where
E =

1
4

+ k2 = −l(l + 1)

and
l = −1

2
− ik .

As for the plane case the required solution of the above equation should grow
as eikd when d → ∞ and should behave like ln d/2π when d → 0. From [32],
Vol.1, Sect. 3 it follows that

G
(0)
E (x,x′) = − 1

2π
Q− 1

2−ik(cosh d(x,x′)) .

Here Q− 1
2−ik(cosh d) is the Legendre function of the second kind with the

integral representation [32], Vol. 1 (3.7.4)

Q− 1
2−ik(cosh d) =

1√
2

∫ ∞

d

eikrdr√
cosh r − cosh d

and the following asymptotics

Q− 1
2−ik(cosh d) d→0−→ − log d

and
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Q− 1
2−ik(cosh d) d→∞−→

√
π

2k sinh d
ei(kd−π/4) .

The automorphic Green function is the sum over all images of one of the
points

GE(x,x′) =
∑

g

G
(0)
E (x, g(x′))

where the summation is performed over all group transformations.

2.6 Density of State

Using the standard formula (17)

d(E) = − 1
π

∫
D

Im GE(x,x)dµ

one gets the expression for the density of states as the sum over all group
elements

d(E) =
1

2
√

2π2

∑
g

∫
D

dxdy

y2

(∫ ∞

d(z,g(z))

sin krdr√
cosh r − cosh d(z, g(z))

)
.

Mean Density of States

The mean density of states corresponds to the identity element of our group.
In this case g(z) = z and d(z, g(z)) = 0. Therefore

d̄(E) =
1

2
√

2π2

∫
D

dxdy

y2

∫ ∞

0

sin kr√
cosh r − 1

dr

=
µ(D)
(2π)2

∫ ∞

0

sin kr

sinh(r/2)
dr

where
µ(D) =

∫
D

dxdy

y2

is the (hyperbolic) area of the fundamental domain.
The last integral is

∫ ∞

0

sin kr

sinh(r/2)
dr = π tanhπk

and the mean density of states takes the form

d̄(E) =
µ(D)
4π

tanhπk .

When k → ∞ it tends to µ(D)/4π as for the plane case.
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2.7 Conjugated Classes

The most tedious step is the computation of the contribution from non-trivial
fractional transformations.

Let us divide all group matrices into classes of conjugated elements. It
means that all matrices having the form

g′ = SgS−1

where S belong to the group are considered as forming one class.
Two classes either have no common elements or coincide. This statement

is a consequence of the fact that if

S1g1S
−1
1 = S2g2S

−1
2

then g2 = S3g1S
−1
3 where S3 = S−1

1 S2. Therefore g2 belongs to the same class
as g1 and group matrices are split into classes of mutually non-conjugated
elements.

The summation over group elements can be rewritten as the double sum
over classes of conjugated elements and the elements in each class. Let g be a
representative of a class. Then the summation over elements in this class is

∑
S

∫
D

f(z, SgS−1(z))dµ

and the summation is performed over all group matrices S provided there is
no double counting in the sum. The latter means that matrices S should be
such that they do not contain matrices for which

S1gS−1
1 = S2gS−1

2

or the matrix S3 = S−1
1 S2 commutes with matrix g

S3g = gS3 .

Denote the set of matrices commuting with g by Sg. They form a subgroup
of the initial group G as their products also commute with g. To ensure
the unique decomposition of group matrices into non-overlapping classes of
conjugated elements the summation should be performed over matrices S such
that no two of them can be represented as

S2 = sS1

and s belongs to Sg. This is equivalent to the statement that we sum over all
matrices but the matrices sS are considered as one matrix. It means that we
factorize the group over Sg and consider the group G/Sg.

As the distance is invariant under simultaneous transformations of both
coordinates
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d(z, z′) = d(S(z), S(z′))

one has
d(z, g(z)) = d(S(z), Sg(z)) = d(y, SgS−1(y))

where y = S(z).
These relations give∫

D

f(d(y, SgS−1(y)))dµ =
∫

S−1(D)

f(z, g(z))dµ

and the last integral is taken over the image of the fundamental domain under
the transformation S−1. Therefore

∑
S

∫
D

f(d(y, SgS−1(y)))dµ =
∑
S

∫
S−1(D)

f(d(z, g(z)))dµ .

For different S images S−1(D) are different and do not overlap. The integrand
does not depend on S and

∑
S

∫
D

f(d(y, SgS−1(y)))dµ =
∫

Dg

f(d(z, g(z)))dµ

where
Dg =

∑
S

S−1(D) .

The sum of all images S−1(D) will cover the whole upper half plane but we
have to sum not over all S but only over S factorized by the action the group
of matrices commuting with a fixed matrix g. Therefore the sum will be a
smaller region.

Any matrix g can be written as a power of a primitive element

g = gn
0

and it is (almost) evident that matrices commuting with g are precisely the
group of matrices generated by g0. This is a cyclic Abelian group consisting
of all (positive, negative, and zero) powers of g0

Sg = gm
0 , m = 0,±1,±2, . . .

and as a discrete group it has a fundamental domain FDg.
Therefore

∑
S∈G/Sg

∫
D

f(d(y, SgS−1(y)))dµ =
∫

FDg

f(d(z, g(z)))dµ .

In the left hand side the integration is taken over the fundamental domain of
the whole group G and the summation is done over matrices from G factorized
by the subgroup Sg of matrices which commutes with a fixed matrix g. In the
right hand side there is no summation but the integration is performed over
the (large) fundamental domain of the subgroup Sg.
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2.8 Selberg Trace Formula

We have demonstrated that the density of states of the hyperbolic Laplace–
Beltrami operator automorphic over a discrete group can be represented as

d(E) = d̄(E) +
∑

g

dg(E)

where

dg(E) =
1

2
√

2π2

∫
FDg

dµ

∫ ∞

d(z,g(z))

sin kr√
cosh r − cosh d(z, g(z))

dr

and the summation is performed over classes of conjugated matrices.
Let us consider the case of hyperbolic matrices g = gm

0 (i.e. |Tr g0| > 2).
By a suitable matrix B such matrix can be transform to the diagonal form

Bg0B
−1 =

(
λ0 0
0 λ−1

0

)
.

For hyperbolic matrices λ0 is real and |λ0| > 1. By the same transformation
the matrix g will be transformed to

BgB−1 =
(

λ 0
0 λ−1

)

and λ = λm
0 .

Assume that g is in the diagonal form. Then g(z) = λ2z and

cosh d(z, g(z)) = 1 +
(λ2 − 1)2(x2 + y2)

2λ2y2
.

Because λ0 is real the transformation z′ = λ2
0z gives y′ = λ2

0y and the funda-
mental domain of Sg = λ2m

0 z has the form of a horizontal strip 1 < y < λ2
0

indicated in Fig. 4. Now

dg(E) =
∫ ∞

−∞
dx

∫ λ2
0

1

F

(
(λ2 − 1)2(x2 + y2)

λ2y2

)
dy

y2
.

Introducing a new variable ξ = xy one gets

dg(E) =
∫ λ2

0

1

dy

y

∫ ∞

−∞
F

(
(1 + ξ2)

(λ2 − 1)2

λ2

)
dξ

= lnλ2
0

∫ ∞

−∞
F

(
(1 + ξ2)

(λ2 − 1)2

λ2

)
dξ .

After the substitution
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x

y

λ

i

i 0
2

Fig. 4. Fundamental domain of multiplication group

u = (1 + ξ2)
(λ2 − 1)2

λ2

one obtains

dg(E) =
lnλ2

0√
u0

∫ ∞

u0

F (u)√
u − u0

du

where

u0 =
(λ2 − 1)2

λ2
= λ2 +

1
λ2

− 2 .

The variable u is connected with the distance by cosh d = 1+u/2 and the
function F (2(cosh d − 1)) has the form

F (2(cosh d − 1)) =
1

2
√

2π2

∫ ∞

d

sin kr√
cosh r − cosh d

dr .

Introduce a variable τ connected with r as u is connected with d

cosh τ = 1 +
r

2
,

dr

dτ
=

1√
τ2 + 4τ

.

It gives

F (u) =
1

2π2

∫ ∞

u

sin kr(τ)√
(τ − u)(τ2 + 4τ)

dτ

and

dg(E) =
lnλ2

0

2π2
√

u0
f(u0)

where

f(w) =
∫ ∞

w

du√
u − w

∫ ∞

u

sin kr(τ)√
(τ − u)(τ2 + 4τ)

dτ .

Changing the order of integration one obtains

f(w) =
∫ ∞

w

sin kr(τ)√
τ2 + 4τ

dτ

∫ τ

w

du√
(u − w)(τ − u)

.



28 Eugene Bogomolny

The last integral is a half of the residue at infinity
∫ τ

w

du√
(u − w)(τ − u)

= π

and

f(w) = π

∫ ∞

w

sin kr(τ)√
τ2 + 4τ

dτ = π

∫ ∞

lp

sin(kr)dr =
π

k
cos klp .

Here lp is the minimal value of r corresponding to u0

cosh lp = 1 +
u0

2
= 1 +

1
2
(λ2 +

1
λ2

− 2) =
1
2
(λ +

1
λ

)2 − 1

or
2 cosh lp = λ +

1
λ
≡ Tr g

i.e. lp is the length of periodic orbit associated with the matrix g.
Therefore

dg(E) =
lnλ2

0

2πk
√

λ + λ−1 − 2
cos klp =

l
(0)
p

4πk sinh lp/2
cos klp

where l
(0)
p is the length of the primitive periodic orbit associated with g0.

Combining all terms together one finds that the eigenvalues density of the
Laplace–Beltrami operator automorphic with respect to a discrete group with
only hyperbolic matrices has the form

d(E) =
µ(D)
4π

tanhπk +
∑
p.p.o.

lp
4πk

∞∑
n=1

cos(knlp)
sinh(nlp/2)

.

The oscillating part of the density is given by the double sum. The first sum-
mation is done over all primitive periodic orbits (p.p.o.) and the second sum is
performed over all repetitions of these orbits. Here k is the momentum related
with the energy by E = k2 + 1/4.

To obtain mathematically sound formula and to avoid problems with con-
vergence it is common to multiply both parts of the above equality by a test
function h(k) and to integrate over dE = 2kdk. To assume the convergence
the test function h(r) should have the following properties

• The function h(r) is a function analytical in the region |Im r| ≤ 1/2 + δ
with certain δ > 0.

• h(−r) = h(r).
• |h(r)| ≤ A(1 + |r|)−2−δ.

The left hand side of the above equation is
∫

d(E)h(k)dE =
∑

n

δ(E − En)h(k)dE =
∑

n

h(kn) .
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In the right hand side one obtains
∫

h(k)
cos kl

2πk
kdk =

1
2π

∫ ∞

−∞
h(k)e−ikldk .

The final formula takes the form
∑

n

h(kn) =
µ(D)
2π

∫ ∞

−∞
kh(k) tanh(πk)dk

+
∑
p.p.o.

lp

∞∑
n=1

1
2 sinh(nlp/2)

g(nlp) (29)

where kn is related with eigenvalue En as follows

En = k2
n +

1
4

and g(l) is the Fourier transform of h(k)

g(l) =
1
2π

∫ ∞

−∞
h(k)e−ikldk .

This is the famous Selberg trace formula. It connects eigenvalues of the
Laplace–Beltrami operator for functions automorphic with respect to a dis-
crete group having only hyperbolic elements with classical periodic orbits.

2.9 Density of Periodic Orbits

To find the density of periodic orbits for a discrete group let us choose the
test function h(r) in (29) as

h(r) = e−(r2+1/4)T ≡ e−ET

with a parameter T > 0. Its Fourier transforms is

g(u) =
1
2π

∫ ∞

−∞
h(k)e−ikudk =

e−T/4

2
√

πT
e−u2/4T .

In the left hand side of the Selberg trace formula one obtains
∑

n

e−EnT = 1 +
∑

En>0

e−EnT

where we take into account that for any discrete group there is one zero
eigenvalue corresponding to a constant eigenfunction. Therefore when T → ∞
the above sum tends to one ∑

n

e−EnT T→∞−→ 1 .
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One can easily check that in the right hand side of (29) the contribution of
the smooth part of the density goes to zero at large T and the contribution
of periodic orbits is important only for primitive periodic orbits with n = 1.
The latter is

e−T/4

2
√

πT

∑
p

lpe−l2p/4T−lp/2 =
e−T/4

2
√

πT

∫ ∞

0

le−l2/4T−l/2ρ(l)dl

where ρ(l) is the density of periodic orbits. Hence the Selberg trace formula
states that

lim
T→∞

e−T/4

2
√

πT

∫ ∞

0

le−l2/4T−l/2ρ(l)dl = 1 .

Assume that ρ(l) = beal/l with certain constants a and b. Then from the
above limit it follows that a = b = 1 which demonstrates that the density of
periodic orbits for a discrete group increases exponentially with the length

ρ(l) =
el

l
.

2.10 Selberg Zeta Function

Among many applications of the Selberg trace formula let us consider the
construction of the Selberg zeta function.

Choose as test function h(k) the function

h(k) =
1

k2 + α2
− 1

k2 + β2
.

Its Fourier transform is

g(l) =
1
2α

e−α|l| − 1
2β

e−β|l| .

The Selberg trace formula gives

∑
n

(
1

k2
n + α2

− 1
k2

n + β2

)

=
µ(D)
2π

∫ ∞

−∞
k tanhπk

(
1

k2 + α2
− 1

k2 + β2

)
dk

+
∑
p.p.o.

∞∑
n=1

lp
2 sinh nlp/2

(
e−αlp

2α
− e−βlp

2β

)
.

The Selberg zeta function is defined as the following formal product

Z(s) =
∏
p.p.o

∞∏
m=0

(1 − e−lp(s+m)) . (30)
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One has

1
Z

dZ

ds
=

∑
p.p.o.

∞∑
m=0

lpe−lp(s+m)

1 − e−lp(s+m)
=

∑
p.p.o.

lp

∞∑
n=1

∞∑
m=0

e−lp(s+m)n

=
∑

p.p.o.
lp

∞∑
n=1

e−lpns

1 − e−lpn
=

∑
p.p.o.

lp

∞∑
n=1

1
2 sinh nlp/2

e−lpn(s−1/2) .

Choose α = s − 1/2 and β = s′ − 1/2 then

∑
n

(
1

k2
n + (s − 1/2)2

− 1
k2

n + (s′ − 1/2)2

)

=
µ(D)
4π

∫ ∞

−∞
k tanhπk

(
1

k2 + (s − 1/2)2
− 1

k2 + (s′ − 1/2)2

)
dk

+
1

2s − 1
Z(s)′

Z(s)
− 1

2s′ − 1
Z(s′)′

Z(s′)
.

The integral in the right hand side can be computed by the residues
∫ ∞

−∞
k tanhπk

(
1

k2 + (s − 1/2)2
− 1

k2 + (s − 1/2)2

)
dk = f(s) − f(s′)

where f(s) is the sum over residues from one pole k = i(s − 1/2) and from
poles kn = i(n + 1/2) of tanhπk

f(s) = 2πi

[
1
2

tanh[iπ(s − 1/2)] +
i
π

∞∑
n=0

n + 1/2
(s − 1/2)2 − (n + 1/2)2

]

= π cot πs −
∞∑

n=1

1
s − n

+
∞∑

n=1

1
s + n

.

But

π cot πs =
∞∑

n=1

1
s − n

+
∞∑

n=1

1
s + n

,

therefore

f(s) = 2
∞∑

n=1

1
s + n

.

Using these relations one gets the identity valid for all values of s and s′

1
2s − 1

Z ′(s)
Z(s)

=
1

2s′ − 1
Z ′(s′)
Z(s′)

− µ(D)
2π

∞∑
n=0

(
1

s + n
− 1

s′ + n

)

+
∑

n

(
1

k2
n + (s − 1/2)2

− 1
k2

n + (s′ − 1/2)2

)
. (31)
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The right hand side of this identity has poles at s = 1/2 + ikn and s = −n.
The same poles have to be present in the left hand side. If

Z ′(s)
Z(s)

→ νk

s − sk

then
Z(s) → (s − sk)νk when s → sk .

When νk > 0 (resp. νk < 0) point sk is a zero (resp. a pole) of the Selberg
zeta function Z(s).

2.11 Zeros of the Selberg Zeta Function

Combining all poles one concludes that the Selberg zeta function for a group
with only hyperbolic elements have two different sets of zero. The first consists
of non-trivial zeros

s = 1/2 ± ikn,

coming from eigenvalues of the Laplace–Beltrami operator for automorphic
functions. The second set includes a zero from E = 0 eigenvalue and zeros
from the smooth term. These zeros are called trivial zeros and they are located
at points

s = −m (m = 1, 2, . . .)

with multiplicity νm = (2m + 1)µ(D)/2π, at point s = 0 with multiplicity
ν0 = µ(D)/2π and a single zero at s = 1. These multiplicities are integers
because the area of a compact fundamental domain µ(D) = 4π(g − 1) where
g is the genus of the surface.

The structure of these zeros is presented schematically at Fig. 5.

Re s=1/2

trivial zeros

−1−2−3−4 0 1

non−trivial zeros

Fig. 5. Zeros of the Selberg zeta function
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2.12 Functional Equation

The infinite product defining the Selberg zeta function (30) converges only
when Re s > 1/2. Nevertheless the Selberg zeta function can be analytically
continued to the whole complex plane s with the aid of (31).

Put s′ = 1− s in (31). The sum over eigenvalues cancels and f(s)− f(1−
s) = 2π cot πs. Therefore

1
2s − 1

(
Z ′(s)
Z(s)

+
Z ′(1 − s)
Z(1 − s)

)
= −µ(D)

2
cot πs

which is equivalent to the following relation (called functional equation)

Z(s) = ϕ(s)Z(1 − s) (32)

where
ϕ′(s)
ϕ(s)

= −µ(D)(s − 1
2
) cot πs

and ϕ(1/2) = 1.
Explicitly

ϕ(s) = exp

(
µ(D)

∫ s−1/2

0

u tan πudu

)
.

Therefore if one knows the Selberg zeta function when Re s > 1 (32) gives its
continuation to the mirror region Re s < 0.

3 Trace Formulas for Integrable Dynamical Systems

A f -dimensional system is called integrable if its classical Hamiltonian can be
written as a function of action variables only

H(I) = H(I1, . . . , If ) .

In this representation the classical equations of motion take especially simple
form

İ = −∂H

∂ϕ
= 0 , ϕ̇ =

∂H

∂I
= ω .

The semiclassical quantization consists of fixing the values of the action vari-
ables

Ij = �(nj +
µj

4
)

where nj are integers and µj are called the Maslov indices.
In this approximation eigenvalues of energy of the system are a function

of these integers

E(n) = H
(
�(n1 +

µ1

4
), . . . , �(nf +

µf

4
)
)

.
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The eigenvalue density is the sum over all integers nj

d(E) =
∑
n

δ(E − H(�(n +
1
4
µ)) .

Using the Poisson summation formula (5) one transforms this expression as
follows

d(E) =
∑
N

∫
e2πiNnδ(E − H(�(n +

1
4
µ))dn

=
1
�f

∑
N

e−iπNµ/2

∫
e2πiNI/�

∫
δ(E − H(I ))dI (33)

where the summation is taken over f integers Nj .

3.1 Smooth Part of the Density

The term with N = 0 in (33) corresponds to the smooth part of the density

d̄(E) =
1
�f

∫
δ(E − H(I ))dI .

As dIdϕ is the canonical invariant, dIdϕ = dpdq where p and q are the
momenta and coordinates and, because

∫
dϕ = (2π)f , the formula for the

smooth part of the level density can be rewritten in the Thomas-Fermi form

d̄(E) =
∫

δ(E − H(p,q ))
dpdq
(2π�)f

. (34)

The usual interpretation of this formula is that each quantum state occu-
pies (2π�)f volume on the constant energy surface. For general systems (34)
represents the leading term of the expansion of the smooth part of the level
density when � → 0. Other terms can be found e.g. in [5]. See also [14] for the
resummation of such series for certain models.

3.2 Oscillating Part of the Density

In the semiclassical approximation � → 0 terms with N �= 0 in (33) can be
calculated by the saddle point method. Our derivation differs slightly from
the one given in [9]. First it is convenient to represent δ-function as follows

δ(x) =
1

2π�

∫ ∞

−∞
eiαx/�dα .

Then
d(osc)(E) =

1
2π�f+1

∑
N

e−iπNµ/2

∫ ∞

−∞
dα

∫
eiS(I,α)/�dI
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where the effective action, S(I, α), is

S(I, α) = 2πNI + α(E − H(I)) .

The integration over I and α can be performed by the saddle point method.
The saddle point values, Isp and αsp, are determined from equations

∂S

∂α
= E − H(Isp) = 0 ,

∂S

∂I
= 2πN − αspωsp = 0 .

The first equation shows that in the leading approximation Isp belongs to the
constant energy surface and the second equation selects special values of Isp

for which frequencies ωj are commensurable

ωsp =
2π

αsp
N .

Together the saddle point conditions demonstrate that in the limit � → 0 the
dominant contribution to the term with fixed integer vector N comes from
the classical periodic orbit with period

Tp = αsp

and the saddle point action coincides with the classical action along this tra-
jectory

Ssp = 2πNIsp .

To compute remaining integrals it is necessary to expand the full action up
to quadratic terms on deviations from the saddle point values. One has

S(Isp + δI, αsp + δα) = Ssp +
Tp

2
(δIiHijδIj) − δα(ωjδIj)

where the summation over repeating indexes is assumed. Hij is the matrix of
the second derivatives of the Hamiltonian computed at the saddle point

Hij ≡ ∂2H

∂Ii∂Ij

∣∣
I=Isp

.

The following steps are straightforward∫
dδIdδα exp

(
i
�
S(I, α)

)

= eiSsp/�

∫
dδα

∫
dδI exp

(
i

2�
Tp(δIiHijδIj) − δα

�
(ωjδIj)

)

=
(

2π�

Tp

)f/2 eiSsp/�√|det Hij |
∫

δα exp
(
− i

2�Tp
(δα)2(ωiH

−1
ij ωj) +

i
4
πβ′

)

=
(

2π�

Tp

)f/2 √
2π�Tp√

|det Hij |(ωkH−1
kl ωl)

exp
(

i
�
Ssp +

i
4
πβ

)

=
(2π)(f−1)/2

�
(f+1)/2

T
(f−3)/2
p |(NiQijNj)|1/2

exp
(

i
�
Ssp +

i
4
πβ

)
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where Qij = H−1
ij det H called the co-matrix of Hij is the determinant ob-

tained from Hij by omitting the i-th row and the j-th column. The phase β
is the signature of Hij minus the sign of (ωH−1ω).

The final expression for the oscillating part of the level density of an inte-
grable system with a Hamiltonian H(I) is

d(osc)(E) =
∑
N

PN exp
(

i
Sp

�
− i

π

4
Nµ + i

π

4
β

)

where Sp = 2πNI is the action over a classical periodic orbit with fixed
winding numbers and

PN =
(

2π

�Tp

)(f−3)/2 1
�2|(NiQijNj)|1/2

.

The summation over integer vectors N is equivalent to the summation over
all classical periodic orbit families of the system.

4 Trace Formula for Chaotic Systems

We will not discuss further chaotic systems in full generality (see e.g. [28]). For
our purposes it is sufficient to consider those systems for which all periodic
orbits are isolated and unstable. To compute the eigenvalue density for such
a chaotic system one has to start with general expression (17)

d(E) = − 1
π

∫
Im GE(x,x)dx

which relates the quantum density with the Green function of the system,
GE(x,y), obeying the Schroedinger equation with a δ-function term in the
right hand side

(E − Ĥ)GE(x,y) = δ(x − y) .

For concreteness let us consider the usual case

Ĥ = −�
2∆ + V (x) .

The exact Green function can be computed exactly only in very limited cases.
For generic systems the best which can be achieved is the calculation of the
Green function in the semiclassical limit � → 0.

4.1 Semiclassical Green Function

Let us try to obey the Schroedinger equation in the following form (see [33])

GE(x,y) = A(x,y)eiS(x,y)/� (35)
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where the prefactor A(x,y) can be expanded into a power series of �.
Separating the real and imaginary parts of the Schroedinger equation one

gets two equations
(
E − (∇S)2 − V (x)

)
+ �

2∆A = 0

and
2∇S∇A + ∆SA = 0 .

In the leading order in � the first equation reduces to the Hamilton-Jacobi
equation for the classical action S(x,y)

E = (∇S)2 + V (x) .

It is well known that the solution of this equation can be obtained in the
following way.

Find the solution of the usual classical equations of motion

ẍ = −∂V

∂x

with energy E which starts at a fixed point y and ends at a point x. Then

S(x,y) =
∫ x

y

pdx

where p is the momentum and the integral is taken over this trajectory.
Instead of proving this fact we illustrate it on an example of the free

motion. The free motion equations ẍ = 0 have a general solution

x = kt + y

with a fixed vector k. One has

k =
x − y

t

and the conservation of energy |k|2 = E determines the time of motion

t =
|x − y|√

E
.

Therefore
S(x,y) =

√
E|x − y|

which, evidently, is the solution of the free Hamilton–Jacobi equation.
The next order equation

2∇S∇A + ∆SA = 0
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is equivalent to the conservation of current. Indeed, for the semiclassical wave
function (35)

J =
1
2i

(Ψ∗∇Ψ − Ψ∇Ψ∗) = A2∇S

and
∇J = A(2∇A∇S + A∆S) = 0 .

The solution of the above transport equation has the form

A(x,y) =
π

(2π�)(f+1)/2

∣∣∣∣ 1
kikf

det
(
− ∂2S

∂ti⊥∂tf⊥

)∣∣∣∣
1/2

where ti⊥ and tf⊥ are coordinates perpendicular to the trajectory in the
initial, y, and final, x, points respectively and ki, kf are the initial and final
momenta. The derivation of this formula can be found e.g. in [33]. The overall
prefactor in this formula can be fixed by comparing with the asymptotics of
the free Green function (14) at large distances.

The final formula for the semiclassical Green function takes the form

GE(x,y) =
∑

classical

trajectories

π

(2π�)(f+1)/2

∣∣∣∣ 1
kikf

det
(
− ∂2S

∂ti⊥∂tf⊥

)∣∣∣∣
1/2

×

× exp
(

i
�
Scl(x,y) − i

4
πµ

)

where the sum is taken over all classical trajectories with energy E which
connect points y and x. µ is the Maslov index which, roughly speaking, counts
the number of points along the trajectory where semiclassical approximation
cannot be applied.

4.2 Gutzwiller Trace Formula

The knowledge of the Green function permits the calculation of the density
of eigenstates by the usual formula (17)

d(E) = − 1
π

∫
Im GE(x,x)dx .

The Green function GE(x,y) at points x and y very close to each other
has two different contributions (see Fig. 6). The first comes from very short
trajectories where semiclassical approximation cannot, in general, be applied.
The second is related with long trajectories. The first contribution can be
computed by using the Thomas–Fermi (local) approximation for the Green
function. In this approximation one uses the local formula (cf. (16))
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x
y

Large action trajectory

Small action trajectory

Fig. 6. Small and large action contributions to the Green function for nearby points

GE(x,y)
y→x−→

∫
dp

(2π�)f

eip(x−y)/�

(E − H(p,x) + iε)
.

Therefore
Im GE(x,x) = −π

∫
dp

(2π�)f
δ (E − H(p,x))

and the smooth part of the level density in the leading approximation equals
the phase-space volume of the constant energy surface divided by (2π�)f

d̄(E) =
∫

dpdx
(2π�)f

δ (E − H(p,x)) .

The contribution from long classical trajectories with finite actions corre-
sponds to the oscillating part of the density and can be calculated using the
semiclassical approximation of the Green function (35).

One has

d(osc)(E) = − 1
π

Im
∑

classical

trajectories

∫
A(x,x)eiS(x,x)/�dx .

When � → 0 the integration can be performed in the saddle point approxi-
mation. The saddles are solutions of the equation

[
∂S(x,y)

∂x
+

∂S(x,y)
∂y

]
y=x

= 0 .

But
∂S(x,y)

∂x
= kf ,

∂S(x,y)
∂y

= −ki

where kf and ki are the momenta in the final and initial points respectively.
Hence the saddle point equations select special classical orbits which start

and end in the same point with the same momentum. It means that the saddles
are classical periodic orbits of the system and
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Ssp = Sp .

To calculate the integral around one particular periodic orbit it is convenient
to split the integration over the whole space to one integration along the orbit
and (f−1) integrations in directions perpendicular to the orbit. For simplicity
we consider the two-dimensional case.

The change of the action when a point is at the distance y from the periodic
orbit is

δS =
1
2
y2 ∂2S(y, y)

∂y2
|y=0

where S(y, y) is the classical action for a classical orbit in a vicinity of the
periodic orbit (see Fig. 7). To compute such derivatives it is useful to use
the monodromy matrix, mij , which relates initial and final coordinates and
momenta in a vicinity of periodic orbit in the linear approximation

(
δyf

δpf

)
=

(
m11 m12

m21 m22

) (
δyi

δpi

)
.

As the classical motion preserves the canonical invariant dpdq it follows that
det M = 1.

One has

δyf = m11δyi + m12δpi ,

δpf = m21δyi + m22δpi .

But
pi = − ∂S

∂yi
, pf =

∂S

∂yf
.

Therefore

δpi = −∂2S

∂y2
i

δyi − ∂2S

∂yi∂yf
δyf , δpf =

∂2S

∂yi∂yf
δyi +

∂2S

∂y2
f

δyf .

From comparison of these two expression one obtains the expressions of the
second derivatives of the action through monodromy matrix elements

classical orbit

y

periodic orbit

Fig. 7. A periodic orbit and a closed classical orbit in its vicinity
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∂2S

∂yi∂yf
= − 1

m12
,

∂2S

∂y2
i

=
m11

m12
,

∂2S

∂y2
f

=
m22

m12
.

Substituting these expressions to the contribution to the trace formula from
one periodic orbit one gets (in two dimensions)

d(osc)
p (E) =

1
i(2πi�)3/2

∫
|m12|−1/2 exp(

i
�
Sp + i

m11 + m22 − 2
2� m12

y2)dy
dx

k(x)

where x and y are respectively coordinates parallel and perpendicular to the
trajectory.

Computing the resulting integrals one obtains

d(osc)
p (E) =

Tp

π�

eiSp/�−iπµp/2√|m11 + m22 − 2|

where Tp =
∫

dx/k(x) is the geometrical period of the trajectory.
Finally the Gutzwiller trace formula takes the form (valid in arbitrary

dimensions)

d(osc)(E) =
∑

primitive

periodic

orbits

Tp

π�

∞∑
n=1

1
|det(Mn

p − 1)|1/2
cos

[
n(

Sp

�
− π

2
µp)

]
.

In the derivation of this formula we assumed that all periodic orbits are un-
stable and Mp is the monodromy matrix for a primitive periodic orbit.

5 Riemann Zeta Function

The trace-like formulas exist not only for dynamical systems but also for the
Riemann zeta function (and other number-theoretical zeta functions as well).

The Riemann zeta function is a function of complex variable s defined as
follows

ζ(s) =
∞∑

n=1

1
ns

=
∏
p

(1 − p−s)−1 (36)

where the product is taken over prime numbers. The second equality (called
the Euler product) is a consequence of the unique factorization of integers
into a product of prime numbers.

This function converges only when Res > 1 but can analytically be con-
tinued in the whole complex s-plane.
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5.1 Functional Equation

The possibility of this continuation is connected with the fact that the Rie-
mann zeta function satisfies the important functional equation

ζ(s) = ϕ(s)ζ(1 − s) (37)

where
ϕ(s) = 2sπs−1 sin

(πs

2

)
Γ (1 − s) . (38)

We present one of numerous method of proving this relation (see e.g. [55]).
When Re s > 0 one has the equality

∫ ∞

0

xs/2−1e−πn2xdx =
Γ (s/2)
nsπs/2

where Γ (x) is the Gamma function (see e.g. [32], Vol. 1, Sect. 1). Therefore
if Re s > 1

Γ (s/2)ζ(s)
πs/2

=
∫ ∞

0

xs/2−1Ψ(x)dx

where Ψ(x) is given by the following series

Ψ(x) =
∞∑

n=1

e−πn2x .

Using the Poisson summation formula (5) one obtains

∞∑
n=−∞

e−πn2x =
1√
x

∞∑
n=−∞

e−πn2/x

which leads to the identity

2Ψ(x) + 1 =
1√
x

(
2Ψ(

1
x

) + 1
)

.

Hence

ξ(s) ≡ π−s/2Γ (
1
2
s)ζ(s) =

∫ 1

0

xs/2Ψ(x)dx +
∫ ∞

1

xs/2Ψ(x)dx =

=
∫ 1

0

xs/2

(
1√
x

Ψ(
1
x

) +
1

2
√

x
− 1

2

)
dx +

∫ ∞

1

xs/2Ψ(x)dx

=
1

s − 1
− 1

s
+

∫ 1

0

xs/2−3/2Ψ(
1
x

)dx +
∫ ∞

1

xs/2Ψ(x)dx =

=
1

s(s − 1)
+

∫ ∞

1

(
x−s/2−1/2 + xs/2−1

)
Ψ(x)dx .
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The last integral is convergent for all values of s and gives the analytical
continuation of the Riemann zeta function to the whole complex s-plane, the
only singularity being the pole at s = 1 with unit residue

ζ(s) s→1−→ 1
s − 1

.

(The pole at s = 0 is canceled by the pole of Γ (s/2) giving ζ(0) = −1/2.)
One of important consequences of the above formula of analytical contin-

uation is that it does not change under the substitution s → 1− s. Therefore
for all values of s

ξ(s) = ξ(1 − s)

or
ζ(s) = ϕ(s)ζ(1 − s)

where

ϕ(s) = πs−1/2 Γ (1/2 − s/2)
Γ (s/2)

(39)

By standard formulas (see e.g. [32], Vol. 1, 1.2.5, 1.2.15)

Γ (x)Γ (1 − x) =
π

sin πx
, Γ (2x) = 22x−1π−1/2Γ (x)Γ (x +

1
2
)

the last expression can be transformed to (38) which proves the functional
equation (37).

From the functional equation (37) is follows that ζ(s) has ’trivial’ zeros
at negative even integers (except zero) s = −2,−4, . . . which appear from
sin(πs/2) in (38). All other non-trivial zeros, ζ(sn) = 0, are situated in the so-
called critical strip 0 < Re s < 1. If one denotes these zeros as sn = 1/2+iγn

then functional equation together with the fact that ζ(s)∗ = ζ(s∗) state that
in general there exit 4 sets of zeros: γn , −γn , γ∗

n , −γ∗
n.

According to the famous Riemann conjecture (see e.g. [55]) all nontrivial
zeros of ζ(s) lie at the symmetry line Re s = 1/2 or γn are all real quantities.
Numerical calculations confirms this conjecture for exceptionally large number
of zeros (see e.g. [47] and the web site of Odlyzko [48]) but a mathematical
proof is still absent.

5.2 Trace Formula for the Riemann Zeros

Let us fix a test function h(r) exactly as it was done for the Selberg trace
formula in Sect. 2.8 i.e.

• h(r) is a function analytical in the region |Im r| ≤ 1/2 + δ,
• h(−r) = h(r),
• |h(r)| ≤ A(1 + |r|)−2−δ.
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Denote as in that Section

g(u) =
1
2π

∫ +∞

−∞
h(r)e−irudr

and define

H(s) =
∫ +∞

−∞
g(u)e(s−1/2)udu .

Now let us compute the integral

1
2πi

∮
dsH(s)

ζ ′(s)
ζ(s)

where the contour of integration is taken over the rectangle −η ≤ Re s ≤ 1+η
and −T ≤ Im s ≤ T with 0 < η < δ and T → +∞. Inside this rectangle
there are poles of ζ ′(s)/ζ(s) coming from non-trivial zeros of the Riemann
zeta function, sn = 1/2+ iγn, and the one from the pole of ζ(s) at s = 1. The
total contribution from these poles is

∑
n

h(γn) − h(− i
2
) .

One can check that the limit T → ∞ exists and, consequently, one has the
identity

∑
n

h(γn)−h(− i
2
) =

1
2πi

∫ 1+η+i∞

1+η−i∞
dsH(s)

ζ ′(s)
ζ(s)

− 1
2πi

∫ −η+i∞

−η−i∞
dsH(s)

ζ ′(s)
ζ(s)

.

Let us substitute in the second integral the functional equation (37) with ϕ(s)
from (39). One has

ζ ′(s)
ζ(s)

= lnπ − ζ ′(1 − s)
ζ(1 − s)

− 1
2

[
Γ ′

Γ

(s

2

)
+

Γ ′

Γ

(
1 − s

2

)]
.

Now all integrals converge and one can move the integration contour till s =
1/2 + ir with real r. In this manner one obtains

1
4πi

∫ −η+i∞

−η−i∞
dsH(s)

[
Γ ′

Γ

(s

2

)
+

Γ ′

Γ

(
1 − s

2

)]

= h(
i
2
) +

1
2π

∫ +∞

−∞
h(r)

Γ ′

Γ

(
1
4

+
i
2
r

)
dr .

The first term in the right hand side of this equality is due to the appearance
of the pole of Γ (s/2) at s = 0 when the integration contour shifted till s =
1/2 + ir. Also we have used that h(−r) = h(r).

For terms with the Riemann zeta function one can use the expansion which
follows from (36)
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ζ ′(s)
ζ(s)

= −
∑

p

ln p
∞∑

n=1

p−ns .

Shifting the integration contour as above (i.e. till s = 1/2 + ir), using that
g(−u) = g(u), and combining all terms together one gets the following Weil
explicit formula for the Riemann zeros

∑
non-trivial

zeros

h(γn) =
1
2π

∫ ∞

−∞
h(r)

Γ ′

Γ

(
1
4

+
i
2
r

)
dr + h(

i
2
) + h(− i

2
) −

− g(0) ln π − 2
∑

primes

ln p

∞∑
n=1

1
pn/2

g(n ln p) .

Here γn are related with non-trivial zeros of the Riemann zeta function, sn,
as follows

sn =
1
2

+ iγn .

This formula is an analog of usual trace formulas as it relates zeros of the
Riemann zeta function defined in a quite complicated manner with prime
numbers which are a common notion.

The similarity with dynamical trace formulas is more striking if one as-
sumes the validity of the Riemann conjecture which states that γn are real
quantities (which in a certain sense can be considered as energy levels of a
quantum system). In ’semiclassical’ limit r → ∞ using the Stirling formula
(see e.g. [32], Vol. 1, 1.9.4)

lnΓ (z)
|z|→∞−→ (z − 1

2
) ln z − z +

1
2

ln 2π

one obtains that the density of Riemann zeros

d(E) =
∑

n

δ(E − γn)

can be expressed by the following ‘physical’ trace formula valid at large E

d(E) = d̄(E) + d(osc)(E)

where
d̄(E) =

1
2π

ln
E

2π
+ corrections ,

and

d(osc)(E) = − 1
π

∑
p

∞∑
n=1

ln p

pn/2
cos(En ln p)

where the summation is performed over all prime numbers.
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5.3 Chaotic Systems and the Riemann Zeta Function

By comparing the above equations with the trace formulas of chaotic systems
one observes (see e.g. [38], [12], [13]) a remarkable correspondence between
different quantities in these trace formulas

• periodic orbits of chaotic systems ↔ primes,
• periodic orbit period Tp ↔ ln p,
• convergence properties of both formulas are also quite similar.

The number of periodic orbits with period less than T for chaotic systems is
asymptotically

N(Tp < T ) =
ehT

hT
,

where the constant h is called the topological entropy.
The number of prime numbers less than x is given by the prime number

theorem (see e.g. [55])
N(p < x) =

x

lnx
.

As ln p ≡ Tp this expression has the form similar to number of periodic orbits
of chaotic systems with h = 1

N(Tp < T ) =
eT

T
.

Due to these similarities number-theoretical zeta functions play the role of
simple (but by far non-trivial) models of quantum chaos.

Notice that the overall signs of the oscillating part of trace formulas for
the Riemann zeta function and dynamical systems are different. According to
Connes [30] it may be interpreted as Riemann zeros belong not to a spectrum
of a certain self-adjoint operator but to an ’absorption’ spectrum. Roughly
speaking it means the following. Let us assume that the spectrum of a ’Rie-
mann Hamiltonian’ is continuous and it covers the whole axis. But exactly
when eigenvalues equal Riemann zeros corresponding eigenfunctions of this
Hamiltonian vanish. Therefore these eigenvalues do not belong to the spec-
trum and Riemann zeros correspond to such missing points similarly to black
lines (forming absorption spectra) which are visible when light passes through
an absorption media. In Connes’ approach the ’Riemann Hamiltonian’ may be
very simple (see also [15]) but the functional space where it has to be defined
is extremely intricate.

6 Summary

Trace formulas can be constructed for all ‘reasonable’ systems. They express
the quantum density of states (and other quantities as well) as a sum over



Quantum and Arithmetical Chaos 47

classical periodic orbits. All quantities which enter trace formulas can be com-
puted within pure classical mechanics.

Trace formulas consist of two terms

d(E) = d̄(E) + d(osc)(E) .

The smooth part of the density, d̄(E), for all dynamical systems is given by
the Thomas–Fermi formula (plus corrections if necessary)

d̄(E) =
∫

dpdx
(2π�)f

δ (E − H(p,x)) .

For integrable systems the oscillating part of the density, d(osc)(E), is

d(osc)(E) =
∑
N

(
2π

�Tp

)(f−3)/2 1
�2

√|(NiQijNj)|
exp

(
i
Sp

�
− i

π

4
Nµ + i

π

4
β

)

where Sp = 2πNI is the action over a classical periodic orbit with fixed
winding numbers N and Qij is the co-matrix of the matrix of the second
derivatives of the Hamiltonian.

For chaotic systems d(osc)(E) is represented as a sum over all classical
periodic orbits

d(osc)(E) =
∑
p.p.o.

Tp

π�

∞∑
n=1

1
|det(Mn

p − 1)|1/2
cos

(
n

Sp

�
− n

π

2
µp

)

where Sp is the classical action along a primitive periodic trajectory and Mp

is its monodromy matrix.
Usually trace formulas represent the dominant contribution when � → 0.

They are exact only in very special cases as for constant negative curvature
surfaces generated by discrete groups where they coincide with the Selberg
trace formula. For a group with only hyperbolic elements

d̄(E) =
µ(D)
4π

tanhπk

where µ(D) is the area of the fundamental domain of the group and

d(osc)(E) =
∑
p.p.o.

lp
4πk

∞∑
n=1

cos(knlp)
sinh(nlp/2)

where lp are lengths of periodic orbits.
The formulas similar to trace formulas exist also for number-theoretical

zeta functions (assuming the generalized Riemann conjecture). In particular,
for the Riemann zeta function

d̄(E) =
1
2π

ln
E

2π
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and

d(osc)(E) = − 1
π

∑
prime

∞∑
n=1

ln p

pn/2
cos(En ln p) .

The principal difficulty of all trace formulas is the divergence of the sums over
periodic orbits. To obtain a mathematically meaningful formula one considers
instead of the singular density of states its smoothed version defined as a
sum over all eigenvalues of a suitable chosen smooth test-function. When
its Fourier harmonics decrease quickly the resulting formula represent a well
defined object.

Suggestions for Further Readings

• A very detailed account of trace formulas derived by multiple scattering
method can be found in a series of papers by Balian and Bloch [8].

• A concise mathematical review of hyperbolic geometry is given in [42].
• Explicit forms of the Selberg trace formula for general discrete groups with

elliptic and parabolic elements are presented in two volumes of Hejhal’s
monumental work [39] which contains practically all known information
about the Selberg trace formula.

• In [38] one can find a mathematical discussion about different relations
between number-theoretical zeta functions and dynamical systems.
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II. Statistical Distribution of Quantum
Eigenvalues

Wigner and Dyson in the fifties had proposed to describe complicated (and
mostly unknown) Hamiltonian of heavy nuclei by a member of an ensemble
of random matrices and they argued that the type of this ensemble depends
only on the symmetry of the Hamiltonian. For systems without time-reversal
invariance the relevant ensemble is the Gaussian Unitary Ensemble (GUE), for
systems invariant with respect to time-reversal the ensemble is the Gaussian
Orthogonal Ensemble (GOE) and for systems with time-reversal invariance
but with half-integer spin energy levels have to be described according to the
Gaussian Symplectic Ensemble (GSE) of random matrices.

For these classical ensembles all correlation functions which determine sta-
tistical properties of eigenvalues En can be written explicitly (see e.g. [46],
[16]). The simplest of them is the one-point correlation function or the mean
level density, d̄(E), which is the probability density of finding a level in the
interval (E, E +dE). When d̄(E) is known one can construct a new sequence
of levels, en, called unfolded spectrum as follows

en =
∫ En

d̄(E)dE .

This artificially constructed sequence has automatically unit local mean den-
sity which signifies that the mean level density (provided it is a smooth func-
tion of E) plays a minor role in describing statistical properties of a spectrum
at small intervals.

The two-point correlation function, R2(ε), is the probability density of
finding two levels separated by a distance in the interval (ε, ε + dε). The
characteristic properties of the above ensembles is the phenomenon of level
repulsion which manifest itself in the vanishing of the two-point correlation
function at small values of argument

R2(ε)
ε→0−→ εβ

where the parameter β = 1, 2, and 4 for, respectively, GOE, GUE, and GSE.
This behaviour is in contrast with the case of the Poisson statistics of inde-
pendent random variables where

R2(ε)
ε→0−→ d̄(E) �= 0 .

For later use we present the explicit form of the two-point correlation function
for GUE with mean density d̄

R̃2(ε) = d̄2 + d̄δ(ε) + R̄2(ε) + R
(osc)
2 (ε) (40)
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where the smooth part of the connected two-point correlation function is given
by

R̄2(ε) = − 1
2π2ε2

(41)

and its oscillating part is

R
(osc)
2 (ε) =

e2πid̄ε + e−2πid̄ε

4π2ε2
. (42)

The term d̄δ(ε) in (40) corresponds to taking into account two identical levels
and it is universal for all systems without spectral degeneracy. It is a matter
of convenience to include it to R2(ε) or not. When one adopts the definition
(45) the appearance of such terms is inevitable.

Another useful quantity is the two-point correlation form factor defined as
the Fourier transform of the two-point correlation function (unfolded to the
unit density)

K(t) =
∫ ∞

−∞
R2(x)e2πitxdx . (43)

For convenience one introduces a factor 2π in the definition of time.
In Fig. 8 the two-point correlation form factors for usual random matrix

ensembles are presented. Their explicit formulas can be found in [46], [16]. For
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Fig. 8. Two point correlation form factor of classical random matrix ensembles.

these classical ensembles small-t behaviour of the form factors is

K(t) t→0−→ 2
β

t (44)

with the same β as above.
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The nearest-neighbor distribution, p(s), is defined as the probability den-
sity of finding two levels separated by distance s but, contrary to the two-point
correlation function, no levels inside this interval are allowed. For classical en-
sembles the nearest-neighbor distributions can be expressed through solutions
of certain integral equations and numerically they are close to the Wigner sur-
mise (see e.g. [16])

p(s) = asβe−bs2

where β is the same as above and constants a and b are determined from
normalization conditions∫ ∞

0

p(s)ds =
∫ ∞

0

sp(s)ds = 1 .

These functions are presented at Fig. 9 together with the Poisson prediction
for this quantity p(s) = e−s.
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Fig. 9. Nearest-neighbor distribution for the standard random matrix ensembles.
Dotted line – the Poisson prediction

Though random matrix ensembles were first introduced to describe spec-
tral statistics of heavy nuclei later it was understood that the same conjectures
can be applied also for simple dynamical systems and today’s standard ac-
cepted conjectures are the following

• The energy levels of classically integrable systems on the scale of the mean
level density behave as independent random variables and their distribu-
tion is close to the Poisson distribution [10].

• The energy levels of classically chaotic systems are not independent but
on the scale of the mean level density they are distributed as eigenvalues
of random matrix ensembles depending only on symmetry properties of
the system considered [17].



52 Eugene Bogomolny

– For systems without time-reversal invariance the distribution of en-
ergy levels should be close to the distribution of the Gaussian Unitary
Ensemble (GUE) characterized by quadratic level repulsion.

– For systems with time-reversal invariance the corresponding distrib-
ution should be close to that of the Gaussian Orthogonal Ensemble
(GOE) with linear level repulsion.

– For systems with time-reversal invariance but with half-integer spin
energy levels should be described according to the Gaussian Symplectic
Ensemble (GSE) of random matrices with quartic level repulsion.

These conjectures are well confirmed by numerical calculations.
The purpose of this Chapter is to investigate methods which permit to ob-

tain spectral statistics analytically. For a large part of the Section we follow
[25]. In Sect. 1 a formal expression is obtained which relates correlation func-
tions with products of trace formulas. In Sect. 1.1 the simplest approximation
to compute such products is discussed. It is called the diagonal approxima-
tion and it consists of taking into account only terms with exactly the same
actions. Unfortunately, for chaotic systems this approximation can be used,
strictly speaking, only for very small time estimated in Sect. 1.2. To under-
stand the behaviour of the correlation functions for longer time more com-
plicated methods of calculation of non-diagonal terms have to be developed.
In Sect. 2 this goal is achieved for the Riemann zeta function. To obtain the
information about correlations of prime pairs we use the Hardy–Littlewood
conjecture which is reviewed in Sect. 2.1. The explicit form of the two-point
correlation function for the Riemann zeros is obtained in Sec. 2.2. In Sect. 3 it
is demonstrated that the obtained expression very well agrees with numerical
calculations of spectral statistics for Riemann zeros.

1 Correlation Functions

Formally n-point correlation functions of energy levels are defined as the prob-
ability density of having n energy levels at given positions. Because the density
of states, d(E), is the probability density of finding one level at point E, cor-
relation functions are connected to the density of states as follows

Rn(ε1, ε2, . . . , εn) = 〈d(E + ε1)d(E + ε2) . . . d(E + εn)〉 . (45)

The brackets 〈. . . 〉 denote a smoothing over an appropriate energy window

〈f(E)〉 =
∫

f(E′)σ(E − E′)dE′

with a certain function σ(E). Such smoothing means that one considers eigen-
values of quantum dynamical systems at different intervals of energy as form-
ing a statistical ensemble.
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The function σ(E) is assumed to fulfill the normalization condition
∫

σ(E)dE = 1

and to be centered around zero with a width ∆E obeying inequalities

∆Eq � ∆E � ∆Ecl � E . (46)

Here ∆Eq has to be of the order of the mean level spacing, ∆Eq ≈ 1/d̄, and
∆Ecl denotes the energy scale at which classical dynamics changes noticeably.
A schematic picture of σ(E) is represented at Fig. 10.
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Fig. 10. Schematic form of smoothing function.

The trace formula for the density of states of chaotic systems was discussed
in Chapter I and it has the form

d(E) = d̄(E) +
∑
p,n

Ap,neinSp(E)/� + c.c.

where the summation is performed over all primitive periodic orbits and its
repetitions, and

Ap,n =
Tp

2π�|det(Mn
p − 1)|1/2

e−πinµp/2 . (47)

Substituting this expression in the formula for the two-point correlation func-
tion one gets

R2(ε1, ε2) = d̄2

+
∑
pi,ni

Ap1,n1A
∗
p2,n2

〈
exp

i

�
(n1Sp1(E + ε1) − n2Sp2(E + ε2))

〉
+ c.c.

and the terms with the sum of actions are assumed to be washed out by the
smoothing procedure.
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Expanding the actions and taking into account that ∂S(E)/∂E = T (E)
where T (E) is the classical period of motion one finds

R
(c)
2 (ε1, ε2) =

∑
pi,ni

Ap1,n1A
∗
p2,n2

〈
exp

i
�
(n1Sp1(E) − n2Sp2(E))

〉

× exp
i
�
(n1Tp1(E)ε1 − n2Tp2(E)ε2) + c.c. .

Here R
(c)
2 (ε1, ε2) is the connected part of the two-point correlation function

R2(ε1, ε2) = d̄2 + R
(c)
2 (ε1, ε2).

The most difficult part is the computation of the mean value of terms with
the difference of actions〈

exp
i
�
(n1Sp1(E) − n2Sp2(E))

〉
.

1.1 Diagonal Approximation

Berry [11] proposed to estimate such sums in an approximation (called the
diagonal approximation) by taking into account only terms with exactly the
same actions having in mind that terms with different values of actions will
be small after the smoothing.

Let g be the mean multiplicity of periodic orbit actions. Then the con-
nected part of the two-point correlation function in the diagonal approxima-
tion is

R
(diag)
2 (ε) = g

∑
p, n≥1

|Ap,n|2einTp(E)ε/� + c.c. . (48)

Here ε = ε1 − ε2 and the sum is taken over all primitive periodic orbits.
From (48) it follows that the two-point correlation form factor

K(t) =
∫ +∞

−∞
R2(ε)e2πitεdε.

in the diagonal approximation equals the following sum over classical periodic
orbits

K(diag)(t) = 2πg
∑
p,n

|Ap,n|2δ
(

2πt − nTp(E)
�

)
+ c.c. . (49)

According to the Hannay-Ozorio de Almeida sum rule [34] sums over periodic
orbits of a chaotic systems can be calculated by using the local density of
periodic orbits related with the monodromy matrix, Mp, as follows

dρp =
dTp

Tp
|det(Mp − 1)| .

Using (47) one gets
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K(diag)(t) =
g

2π�

∫
Tpδ(2πt − Tp

�
)dTp = gt

where g is the mean multiplicity of periodic orbits (i.e. the mean proportion
of periodic orbits with exactly the same action). For generic systems without
time-reversal invariance there is no reasons for equality of actions for different
periodic orbits and g = 1 but for systems with time-reversal invariance each
orbit can be traversed in two directions therefore in general for such systems
g = 2. Comparing these expressions one concludes that the diagonal approx-
imation reproduces the correct small-t behavior of form-factors of classical
ensembles (cf. (44)).

Unfortunately, K(diag)(t) grows with increasing t but the exact form-factor
for systems without spectral degeneracy should tend to d̄ for large t. This is
a consequence of the following arguments. According to (45)

R2(ε) =

〈∑
m,n

δ(E − En)δ(E + ε − Em)

〉

=

〈∑
m,n

δ(E − En)δ(ε − Em + En)

〉
.

If there is no levels with exactly the same energy the second δ-function in the
right hand side of this equation tends to δ(ε) when ε → 0 and the first one
gives d̄. Therefore

R2(ε) → d̄δ(ε) , when ε → 0

which is equivalent to the following asymptotics of the form factor

K(t) → d̄ , when t → ∞ .

This evident contradiction clearly indicates that the diagonal approximation
for chaotic systems cannot be correct for all values of t and more complicated
tools are needed to obtain the full form factor.

1.2 Criterion of Applicability of Diagonal Approximation

One can give a (pessimistic) estimate till what time the diagonal approxima-
tion can be valid by the following method. The main ingredient of the diagonal
approximation is the assumption that after smoothing all off-diagonal terms
give negligible contribution. This condition is almost the same as the condi-
tion of the absence of quantum interference. But it is known that the quantum
interference is not important for times smaller than the Ehrenfest time which
is of the order of

tE ≈ 1
λ0

ln(1/�),

where λ0 is a (classical) constant of the order of the Lyapunov exponent
defined in such a way that the mean splitting of two nearby trajectories at
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time t grows as exp(λ0t). For billiards (ka)−1, where a is of the order of
system size, plays the role of � and λ0 = kλ where k is the momentum and λ
determines the deviation of two trajectories with length L = kt. The constant
λ which we also called the Lyapunov exponent is independent on k for billiards
and

tE ≈ 1
λk

ln(ka) .

In the semiclassical limit k → ∞ the Ehrenfest time and, consequently, the
time during which one can use the diagonal approximation tends to zero as
ln k/k.

More careful argumentation can be done as follows. The off-diagonal terms
can be neglected if ∣∣∣∣

〈
exp

i
�
(Sp1(E) − Sp2(E))

〉∣∣∣∣ � 1 .

But this quantity is small provided the difference of periods of two orbits ∆T =
Tp1 − Tp2 times the energy window ∆E used in the definition of smoothing
procedure is large

1
�
(Tp1 − Tp2)∆E � 1 . (50)

For billiards Tp = Lp/k and this condition means that one has to consider all
periodic orbits such that their difference of lengths is

Lp1 − Lp2 � �k

∆E
.

But the number of periodic orbits with length L for chaotic systems grows
exponentially

N(Lp < L) =
eλL

λL

where λ is a constant of the order of the Lyapunov exponent. Therefore in the
interval L,L + δl there is eλLδl/L orbits and the mean difference of lengths
between orbits with lengths less than L is of the order of

∆L = L exp(−λL) .

To fulfill the above condition one has to restrict the maximum length of pe-
riodic orbits, Lm, by

Lm exp(−λLm) ≈ k�

∆E
.

In the limit of large Lm with logarithmic accuracy this relation gives

Lm ≈ 1
λ

ln
∆E

k�λ
(51)

which corresponds to the maximal time till the diagonal approximation can
be applied
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tm =
Lm

k
∼ 1

λk
ln

∆E

λk
.

As ∆E � E = k2, tm < tE .
Another important time scale for bounded quantum systems is called the

Heisenberg time, tH . It is the time during which one can see the discreteness
of the spectrum

tH = 2πd̄ .

As for billiards d̄ is a constant

tE � tH .

For the Riemann zeta function the situation is better because (i) in this case
‘momentum’ plays the role of ‘energy’ (the ’action’ E ln p is linear in E and
not proportional to

√
E as for dynamical systems) and (ii) the density of

states for the Riemann zeta function is (ln(E/2π))/(2π).
The analog of (50) in this case is

(ln p1 − ln p2)∆E � 1 .

It means that to apply the diagonal approximation prime numbers have to be
such that the difference between any two of them obeys

δp

p
∆E � 1.

The difference between primes near p is of the order of ln p. Hence from the
above inequalities it follows that diagonal approximation can be used till time
tm = ln pm where pm is such that

ln pm

pm
≥ 1

∆E
.

Or with logarithmic precision pm ≤ ∆E. As ∆E ≤ E (see (46)), pm ∼ E and
the maximum time

tm ∼ lnE = 2πd̄(E)

i.e. the diagonal approximation for the Riemann zeta function is valid till the
Heisenberg time which agrees with the Montgomery theorem [45].

This type of estimates clearly indicates that the diagonal approximation
for chaotic dynamical systems can not, strictly speaking, be used to obtain
an information about the form-factor for large value of t. Only the short-time
behaviour of correlation functions can be calculated by this method. (Notice
that for GUE systems the diagonal approximation gives the expected answer
till the Heisenberg time but it just signifies that one has to find special reasons
why all other terms cancel.)
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2 Beyond the Diagonal Approximation

The simplest and the most natural way of semi-classical computation of the
two-point correlation functions is to find a method of calculating off-diagonal
terms. We shall discuss here this type of computation on the example of
the Riemann zeta function where much more information than for dynamical
systems is available (for the latter see [21] and [25]).

The trace formula for the Riemann zeta function may be rewritten in the
form

d(osc)(E) = − 1
π

∞∑
n=1

1√
n

Λ(n) cos(E lnn)

where

Λ(n) =
{

ln p, if n = pk

0, otherwise .

The connected two-point correlation function of the Riemann zeros, R
(c)
2 =

R2 − d̄2, is

R
(c)
2 (ε1, ε2) =

1
4π2

∑
n1,n2

Λ(n1)Λ(n2)√
n1n2

〈
ei(E+ε1) ln n1−i(E+ε2) ln n2

〉
+ c.c. .

The diagonal approximation corresponds to taking into account terms with
n1 = n2

R
(diag)
2 (ε1, ε2) =

1
4π2

∑
n

Λ2(n)
n

ei(ε1−ε2) ln n + c.c. =

=
1

4π2

∑
p,m

ln2 p

pm
ei(ε1−ε2)m ln p + c.c. .

This expression may be transformed as follows (cf. [2])

R
(diag)
2 (ε) = − 1

4π2

∂2

∂ε2
ln∆(ε)

where
∆(ε) = |ζ(1 + iε)|2Φ(diag)(ε) ,

and function Φ(diag)(ε) is given by a convergent sum over prime numbers

Φ(diag)(ε) = exp

(
2

∑
p

∞∑
m=1

1 − m

m2pm
cos(mε ln p)

)
.

In the limit ε → 0, ζ(1 + iε) → (iε)−1 and Φ(diag)(ε) → const. Therefore in
this limit

R
(diag)
2 (ε) → − 1

2π2ε2



Quantum and Arithmetical Chaos 59

which agrees with the smooth part of the GUE result (41).
The off-diagonal contribution takes the form

R
(off)
2 (ε1, ε2) =

∑
n1 �=n2

Λ(n1)Λ(n2)
4π2

√
n1n2

〈
eiE ln(n1/n2)+i(ε1 ln n1−ε2 ln n2)

〉
+ c.c. .

The term exp(iE ln(n1/n2)) oscillates quickly if n1 is not close to n2. Denoting

n1 = n2 + r

and expanding all smooth functions on r one gets

R
(off)
2 (ε) =

1
4π2

∑
n,r

Λ(n)Λ(n + r)
n

〈
eiEr/n+iε ln n

〉
+ c.c.

where ε = ε1 − ε2.
The main problem is clearly seen here. The function

F (n, r) = Λ(n)Λ(n + r)

is quite a wild function as it is nonzero only when both n and n+r are powers
of prime numbers. As we have assumed that r � n, the dominant contribution
to the two-point correlation function will come from the mean value of this
function over all n, i.e. one has to substitute into R

(off)
2 (ε) instead of F (n, r)

its mean value

α(r) = lim
N→∞

1
N

N∑
n=1

Λ(n)Λ(n + r) .

2.1 The Hardy–Littlewood Conjecture

Fortunately the explicit expression for this function comes from the famous
Hardy–Littlewood conjecture. There are two different methods which permit
to ‘find’ this conjecture. We start with the original Hardy-Littlewood deriva-
tion [35].

First, let us recall two known facts. The number of prime numbers less
that a given number N(p < x) is asymptotically (see e.g. [55])

N(p < x) =
x

lnx
.

Conveniently it can also be expressed in the following form

lim
N→∞

1
N

N∑
n=1

Λ(n) = 1 .

The number of prime number Nq,r(p < x) in arithmetic progression of the
form mq + r with (r, q) = 1 and r < q is given by the following asymptotic
formula (see e.g. [31])
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Nq,r(p < x) =
x

ϕ(q) ln x

where ϕ(n) is the Euler function which counts integers less than n and co-
prime with n

ϕ(n) = n
∏
p|n

(
1 − 1

p

)
.

As above, this relation can be rewritten in the equivalent form

lim
N→∞

1
N

N∑
m=1

Λ(mq + r) =
1

ϕ(q)
. (52)

In the Hardy-Littlewood method [35] one introduces the function

f(x) =
∞∑

n=1

Λ(n)xn

which converges for all complex x such that |x| < 1.
In the circle method of Hardy and Littlewood [35] one considers the be-

haviour of this function close to the unit circle when the phase of x is near a
rational number 2πp/q with co-prime integers p and q. One gets

f(e−ue2πip/q+iδ) =
∞∑

n=1

Λ(n)e−nue2πinp/q+inδ

with u, δ → 0.
In the exponent there is a quickly changing function 2πnp/q. It is quite

natural to consider n from the arithmetic progression

n = mq + r

with fixed q and r < q. In this case

f(e−ue2πip/q+iδ) =
∑
m, r

Λ(mq + r)e−(mq+r)(u−iδ)e2πirp/q .

Substituting instead of Λ(mq + r) its mean value (52) one gets

f(e−uei2πp/q+iδ) ≈ 1
ϕ(q)

∑
(r, q)=1

e2πirp/q

∫ ∞

0

e−n(u−iδ)dn =
µ(q)

ϕ(q)(u − iδ)
.

In the last step we use that fact that [36]
∑

(r, q)=1

e2πir/q = µ(q)
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where µ(q) is the Möbius function defined through the factorization of q on
prime factors

µ(q) =

⎧⎨
⎩

1 if q = 1
(−1)k if q = p1 . . . pk

0 if q is divisible on p2
.

The final expression means that function f(x) has a pole singularity at the
unit circle at every rational point.

The knowledge of f(x) permits formally to compute the mean value of the
product of two Λ-functions.

Let

Jr(R) =
1
2π

∫ 2π

0

f(Reiϕ)f(Re−iϕ)e−irϕdϕ = Rr
∑
m

Λ(m + r)Λ(m)R2m .

As the function f(x) has a pole singularity at the unit circle at every rational
point one can try to approximate this integral by the sum over singularities

Jr(e−u) =
1
2π

∫ 2π

0

f(Reiϕ)f(Re−iϕ)e−irϕdϕ

=
1
2π

∑
(p, q)=1

∫
f(e−u+i2πp/q+iδ)f(e−u−2πip/q−iδ)e−ir(2πp/q+iδ)dδ

=
1
2π

∑
(p, q)=1

e2πirp/q

(
µ(q)
ϕ(q)

)2 ∫
dδ

u2 + δ2

=
1
2u

∑
(p, q)=1

e2πipr/q

(
µ(q)
ϕ(q)

)2

.

Therefore
∞∑

n=1

Λ(n)Λ(n + r)e−2nu u→0−→ 1
2u

∑
(p, q)=1

e2πirp/q

(
µ(q)
ϕ(q)

)2

from which it follows that

lim
N→∞

1
N

N∑
n=1

Λ(n)Λ(n + r) = α(r)

where

α(r) =
∞∑

q=1

(
µ(q)
ϕ(q)

)2 ∑
(p, q)=1

e2πirp/q . (53)

Using properties of such singular series one can prove [35] that for even r
α(r) = 0 and for odd r it can be represented as the following product over
prime numbers
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α(r) = C2

∏
p|r

p − 1
p − 2

(54)

where the product is taken over all prime divisors of r bigger than 2 and C2

is the so-called twin prime constant

C2 = 2
∏
p>2

(1 − 1
(p − 1)2

) ≈ 1.32032 . . . . (55)

Instead of demonstrating the formal equivalence of (53) and (54) we present
another heuristic ’derivation’ based on the probabilistic interpretation of
prime numbers which gives directly (54) and (55).

The argumentation consists on the following steps.

• Probability that a given number is divisible by a prime p is

lim
N→∞

1
N

[number of integers divisible by p ≤ N ] =
1
p

.

In general to find such probabilities it is necessary to consider only the
residues modulo p and find how many of them obey the requirement.

• Probability that a given number is not divisible by a prime p is

1 − 1
p

.

• Probability that a number is not divisible by primes p1, p2, . . . pk is

k∏
j=1

(1 − 1
pj

) . (56)

The above formula is correct for any finite collection of primes but for com-
putations with infinite number of primes it may be wrong.

For example, when used naively it gives that

• probability that a number x is a prime is

∏
p<

√
x

(1 − 1
p
) .

This prime number ’theorem’ is false because from it it follows that the number
of primes less than x is [55]

Π(x) = x
∏

p<
√

x

(1 − 1
p
) x→∞−→ x

lnx
2e−γ

which differs from the true prime number theorem by a factor 2e−γ ≈ 1.123
where γ is the Euler constant. The origin of this discrepancy is related with the
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approximation frequently used above: [x/p] = x/p where [x] is the integer part
of x. Instead of (56) one should have

∏
p(1− [x/p]/x). For a finite number of

primes and x → ∞ it tends to (56). But when the number of primes considered
increases with x errors are accumulated giving a constant factor.

Nevertheless one could try to use probabilistic arguments by forming ar-
tificially convergent quantities. One has

• Probability that x and x + r are primes is

lim
N→∞

1
N

[ number of integers x < N such that x and x + r are primes ] .

Let us consider a prime p. Two cases are possible. Either p |r or p |/r. In the
first case the probability that both number x and x + r are not divisible by p
is the same as the probability that only number x is not divisible by p which
is ∏

p|r

(
1 − 1

p

)
.

When p |/r one has to remove two numbers from the set of residues as x =
0, 1, .., p−1 (mod p) and x+r = 0, 1, .., p−1 (mod p). Therefore the probability
that both numbers x and x + r are not divisible by a prime p is

∏
p |/r

(
1 − 2

p

)
.

Finally

• Probability that both x and x + r are primes =
∏

p|r
p−1

p

∏
p |/r

p−2
p .

To find a convergent expression we divide both sides by the probability that
numbers x and x + r are independently prime numbers computed also in the
probabilistic approximation. The latter quantity is

[ Probability that x is prime and x ≤ N ] =
∏
p

p − 1
p

.

Therefore

[ Probability that both x and x + r are primes with x, x + r ≤ N ]
[ Probability that x is prime ]2

≈

≈
∏
p|r

p − 1
p

∏
p |/r

p − 2
p

∏
p

(
p

p − 1
)2 = 2

∏
p>2

(
1 − 1

(p − 1)2

)∏
p|r

p − 1
p − 2

.

As the denominator in the above expression is 1/ ln2 N it follows that the
probability that both x and x + r are primes with x ≤ N , and x + r ≤ N is
asymptotically



64 Eugene Bogomolny

α(r)
ln2 N

with the same function α(r) as in (54).
We stress that the Hardy–Littlewood conjecture is still not proved. Even

the existence of infinite number of twin primes (primes separated by 2) is not
yet proved while the Hardy–Littlewood conjecture states that their density is
C2/ ln2 N .

2.2 Two-Point Correlation Function of Riemann Zeros

Taking the above expression of the Hardy–Littlewood conjecture as granted
we get

R
(off)
2 (ε) =

1
4π2

∑
n≥1

1
n

eiε ln n
∑

r

α(r)eiEr/n + c.c. .

After substitution the formula for α(r) and performing the sum over all r one
obtains

R
(off)
2 (ε) =

1
4π2

∑
n

1
n

eiε ln n
∑

(p,q)=1

(
µ(q)
ϕ(q)

)2

δ

(
p

q
− E

2πn

)
+ c.c.

where the summation is taken over all pairs of mutually co-prime positive
integers p and q (without the restriction p < q).

Changing the summation over n to the integration permits to transform
this expression to contributions of values of n where

p

q
− E

2πn
= 0 .

In this approximation

R
(off)
2 (ε) =

1
4π2

eiε ln E/2π
∑

(p,q)=1

(
µ(q)
ϕ(q)

)2 (
q

p

)1+iε

+ c.c. .

Using the formula (which is a mathematical expression of the inclusion–
exclusion principle)

∑
(p,q)=1

f(p) =
∞∑

k=1

∑
δ|q

f(kδ)µ(δ)

and taking into account that 2πd̄ = ln(E/2π) one obtains

R
(off)
2 (ε) =

1
4π2

|ζ(1 + iε)|2e2πid̄εΦ(off)(ε) + c.c. (57)

where function Φ(off)(ε) is given by a convergent product over primes
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Φ(off)(ε) =
∏
p

(
1 − (1 − piε)2

(p − 1)2

)

and Φ(off)(0) = 1.
In the limit of small ε

R
(off)
2 (ε) =

1
(2πε)2

(
e2πid̄ε + e−2πid̄ε

)

which exactly corresponds to the GUE results for the oscillating part of the
two-point correlation function (42).

The above calculations demonstrate how one can compute the two-point
correlation function through the knowledge of correlation function of periodic
orbit pairs. For the Riemann case one can prove under the same conjectures
that all n-point correlation functions of Riemann zeros tend to corresponding
GUE results [22].

3 Summary

Trace formulas can formally be used to calculate spectral correlation functions
for dynamical systems. In particular, the two-point correlation function is the
product of two densities of states

R2(ε) ≡ 〈d(E + ε)d(E)〉 .

The diagonal approximation consists of taking into account in such products
only terms with exactly the same action. For chaotic systems this approxima-
tion is valid only for very small time. In particular, it permits to obtain the
short-time behaviour of correlation form factors which agrees with predictions
of standard random matrix ensembles.

The main difficulty in such approach to spectral statistics is the necessity to
compute contributions from non-diagonal terms which requires the knowledge
of correlation functions of periodic orbits with nearby actions.

For the Riemann zeta function zeros it can be done using the Hardy–
Littlewood conjecture which claims that the number of prime pairs p and
p + r such that p < N for large N is asymptotically

α(r)
N

ln2 N

where α(r) (with even r) is given by the product over all odd prime divisors
of r

α(r) = C2

∏
p|r

p − 1
p − 2

and



66 Eugene Bogomolny

C2 = 2
∏
p>2

(
1 − 1

(p − 1)2

)
.

Using this formula one gets that the two-point correlation function of Riemann
zeros is

R2(ε) = d̄2(E) + R
(diag)
2 (ε) + R

(off)
2 (ε)

where the diagonal part

R
(diag)
2 (ε) = − 1

4π2

∂2

∂ε2
ln

[
|ζ(1 + iε)|2Φ(diag)(ε)

]

and non-diagonal part

R
(off)
2 (ε) =

1
4π2

|ζ(1 + iε)|2e2πid̄εΦ(off)(ε) + c.c. .

The functions Φ(diag)(ε) and Φ(off)(ε) are given by convergent products over
all primes

Φ(diag)(ε) = exp

(
2

∑
p

∞∑
m=1

1 − m

m2pm
cos(mε ln p)

)

and

Φ(off)(ε) =
∏
p

(
1 − (1 − piε)2

(p − 1)2

)
.

In [25] a few other methods were developed to ’obtain’ the two-point correla-
tion function for Riemann zeros. These methods were based on different ideas
and certain of them can be generalized for dynamical systems. Though neither
of the methods can be considered as a strict mathematical proof, all lead to
the same expression (57).

It is also of interest to check numerically the above formulas. When numer-
ical calculations are performed one considers usually correlation functions for
the unfolded spectrum. For the two-point correlation function this procedure
corresponds to the following transformation

R
(unfolded)
2 (ε) =

1
d̄2(E)

R2

(
ε

d̄(E)

)
.

At Fig 11 we present the two-point correlation function for 2 · 108 zeros near
the 1023-th zero computed numerically by Odlyzko [49] together with the GUE
prediction for this quantity

RGUE
2 (ε) = 1 −

(
sin πε

πε

)2

.

At Figs. 12-15 we present the difference between the two-point correlation
function computed numerically and the GUE prediction. At Fig. 16 we
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Fig. 11. Two point correlation function of the Riemann zeros near the 1023-th zero
(dots) and the GUE prediction (solid line).
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Fig. 12. The difference between the two point correlation function of the Riemann
zeros and the GUE prediction in the interval 0 < ε < 5. The solid line is the
difference between the ‘exact’ correlation function and the GUE prediction in this
interval.
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Fig. 13. The same as at Fig. 12 but in the interval 5 < ε < 10.
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Fig. 14. The same as at Fig. 12 but in the interval 10 < ε < 15.

present the difference between numerically computed two-point correlation
function and the ‘exact’ function and at Fig. 17 the histogram of differences
is given. Notice that these differences are structure less and the histogram
corresponds practically exactly to statistical errors inherent in the calculation
of the two-point correlation functions which signifies that the obtained formula
agrees very well with the numerics.
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Fig. 15. The same as at Fig. 12 but in the interval 15 < ε < 20.
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Fig. 16. The difference between numerically computed two-point correlation func-
tion and the ‘exact’ function
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Fig. 17. The histogram of the deviations of the numerically computed two-point
correlation function of Riemann zeros and the ‘exact’ formula. Solid line is the
Gaussian fit to the histogram.

III. Arithmetic Systems

As was discussed above it is well accepted that spectral statistics of classi-
cally chaotic systems in the universal limit coincides with spectral statistics of
the usual random matrix ensembles. But it is also known (see e.g. [7], [29] and
references therein) that the motion on constant negative curvature surfaces
generated by discrete groups (considered in Chapter I is the best example of
classical chaos. Consequently, models on constant negative curvature seem to
be ideal tools to check the conjecture on spectral fluctuations of classically
chaotic systems. Their classical motion is extremely chaotic and time-reversal
invariant and a priori assumption was that all of them should have energy
levels distributions close to predictions of the Gaussian orthogonal ensemble
(GOE) of random matrices.

Nevertheless when the first large scale numerical calculations were per-
formed [3], [52] they clearly indicated that for certain hyperbolic models the
spectral statistics were quite close to Poisson statistics typical for integrable
systems.

As an example we present in Fig. 18 the nearest-neighbor distribution for
the hyperbolic triangle with angles (π/2, π/3, 0) corresponding to the well-
known modular triangle with Dirichlet boundary conditions. The agreement
with Poisson prediction is striking although classical motion for this system
is perfectly chaotic.
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Fig. 18. The nearest neighbor distribution for 10000 first levels of the triangle
(π/2, π/3, 0) (the modular triangle). Solid line - the Poisson distribution. Dotted
line - the GOE distribution.

The purpose of this Chapter is to show that this strange behaviour is the
consequence of exponentially large exact degeneracy of periodic orbit lengths
in systems considered [18]. In all hyperbolic surfaces where the Poisson-like
statistics was observed there is on average exp(l/2) classical periodic orbits
with exactly the same length l. It will be demonstrated that this is the char-
acteristic property of models generated by the so-called arithmetic groups. In
these lectures we shall consider only discrete subgroups of SL(2, R) whereas
in the second volume C. Soulé will present a more general definition of arith-
meticity. As classical mechanics is not sensitive to lengths of periodic orbits all
these models remain completely chaotic. But the cumulative effect of interfer-
ence of degenerate periodic orbits changes drastically the quantum mechanical
properties.

This Chapter is based on [24]. In Sect. 1 simple calculations prove expo-
nential degeneracy of periodic orbit lengths for the modular group. The main
peculiarity of the modular group matrices is that their traces are integers.
Therefore if one considers all matrices with |Tr M | < X the number of differ-
ent traces increases at most linearly with X. In Sect. 2 it is shown that this
property is typical for all arithmetic groups. An informal mini-review of such
groups is given in this Section and it is demonstrated that for all these groups
exponentially many periodic orbits have exactly the same length. From the
results of [53] it follows that there is exactly 85 triangles generated by discrete
arithmetic groups. All triangular models were the Poisson-like spectral statis-
tics was numerically observed are in this list. In Sect. 3 it is shown that in the
diagonal approximation the two-point correlation form factor of arithmetic
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systems jumps very quickly to the Poisson value thus confirming unusual na-
ture of arithmetic systems. In Sect. 4 the exact two-point correlation function
for the modular domain is calculated. The correlations of multiplicities are
obtained by a generalization of the Hardy–Littlewood method discussed in
Sect. 2.1. The resulting formula proves that in the universal limit the two-
point correlation function of eigenvalues of the Laplace–Beltrami operator
automorphic with respect to the modular group tends to the Poisson predic-
tion. Arithmetic groups have many other interesting properties. In particular,
for all arithmetic groups it is possible to construct an infinite number of mu-
tually commuting operators which commute also with the Laplace–Beltrami
operator. Properties of these operators called the Hecke operators are dis-
cussed in Sect. 5. The Jacquet–Langlands correspondence between different
arithmetic groups is mentioned in Sect. 6. In Sect. 7 non-arithmetic models
are briefly discussed.

1 Modular group

The modular group is the group of all 2 × 2 matrices

M =
(

m n
k l

)

with integer m, n, k, l and the unit determinant ml − nk = 1.
The periodic orbits correspond in a unique way to the conjugacy classes of

hyperbolic elements of the group (see Sect. 2.3). The length of periodic orbit
lp is related with the trace of a representative matrix of the conjugacy class
M as follows

2 cosh
lp
2

= |Tr M | .

As all elements of modular group matrices are integers, the trace is also an
integer

|TrM | = n . (58)

Here the arithmetical nature of the group clearly comes into the play. This
simple property is very important. It signifies that for the modular group there
is just a quite restrictive set of all possible traces and, consequently, of periodic
orbit lengths. For modular group the number of possible different lengths is
the number of different integers less than 2 cosh L/2 (see (58)), hence

Ndif. lengths = 2 cosh
L

2
L→∞−→ eL/2 .

On the other hand, for any discrete group the number of periodic orbits of
length less than L grows asymptotically as

N(lp < L) =
eL

L
.
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Let g(l) be the multiplicity of periodic orbits with length l. One has obvious
relations valid for large L

∑
l<L

g(l) =
eL

L
,

∑
l<L

1 = eL/2

where the summation extends over different lengths of periodic orbits counted
without taking multiplicity into account.

Let us define the mean multiplicity 〈g(l)〉 as the following ratio

〈g(l)〉 =
Number of periodic orbits with l < lp < l + ∆l

Number of different lengths with l < lp < l + ∆l
. (59)

Asymptotically for large L the previous formulas gives

〈g(l)〉 = 2
el/2

l

which demonstrates that periodic orbit lengths for the modular group are
exponentially degenerated.

2 Arithmetic Groups

The crucial feature which led to the exponential degeneracy of periodic orbit
lengths for the modular group was the fact that traces of modular group
matrices were integers which was a direct consequence of the arithmetic nature
of modular group. But 2×2 matrix groups with integer elements are exhausted
by the modular group and its subgroups.

Nevertheless, one can construct a quite large class of discrete groups with
strong arithmetic properties by considering groups which are not equal to 2×2
integer matrices but which permit a representation by n× n integer matrices
(n > 2).

The existence of such representation means that for each 2 × 2 group
matrix, g, one can associate a n×n matrix with integer entries, M(g), in such
a way that the matrix associated to the product of two group matrices equals
the product of two matrices associated to the corresponding factors

M(ab) = M(a) × M(b)

for all a and b from the group considered and M(1) = 1.
To define general arithmetic groups we need a few definitions.

• A subset of a group Γ is called a subgroup if it forms itself a group.
• A subgroup g of a group Γ is called a subgroup of finite index (k + 1) if Γ

can be represented as a finite union

Γ = g + gγ1 + . . . + gγk

with γk ∈ Γ .
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• Two groups are called commensurable if they have a common subgroup
which is of finite index in both of them.

Groups which have a representation by integer matrices and all groups
commensurable with them are called arithmetic groups. This Section is de-
voted to the investigation of their properties.

In Sect. 2.1 a non-formal review of algebraic fields is given and in Sect. 2.2
the construction of quaternion algebras over algebraic fields is shortly dis-
cussed. It appears that all arithmetic groups can be obtained from quaternion
algebras with division and in Sect. 2.3 the necessary and sufficient conditions
that a given group will be an arithmetic group is presented. Using these con-
ditions in Sect. 2.4 it is proved that periodic orbit lengths for all arithmetic
groups have the same exponential degeneracy (up to a constant factor) as for
the modular group.

2.1 Algebraic Fields

Everybody is familiar with usual rational numbers

u =
p

q

with integer p and q. Their important properties are that (i) the sum and
the product of any two rational numbers also have the same form and (ii) all
elements except 0 have an inverse (i.e. the division is always possible). From
mathematical viewpoint rational numbers form a field called lQ.

Algebraic fields of finite degree, IF, are a generalization of this reference
field obtaining by adding to the set of rational numbers a root α of an irre-
ducible polynomial

n∑
k=0

ckαk = 0 (60)

with integer coefficients ck. This field is denoted IF = lQ(α).
Each element u ∈ lQ(α) can be represented by the sum

u =
n−1∑
i=0

biα
i

where the bi are usual rationals. The summation and the multiplication of
these elements are done as with usual numbers except that all powers of α
larger than n − 1 have to be reduced using the defining equation (60).

Integers of the field lQ(α) are its elements which obey a polynomial equa-
tion with integer coefficients with an additional condition that the highest
power coefficient equals one (such polynomials are called monic polynomials).

In general, algebraic integers, ω, of a field of degree n are freely generated
by n linearly independent elements of the field βk with integer coefficients (in
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mathematical language it means that they form a free ZZ-module of rank n).
Explicitly

ω =
n−1∑
k=0

mkβk (61)

where all mk are usual integers. In simple cases βk = αk and

ω =
n−1∑
k=0

mkαk

with integer or semi-integer coefficients mk. Algebraic integers like usual in-
tegers form a ring (not a field) because the division is not always possible.

The polynomial equation defining the field (60) has n different roots αi, i =
0, 1, ..., n− 1 with α0 = α. Any relation between elements of the field remains
unchanged under the transformations

φi : α → αi

where one substitutes in all expressions instead of one root α another root
αi. These transformations are called isomorphisms or embeddings of this field
into lC and they are the only transformations respecting the laws of the field.

Example

Add to the field of rational numbers lQ one root of the quadratic equation

x2 = d

where d is a square-free integer. Elements of this field lQ(
√

d) can be written
as

u = p + q
√

d

with p and q rationals. Let
ω = a + b

√
d

be integers of this field. To find values of a and b one notes that ω obeys the
quadratic equation

ω2 − 2aω + a2 − db2 = 0 .

To describe algebraic integers the coefficients of this equation: 2a and a2−db2,
have to be usual integers. Depending on d two types of solutions are possible.

• If d ≡ 2 or d ≡ 3 (mod 4) then a and b have to be integers and

ω = m + n
√

d

with integers m and n.
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• If d ≡ 1 (mod 4) then both a and b can be demi-integers and

ω =
m

2
+

n

2

√
d

with integers m ≡ n (mod 2).
To avoid the last restriction this expression can be rewritten in the form
(61)

ω = m + n
1 +

√
d

2
(62)

with arbitrary integers m and n.

As this field is defined by an equation of the second degree it has two isomor-
phisms

φ0 : p + q
√

d −→ p + q
√

d ,

φ1 : p + q
√

d −→ p − q
√

d .

Because the product of two algebraic integers is also an algebraic integer from
(61) it follows that all algebraic integers permit a representation by matrices
with integer elements in such a way that the matrix representing a product
of two integers equals the product of matrices representing each factor.

For example, for the above considered case of lQ(
√

d) with d �≡ 1 (mod 4)
one can associate with an integer of this field, ω = m + n

√
d, a 2 × 2 matrix

M(ω) =
(

m n
dn m

)
. (63)

It is easy to check that this is the true representation of field integers because
M(ω1ω2) = M(ω1)M(ω2) and M(1) = 1.

When d ≡ 1 (mod 4) the integers have the form (62) and one can check
that the matrix representation can be chosen as follows

M(ω) =
(

m n
d−1
4 n m + n

)
.

2.2 Quaternion Algebras

Algebras are more general objects than fields. A (vector) algebra of finite
dimension d is defined as formal sum

γ = x1i2 + x2i2 + . . . + xdid .

Here xj belong to a basis field IF and ij are formal objects (vectors) with a
prescribed multiplication table

ijik =
d∑

p=1

Cp
jkip
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where Cp
jk are from the basis field. The sum and the product of any two

elements of an algebra belong to it. General algebras should be neither com-
mutative, nor associative.

An algebra is called a normed algebra if there exists a function, N(γ),
which associates to any element of the algebra a number from the basis field
such that the norm of the product equals the product of the norms of both
factors

N(γ1γ2) = N(γ1)N(γ2) .

An algebra is called a division algebra if the division is always possible (except
a zero element).

Finite dimensional normed division algebras over real numbers are ex-
hausted by the following three possibilities (the Frobenius theorem [44]).

• Commutative and associative division algebras are isomorphed either to
the usual field of real numbers IR or to the field of complex numbers lC. In
the latter case the algebra is given by

γ = x1 + x2i

with i2 = −1. The norm in this case is

N(γ) = x2
1 + x2

2 .

• Non-commutative but associative division algebras are isomorphed to the
quaternion algebra

γ = x1 + x2i + x3j + x4k (64)

where
i2 = j2 = k2 = −1 , k = ij = −ji . (65)

The norm of the quaternion algebra is

N(γ) = x2
1 + x2

2 + x2
3 + x2

4 .

• Non-associative normed division algebras are isomorphed to the octonion
algebra

γ =
8∑

k=1

xkik

with a complicated multiplication table and the norm given by the sum of
8 squares

N(γ) =
8∑

k=1

x2
k .

Similarly, for an algebraic field IF of finite degree there exist quaternion
normed algebras defined similarly to Eqs. (64) and (65) [56]. These alge-
bras are labeled by two elements a, b ∈ IF and it is a four-dimensional non-
commutative algebra with basis (1, i, j,k) as in (64) with the following multi-
plication table
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i2 = a , j2 = b , k = ij = −ji . (66)

Such algebra is denoted by
(

a,b

IF

)
and its norm is

N(γ) = x2
1 − ax2

2 − bx2
3 + abx2

4 . (67)

The matrix representation of the quaternion algebra (66) is obtained by the
isomorphism

i →
(√

a 0
0 −√

a

)
, j →

(
0 1
b 0

)
, k = ij →

(
0

√
a

−b
√

a 0

)
.

Explicitly

γ =
(

x1 + x2
√

a x3 + x4
√

a
b(x3 − x4

√
a) x1 − x2

√
a

)
(68)

with x1, x2, x3, x4 ∈ IF. As it is a representation of the quaternion algebra the
product of these matrices also has the same form. In this representation the
norm of the algebra (67) equals the determinant of the matrix (68)

N(γ) = det γ .

From an algebraic field IF of finite degree one can build also another simple
set of matrices called M(2,IF) given by 2 × 2 matrices with entries from IF

(
x1 x2

x3 x4

)
. (69)

Are the two sets (68) and (69) different or are they isomorphic? For example,
if a = u2 and u ∈ IF the set (68) is, evidently, within M(2,IF).

Let us show that if
√

a /∈ IF and if there exist certain elements q1, q2, q3, q4 ∈
IF such that the determinant of the matrix (68) is zero

det(γ) = q2
1 − q2

2a − b(q2
3 − q2

4a) = 0 (70)

then matrices (68) are isomorphic to M(2,IF) [42].
Indeed, from the above expression it follows that in this case b has the

form
b = (q2

1 − q2
2a)(q2

3 − q2
4a)−1 = (u1 + u2

√
a)(u1 − u2

√
a)

where
u1 + u2

√
a = (q1 + q2

√
a)(q3 + q4

√
a)−1 .

As all fractions of field elements belong to the field IF, u1 and u2 are also
elements of IF. Now one can check that(

x1 + x2
√

a x3 + x4
√

a
b(x3 − x4

√
a) x1 − x2

√
a

)
= S−1MS

where
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M =
(

x1 + x3u1 + x4u2a x2 − x3u2 − x4u1

a(x2 + x3u2 + x4u1) x1 − x3u1 − x4u2a

)

and S is a fixed (independent of xi) matrix

S =
(

u1 + u2
√

a 1√
a(u1 + u2

√
a) −√

a

)
.

The importance of such representation lies in the fact that the matrix M
contains only elements of our basis field IF and does not contain

√
a. Therefore,

it belongs to M(2,IF) and the set of matrices γ (68) is the conjugation of
matrices from M(2,IF) by a fixed matrix S. In other words, when the equation
det(γ) = 0 has a solution γ ∈ IF expression (68) is just a complicated way
of writing matrices from M(2,IF). These considerations demonstrate that in
order to construct a group different from M(2,IF) it is necessary to require
that there exist no elements from the basis field such that the determinant
(70) equals zero. Or, equivalently, any matrix (68) should have an inverse
element. In the language of quaternion algebra this property corresponds to
the division algebra for which any element has an inverse.

As for real fields this condition is quite restrictive and an explicit answer
can be obtained only in simple cases. Let us consider for example the case
when IF is the field of usual rational numbers IF = lQ. The following theorem
[42] gives a series of division algebras over lQ.

Let b be a prime number and a be an integer such that the equation

x2 ≡ a (mod b)

has no integer solution. Then the pair (a, b) defines a division algebra over lQ
or equivalently the equation (70)

x2
1 − x2

2a − b(x2
3 − x2

4a) = 0 (71)

has only zero rational solutions.
To prove the theorem note that due to homogeneity of this equation it is

sufficient to consider integer solutions x1, x2, x3, x4 without common factors.
From (71) it follows that

x2
1 ≡ x2

2a (mod b) .

Consider first the case when b does not divide x2, b |/x2. As b is assumed to
be a prime, x−1

2 (mod b) exists and (x1/x2)2 ≡ a (mod b) which contradicts
our assumption. Hence b |x2 but then b |x1 and

x2
3 ≡ x2

4a (mod b) .

The same arguments give that b |x4 and b |x3 which contradicts the assump-
tion about the absence of common factors of xi. Therefore there is no rational
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solution of (71) and the quaternion algebra defined by a and b is a division
algebra.

Quaternion algebras with division are analogs of algebraic fields. How one
can define integers of a quaternion algebra?

We have seen above that algebraic integers of a field of degree n form a
free ZZ-module of rank n i.e. they can be represented as a sum of n elements of
the field with integer coefficients (see (61). Similarly one can define ‘integers’
of a quaternion algebra over such field as a free ZZ-module of rank 4n (which
generates the whole algebra). For technical reasons they are called not integers
but ‘the order’ in the algebra. The word ’integers’ in algebras is reserved for
elements for which the trace and the determinant of matrix (68) are integers
of the basis field. Different orders exist and the one which is not contained in
any other order is called the maximal order.

The simplest case appears when a and b are integers of the basis field IF.
Then matrices of the form(

x1 + x2
√

a x3 + x4
√

a
b(x3 − x4

√
a) x1 − x2

√
a

)

where all xk are integers of IF form an order of the algebra
(

a,b

IF

)
(but not

necessarily the maximal order).
Matrices of the order in a division quaternion algebra with unit deter-

minant form a group. Each matrix of this group belongs to the order and,
therefore, is defined by 4n integers. The product of two group matrices have
the same form and corresponds to a certain transformation of integers defin-
ing both matrices. It means that these groups can be represented by 4n× 4n
matrices with integer elements.

All such groups, all their subgroups, and all groups commensurable with
them are discrete arithmetic groups with finite fundamental domain [42].

Example

As x2(mod 5) takes only values 0, 1, 4 the equation

x2 ≡ 3 (mod 5)

has no integer solution. Hence the pair (3,5) defines a division algebra over lQ.
A simple order of this algebra has the form

(
m + n

√
3 k + l

√
3

5(k − l
√

3) m − n
√

3

)
(72)

with integer m,n, k, l. When one considers these matrices with the unit de-
terminant

m2 − 3n2 − 5k2 + 15l2 = 1

they form a discrete arithmetic group Γ1 with a finite fundamental area.
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The order (72) is not the maximal order. The latter can be chosen e.g. as
follows (

1
2 (m + n

√
3) 1

2 (k + l
√

3)
5
2 (k − l

√
3) 1

2 (m − n
√

3)

)
(73)

with integer m,n, k, l such that m ≡ k (mod 2) and n ≡ l (mod 2). Matrices
(73) with the unit determinant

m2 − 3n2 − 5k2 + 15l2 = 4

constitute another discrete arithmetic group Γ2 whose fundamental domain
is smaller than for the group (72) as Γ1 is a subgroup of Γ2.

Using the representation (63) one concludes that to each 2 × 2 matrix of
the group Γ1 one can associate the 4 × 4 matrix with integer elements

M(γ) =

⎛
⎜⎜⎝

m n k l
3n m 3l k
5k −5l m −n

−15k 5k −3n m

⎞
⎟⎟⎠ .

It is straightforward to check that (i) M(γ1γ2) = M(γ1)M(γ2) for all
γ1 , γ2 ∈ Γ1, (ii) M(1) = 1, and (iii) det(M) = (det(γ))2 = 1 . Together
these expressions mean that this group is an arithmetic group.

2.3 Criterion of Arithmeticity

For general fields the situation is more complicated. To explain the general
criterion of arithmetic groups let us first stress a difference between usual
integers and algebraic integers.

The usual integers correspond to a discrete set of points. But for general
algebraic integers this is not the case. For example, in the field lQ(

√
2) integers

have the form n + m
√

2 with integer n and m. But it is evident that one
can construct sequences of these algebraic integers converging to zero, e.g.
(
√

2 − 1)k = Mk − Nk

√
2 → 0 when k → ∞. Therefore the set of algebraic

integers is not discrete as it has finite accumulation points.
How can one deal with such problem? The main point is that these small

terms become large under the transformation
√

2 → −
√

2 (74)

Let consider in the above example not all algebraic integers n+m
√

2 but only
those which after transformation (74) remain bounded

|n − m
√

2| < constant .

It is clear that now arbitrary small integers are excluded and one gets a discrete
set of points.
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For more general fields the transformation (74) is generalized to all non-
trivial isomorphisms of the field. To remove arbitrary small elements one has
to require that for all isomorphisms of the field (except the identity), φi,
transformed values of integers (61) are restricted

∣∣∣∣∣
n−1∑
k=0

mkφi(βk)

∣∣∣∣∣ < constant . (75)

In order to be sure that all small numbers are removed it is necessary that
all roots of defining equation (60) are real. Otherwise, changing a root to its
complex conjugate may not change modulus of integers.

These considerations make reasonable that in order to construct a discrete
subset of algebraic integers (without finite accumulation points) it is necessary
that (i) the field be a totally real field (i.e. all roots of defining equation (60)
are real) and (ii) for all non-trivial isomorphisms of the field transformed
integers remain bounded as in (75).

A precise criterion of arithmeticity obtained by Takeuchi [53] is quite sim-
ilar (see also [6] and [24] for particular examples).

Takeuchi proved that a group Γ is an arithmetic group if and only if the
traces of group matrices have the following properties

• All Tr(γ) are integers of a totally real algebraic field of finite degree.
• For any non-trivial isomorphism φ of this field that changes some |Tr(γ)|

for certain γ, the value of the transformed trace satisfies |φ(Tr(γ))| ≤ 2.

There are two types of arithmetic groups. Non-compact groups, built from
SL(2,ZZ), and compact ones built from quaternion algebra different from
M(2, lQ).

The above criterion is quite effective, in particular, it permits to find all
possible arithmetic groups with triangular fundamental domains [53]. There
are 85 triangular hyperbolic surfaces generated by discrete arithmetic groups.
All of them are given in Table 1.

2.4 Multiplicities of Periodic Orbits for General Arithmetic
Groups

The geometrical length of the periodic orbit, l, is connected with the trace of
class of conjugate matrices by (28). When l → ∞

exp
l

2
= |Tr(γ)| .

Let us prove that for an arithmetic group the number of possible values of
group matrix traces obeys

N(|Tr(γ)| ≤ R) R→∞−→ C · R
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Table 1. The list of arithmetic triangles from [53]. (n, m, p) in the first column
corresponds to the three angles (π/n, π/m, π/p). The second column indicates the
algebraic field from which is built the corresponding arithmetic group.

(m,n,p) IF

(2,3,∞) (2,4,∞) (2,6,∞) (2,∞,∞) (3,3,∞) lQ
(3,∞,∞) (4,4,∞) (6,6,∞) (∞,∞,∞)

(2,4,6) (2,6,6) (3,4,4) (3,6,6) lQ

(2,3,8) (2,4,8) (2,6,8) (2,8,8) (3,3,4) lQ(
√

2)
(3,8,8) (4,4,4) (4,6,6) (4,8,8)

(2,3,12) (2,6,12) (3,3,6) (3,4,12) (3,12,12) lQ(
√

3)
(6,6,6)

(2,4,12) (2,12,12) (4,4,6) (6,12,12) lQ(
√

3)

(2,4,5) (2,4,10) (2,5,5) (2,10,10) (4,4,5) lQ(
√

5)
(5,10,10)

(2,5,6) (3,5,5) lQ(
√

5)

(2,3,10) (2,5,10) (3,3,5) (5,5,5) lQ(
√

5)

(3,4,6) lQ(
√

6)

(2,3,7) (2,3,14) (2,4,7) (2,7,7) (2,7,14) lQ(cos π/7)
(3,3,7) (7,7,7)

(2,3,9) (2,3,18) (2,9,18) (3,3,9) (3,6,18) lQ(cos π/9)
(9,9,9)

(2,4,18) (2,18,18) (4,4,9) (9,18,18) lQ(cos π/9)

(2,3,16) (2,8,16) (3,3,8) (4,16,16) (8,8,8) lQ(cos π/8)

(2,5,20) (5,5,10) lQ(cos π/10)

(2,3,24) (2,12,24) (3,3,12) (3,8,24) (6,24,24) lQ(cos π/12)
(12,12,12)

(2,5,30) (5,5,15) lQ(cos π/15)

(2,3,30) (2,15,30) (3,3,15) (3,10,30) (15,15,15) lQ(cos π/15)

(2,5,8) (4,5,5) lQ(
√

2,
√

5)

(2,3,11) lQ(cos π/11)

with a constant C depending on the group. The traces of matrices of arithmetic
groups are dispatched as usual integers among real numbers.

Let Γ be an arithmetic group. The set of traces {Tr(γ), γ ∈ Γ} are integers
of an algebraic field IF

t0 =
n−1∑
i=0

miβi

where mi are integers and βi are linearly independent elements of the field.
Consider the simplest case βi = αi then

Tr(γ) ≡ t0 =
n−1∑
i=0

miα
i .
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For a field of degree n there exist n−1 non-trivial isomorphisms φk : α → αk

where αk is a root of the defining polynomial different from α.
Suppose that all such transformations change |Tr(γ)|. According to the

criterion of Takeuchi all transformed traces satisfy

|tk| ≤ 2

where

tk ≡ φk(Tr(γ)) =
n−1∑
i=0

miα
i
k .

Consider these equations as transformations from variables ti to new variables
mi [27]. The volume elements in these two representations are related as

dt0dt1...dtn−1 = |J |dm0dm1...dmn−1

where

J = det
(

∂tj
∂mk

)

is called the discriminant of the field and in our case (when βi = αi)

J = det(αj
k)|k,j=0,...,n−1 =

∏
i�=j

(αi − αj) .

As mi are integers the volume of the smallest cell is one, and the total number
of possible integer solutions is asymptotically

N(|Tr(γ)| ≤ R) = N(|t0| ≤ R, |tj | ≤ 2) � C · R

where C = 2n/J .
For any surface of finite area generated by a discrete group the total num-

ber of periodic orbits with length less than a given value is asymptotically the
following

Ntot(l < L) L→∞−→ eL

L
.

The number of periodic orbits with different lengths is the same as the number
of group matrix traces

Ndiff. lengths(l < L) ∼ C · eL/2

Let g(l) be the multiplicity of periodic orbits with length l. Then

∑
l<L

g(l) =
eL

L
and

∑
l<L

1 = CeL/2

where the summation is done over different lengths.
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Finally the mean multiplicity of arithmetic systems defined as in (59) has
the following asymptotics

〈g〉 =
(
∑

l<L g(l))′

(
∑

l<L 1)′
∼ 2eL/2

CL
. (76)

Thus we demonstrate that the arithmetic nature of arithmetic groups leads
to exponential multiplicities of periodic orbit lengths.

For generic systems one usually does not expect any degeneracy of pe-
riodic orbit lengths except the ones which follow from exact symmetries of
the model. For example, systems with time-reversal invariance, in general,
should have the mean multiplicity equal to 2, which corresponds to the same
geometrical periodic orbits spanned in two directions. Therefore, arithmetic
systems are very exceptional in this respect as they display exponentially large
multiplicities of periodic orbit lengths. Notice, nevertheless, that according to
Horowitz-Randol theorem [41], [51] this degeneracy is unbounded for any sur-
face generated by a discrete group. However degeneracies of this theorem are
much smaller than exponential.

3 Diagonal Approximation for Arithmetic Systems

The large multiplicities of periodic orbit lengths in arithmetical systems seem
to have no importance in classical mechanics. These systems are as chaotic as
any other models of free motion on constant negative curvature surfaces with
finite area. Nevertheless, the quantum spectra of these systems are anomalous:
is it connected to these degeneracies? In this Section we estimate the quan-
tum two-point correlation form factor for arithmetic systems in the diagonal
approximation as was done in Sect. 1.1 for generic chaotic systems.

Assume that there exist g(l) periodic orbits with the same length l. Exactly
as it was done in Sect. 1.1 one gets the following expression for the diagonal
approximation of the two-point correlation function

R
(diag)
2 (ε) =

∑
p,n

|Ap,n(lp)|2g(lp)einTpε + c.c. (77)

where the summation is done over all periodic orbits. The only difference
with (48) is that in Sect. 1.1 it was assumed that g is a constant but here the
multiplicity g = g(l).

Define the two-point correlation form factor as the Fourier transform of
R2(ε)

K(t) =
∫ +∞

−∞
R2(ε)eitε .

This definition differs from the previous one by the absence of the factor 2π
in the exponent. For later purposes it is more convenient.
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Equation (77) leads to the following expression for the two-point correla-
tion form factor in the diagonal approximation

K(diag)(t) = 2π
∑
p,n

|Ap,n(lp)|2g(lp)δ
(

t − nlp
2k

)
. (78)

From (76) it follows that the mean multiplicity of periodic orbit lengths for
arithmetic systems is asymptotically

〈g(lp)〉 =
2elp/2

Clp

with a model dependent constant C (for the modular group C = 1).
For any models generated by discrete groups the summation over all peri-

odic orbits is asymptotically equals the integration with the following measure
∑
lp

→
∫

dl

l
el .

Taking into account that when l → ∞ the term with n = 1 dominates and
(see (47))

Ap,1(l)
l→∞−→ le−l/2

4πk

one obtains that in the diagonal approximation

K(diag)(t) ∼ ekt

2πkC
. (79)

It means that the correlation form factor K(t) for arithmetic systems grows
much faster than was usually assumed and that for time of order of the Ehren-
fest time it becomes of the order of 1.

The simplest approximation to the full form factor is the following

K(t) =
{

Kdiag(t) for t < t∗

d̄ for t > t∗

where t∗ is defined by the requirement that Kdiag(t∗) = d̄

t∗ ∼ 1
k

ln(2πkCd̄) .

For the true Poisson statistics K(t) always equals d̄. For usual integrable
systems K(t) increases to this value during the time of the order of shortest
periodic orbit periods, t∗ ∼ 1/k. For arithmetic systems K(t) jumps to the
universal saturation value in a time of order of the Ehrenfest time which has
an additional logarithm of the momentum.

Therefore, spectral statistics of arithmetic systems is much closer to the
Poisson prediction typical for integrable systems than to any of standard ran-
dom matrix ensembles conjectured for generic ergodic systems.
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4 Exact Two-Point Correlation Function for the
Modular Group

The diagonal approximation gives quite crude estimate of the form factor.
For the modular group it is possible to compute explicitly the two-point cor-
relation function [23]. The calculations are based on a generalization of the
Hardy–Littlewood method and depend strongly on the number-theoretical
properties of the multiplicities of the periodic orbits of the modular group.
In Sect. 4.1 using the Selberg trace formula the two-point correlation form
factor is expressed through the two-point correlation function of multiplicities
of periodic orbit lengths for the modular group. In Sect. 4.2 the latter is cal-
culated by a certain generalization of the Hardy–Littlewood method. Quite
tedious explicit formulas are given in Sect. 4.3 and the final expression for the
two-point correlation form factor is presented in Sect. 4.4.

4.1 Basic Identities

The modular group has been considered in Sect. 1. It is the group of all 2× 2
matrices with integer elements and unit determinant. The periodic orbits of
the modular group correspond in a unique way to the conjugacy classes of
hyperbolic elements of the modular group. The length of periodic orbit lp is
related with the trace of a representative matrix of the conjugacy class as
follows

|TrM | = 2 cosh lp/2 .

As all elements of modular group matrices are integers the trace is also an
integer

|TrM | = n .

In Sect. 1 it was demonstrated that the mean multiplicity of periodic orbit
length for the modular group is

〈g(l)〉 = 2
el/2

l
.

Denote by n the trace of a given conjugacy class and by g(n) the number of
distinct conjugacy classes corresponding to trace n. As n goes as eL/2 when
n → ∞ one concludes that

〈g(n)〉 n→∞−→ n

lnn
. (80)

According to the Selberg trace formula the density of eigenvalues for the
modular surface d(E) = d̄(E) + d(osc)(E) where the oscillating part of the
density is represented by the following formal sum

d(osc)(E) =
2
πk

∑
n

g(n)
lnn

n
cos(2k lnn) .
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From (80) it follows that mean value of g(n) ln n/n is one. Therefore we define

α(n) = g(n)
ln n

n
,

so
d(osc)(E) =

1
πk

∑
n

α(n) cos(2k lnn)

and 〈α(n)〉 = 1.
As it was done in Sect. 1 one gets

R2(ε1, ε2) = d̄2 + Rc
2(ε1, ε2)

where

Rc
2(ε1, ε2) =

1
(2πk)2

∑
n1,n2

α(n1)α(n2)
〈
e2i(k1 ln n1+k2 ln n2)

+ e2i(k1 ln n1−k2 ln n2)
〉

+ c.c.

and
ki ≈

√
E + εi

E→∞−→ k + εi/2k.

As was discussed in Sect. 1 due to the energy average the first term will be
washed out and the second one gives contributions only when

n2 = n1 + r with r � n1 .

Finally Rc
2(ε1, ε2) = R2(ε) where ε = ε1 − ε2 and

R2(ε) =
1

4π2k2

∑
n

∑
r

α(n)α(n + r) exp
(
−2i

kr

n
+ iε

ln n

k

)
+ c.c. .

Let assume that the following mean value exists

γ(r) = lim
N→∞

1
N

N∑
n=1

α(n)α(n + r) .

The dominant contribution to the two-point correlation function corresponds
to replace the product α(n)α(n + r) by its mean value γ(r)

R2(ε) ≈ 1
4π2k2

∫ ∞

n0

dn

∞∑
r=−∞

γ(r)e−2ikr/n exp
(

iε
ln n

k

)
+ c.c. (81)

where we have used a continuum approximation for n starting formally from
a certain fixed n0 � 1, since only large values of n make a significant contri-
bution.

Define a (real) function f(x) as follows
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f(x) =
∞∑

r=−∞
γ(r)e−irx . (82)

This function has the meaning of the Fourier transform of the two-point cor-
relation function for multiplicities of the modular group.

After changing variable n → euk in (81) one gets that the two-point cor-
relation function for the modular group is expressed through f(x) as follows

R2(ε) ≈ 1
2π2k

∫ ∞

0

ekuf(2ke−ku) cos εu du (83)

and the two-point correlation form factor is

K(t) =
∫ ∞

−∞
R2(ε)eiεtdε =

1
2πk

ektf(2ke−kt) . (84)

Therefore all non-trivial information is contained in functions γ(r) or f(x).
The simplest diagonal approximation is to assume that the α(n) are essen-

tially uncorrelated, that is, γ(r) is zero for r �= 0. This gives for f(x) a constant
value which leads to an exponential growth of K(t) as in (79). But from gen-
eral considerations K(t) obtained from a discrete spectrum has to saturate to
a constant value for t → ∞, consequently, the diagonal approximation cannot
be correct for large t.

4.2 Two-Point Correlation Function of Multiplicities

The purpose of this Section is to calculate the two-point correlation function
of modular group multiplicities, γ(r), whose Fourier harmonics according to
(84) determines the two-point correlation form factor.

The calculation will be done by a generalization of the Hardy-Littlewood
method for prime pairs discussed in Sect. 2.1. As for primes one has to perform
the three following steps.

The first step

Define the mean value of α(n) when n runs over integers of the form mq + r
for fixed q and r < q in the following way

α(q; r) = lim
N→∞

1
N

N−1∑
m=0

α(mq + r) .

Since 〈α(n)〉 = 1
q−1∑
r=0

α(q; r) = q .
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Let Mq be the set of 2× 2 matrices with entries being integers modulo q and
having determinant equals one modulo q. These matrices form a group under
multiplication modulo q which is sometimes called the modular group.

Define also Mq,r to be the set of elements of Mq with trace equal to r
modulo q. One can prove [23] that

α(q; r) =
q|Mq,r|
|Mq|

where |M | is the number of elements of a set M .
The intuitive meaning of this result is the following: g(n) is the number

of conjugacy classes of modular matrices of trace n. To each modular matrix,
one can associate an element of Mq in a unique way simply by taking the
entries of the matrix modulo q. If n is equal to r modulo q, then all these
matrices will belong to Mq,r. If we therefore assume that the matrices of the
modular group cover the set Mq in some sense uniformly, the result follows.
More careful treatment has been performed in [23].

Example

Let us consider q = 2. Integers modulo 2 are 0 and 1. The group M2 consists
of the following matrices

(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)
.

The dimension of the group M2, i.e. the total number of matrices, |M2| =
6. Among these matrices there are four matrices with zero trace (mod 2),
i.e. |M2,0| = 4, and two matrices with trace equals 1 (mod 2), |M2,1| = 2.
Therefore

α(2; 0) =
2 · 4
6

=
4
3

, α(2; 1) =
2 · 2
6

=
2
3

.

The second step

Define as in the Hardy-Littlewood method the following function

Φ(z) =
∞∑

n=0

α(n)zn.

Since 〈α(n)〉 = 1 the convergence radius of this series is equal to one.
The importance of this function follows from the integral

Jr(e−u) = eru

∫ 2π

0

dφ

2π
Φ∗ (

e−u+iφ
)
Φ

(
e−u−iφ

)
e−irφ =

∞∑
n=1

α(n)α(n + r)e−2nu

whose right-hand side by a Tauberian theorem is connected with the two-point
correlation function of multiplicities, γ(r).
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The essence of the Hardy–Littlewood approach is the investigation of the
function Φ(z) when z = exp(−u + iε + 2πip/q) with u → 0 and ε → 0, where
p and q are co-prime integers. The main step is then to write n in the form
mq + r with r lying between 0 and q − 1 and prove that in the expression
for Φ(z) the dominant contribution as u and ε go to zero will be given by the
mean value of α(mq + r), that is, one may substitute it by α(q; r).

Accepting this, one has that as u → 0 and ε → 0

Φ (exp (−u + 2πip/q + iε)) =
q−1∑
r=0

∞∑
m=0

α(mq + r)e−(u−iε)(mq+r)e2πirp/q

=
q−1∑
r=0

α(q; r)e2πipr/q 1
q

∫ ∞

0

dn e−(u−iε)n

=
β(p, q)
u − iε

where

β(p, q) = q−1

q−1∑
r=0

α(q; r) exp
(

2πi
p

q
r

)
.

Hence Φ(z) has a pole singularity at all rational points on the unit circle.

The third step

Divide the unit circle in intervals Ip,q centered around exp(2πip/q), where
p and q are co-prime integers with p < q. If one neglects all terms in each
interval except the pole term and extends the integration over ε to the whole
line, one gets

Jr(e−u) = eru
∑

(p,q)=1

∫ ∞

−∞

dε

2π

|β(p, q)|2
u2 + ε2

eir(2πp/q+ε)

=
1
2u

∑
(p,q)=1

|β(p, q)|2 exp
(

2πi
p

q
r

)
.

Finally one obtains that

γ(r) =
∑

(p,q)=1

|β(p, q)|2 exp
(

2πi
p

q
r

)
.

The sum is performed over all q, and p co-prime to q with 0 < p < q.
This is the two-point correlation function of multiplicities of the periodic

orbits for the modular group . All other quantities of interest can be obtained
from it. In particular, the function f(x) (82) is given by

f(x) = 2π
∑

(p,q)=1

|β(p, q)|2δ
(

x − 2π
p

q

)
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where the summation is done over all p and q co-prime, without the restriction
p < q.

According to (83) and (84) the knowledge of f(x) determines immedi-
ately the two-point correction function the form factor of modular domain
eigenvalues.

4.3 Explicit Formulas

Let us define the so-called Kloosterman sums

S(n,m; c) =
∑

(d,c)=1

exp
(

2πi
c

(nd + md−1)
)

where the summation is taken over all d < c co-prime with c and d−1 is an
integer modulo c which obeys d−1d = 1 (mod c).

One can show (see [23]) that β(p, q) can be expressed through these sums
in the following way

β(p, q) =
1

q2
∏

ω|q(1 − ω−2)
S(p, p; q)

where ω are the prime divisors of q.
The function γ(r) can be written as

γ(r) =
∞∑

n=1

Ar(n)

where Ar(q) is given by

Ar(q) =
∑

p:(p,q)=1

|β(p, q)|2 exp
(

2πir
p

q

)
.

One can prove that Ar(q) is multiplicative function of q, i.e. Ar(n1n2) =
Ar(n1)Ar(n2) provided (n1n2) = 1, therefore one needs to know only its
values on powers of primes and γ(r) can be rewritten as the infinite product
over all prime numbers

γ(r) =
∏
p

(1 +
∞∑

k=1

Ar(pk))

To present a closed expression for Ar(q) let us introduce the standard defini-
tion of the Legendre symbol

(
a

q

)
=

⎧⎨
⎩

1 , if a ≡ x2 (mod q) has a solution a �≡ 0 (mod q)
0 , if a ≡ 0 (mod q)

−1 , otherwise
.
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The meaning of this symbol is perhaps best understood by saying that the
number of distinct solutions of the equation x2 ≡ a (mod q) is 1 + (a/q).

A fairly tedious evaluation of Ar(q) (see [23] for details) gives the following
formulas.

Let q = pn where p is an odd prime. Then for n = 1 one has

Ar(p) =
1

(p2 − 1)2

[
p

p−1∑
x=0

(
(x2 − 4)((x + r)2 − 4

p

)
− 1

]
.

For n ≥ 2 we have, letting t be an arbitrary non-zero number modulo p,

Ar(pn) =
1

p2n(1 − p−2)

⎧⎪⎪⎨
⎪⎪⎩

2(1 − 1/p) , r ≡ 0 (mod pn)
−2/p , r ≡ tpn−1 (mod pn)

ε(n, p)(1 − 1/p) , r ≡ ±4 (mod pn)
−ε(n, p)/p , r ≡ ±4 + tpn−1 (mod pn)

where ε(n, p) takes the value −1 if n is odd and p is of the form 4k + 3 and is
equal to 1 in all other cases. For p = 2, we list down individual cases for low
powers and eventually state a general rule

Ar(2) =
1
9

{
1 , r ≡ 0 (mod 2)

−1 , r ≡ 1 (mod 2) ,

Ar(4) =
1
18

{
1 , r ≡ 0 (mod 4)

−1 , r ≡ 2 (mod 4) ,

Ar(8) = 0 ,

Ar(16) =
1

9 · 16

{
1 , r ≡ 0 (mod 16)

−1 , r ≡ 8 (mod 16) ,

Ar(32) = 0 ,

and finally, for the general case n ≥ 6

Ar(2n) =
1

9 · 22n−4

⎧⎪⎪⎨
⎪⎪⎩

2 , r ≡ 0 (mod 2n)
−2 , r ≡ 2n−1 (mod 2n)

1 , r ≡ ±(4 + 2n−2) (mod 2n)
−1 , r ≡ ±(4 + 2n−2 + 2n−1) (mod 2n)

.

All terms not explicitly shown equal zero. In [50] these formulas were proved
by a different method.

4.4 Two-Point Form Factor

These formulas give the explicit expression for the two–point correlation form
factor

K(t) =
1

2π2k

∑
(p,q)=1

∣∣∣∣qpβ(p, q)
∣∣∣∣
2

δ(t − tp,q) .
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where
tp,q =

1
k

ln
kq

πp
.

In the limit k → ∞ and t fixed, the dominant contribution comes from terms
with p/q � 1. Smoothing over such values one can show (see [23]) that in this
limit K(t) tends to the constant Poisson value

K(t) =
A

4π

where A = π/3 is the area of the fundamental region of the modular group.
For small t (of the order of the Ehrenfest time ln k/k) K(t) has number–
theoretical oscillations due to cumulative contributions of degenerate periodic
orbits. For very small values of t (of the order of 1/k) the two-point form
factor has δ peaks connected with short periodic orbits.

Though the modular group is by no means a generic system, it is the first
ergodic dynamical system for which it was possible to compute explicitly the
distribution of the energy levels.

5 Hecke Operators

Arithmetic groups have many interesting properties. In particular, for all
arithmetic groups it is possible to construct an infinite number of mutually
commuting operators which commute also with the Laplace–Beltrami oper-
ator. These operators are of pure arithmetic origin and are called the Hecke
operators [37], [54].

In a certain sense these operators permit to ’understand’ why arithmetic
systems have the Poisson statistics typical only for integrable systems. The
point is that integrable systems are systems with sufficiently large number
of independent commuting operators and Hecke operators may be viewed as
a manifestation of a kind of arithmetic integrability of arithmetic systems
which does the Poisson statistics for these models natural [27]. Unfortunately,
precise relations along this line seem to be impossible.

Let us consider informally the construction of Hecke operators for the
modular group. Choose two matrices A and B from the modular group with
the same trace. As they have the same trace and determinant, they have the
same eigenvalues and there exists a matrix γ such that

γAγ−1 = B or γA = Bγ and det(γ) �= 0 . (85)

If A and B are not conjugated in the modular group, γ �∈ PSL(2, ZZ). But
matrix γ can be chosen as a matrix with integer elements but with the deter-
minant �= 1.

Example.
Consider the following simple matrices
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A =
(

3 1
2 1

)
, B =

(
3 2
1 1

)
.

General form of matrices γ which obey (85) is

γ =
(

2α + 2β α
α β

)

with arbitrary α and β.
It is clear that there exists no γ ∈ PSL(2, ZZ) but choosing different integer

values of α and β one can construct an infinite number of integer matrices
with determinant �= 1 which obeys (85). For example,

γ =
(

0 1
1 1

)
(det = −1) , γ =

(
4 1
1 1

)
(det = 3) . . . .

These considerations demonstrate that when dealing with the modular group
it is quite natural to consider matrices with integer elements but with the
determinant different from one

Mp =
{(

a b
c d

)
a, b, c, d integers, ad − bc = p

}
.

Matrices Mp with p �= 1 do not form a group because their product has not
the same form.

A matrix mp ∈ Mp can uniquely be represented in the form

mp = µαp (86)

where µ ∈ PSL(2, ZZ) and αp is one of matrices from the following finite set

αp =
{(

a b
0 d

)
a, b, d integers , ad = p , d > 0 , 0 ≤ b ≤ d − 1

}
. (87)

Instead of proving this fact let us transform a simple matrix

m3 =
(

4 1
1 1

)

to the form (86). General proof (see e.g. [54]) follows the same steps.
First, it is necessary to find a matrix

µ′ =
(

µ1 µ2

µ3 µ4

)

such that (i) detµ′ = 1 and (ii)
(

µ1 µ2

µ3 µ4

) (
4 1
1 1

)
=

(
a b
0 d

)
.
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The condition of the zero of low-left element gives the equation 4µ3 + µ4 = 0
and because µ4 and µ3 are coprime they can be chosen as follows: µ4 = 4 and
µ3 = −1. Unit determinant condition gives µ1 = k and µ2 = 1 − 4k with an
arbitrary integer k. Finally, b = 1 − 3k and the smallest positive b modulo 3
corresponds to k = 0. Hence, our matrix m3 has the following representation

(
4 1
1 1

)
=

(
4 −1
1 0

)(
1 1
0 3

)
.

An important property of the set Mp is that when one multiplies a matrix
from this set by a matrix from the modular group the resulting matrix also
belongs to Mp

Mpg = Mp for all g ∈ PSL(2, ZZ) .

Let Ψ(z) be an automorphic function of the modular group, i.e.

Ψ(gz) = Ψ(z) , for all g ∈ PSL(2,ZZ) .

Then it is easy to see that the function

Ψ ′(z) ≡ (TpΨ)(z) =
1√
p

∑
a,b,d

Ψ(
az + b

d
)

where the summation is performed over all ad = p, d > 0, 0 ≤ b ≤ d − 1 will
also be an automorphic function for the modular group. This is a consequence
of the fact that in the right-hand side of this expression there is effectively
the summation over all matrices from Mp. As Mp does not change after mul-
tiplication by a modular group matrix Ψ ′(z) is an automorphic function for
the modular group. (TpΨ)(z) is a kind of symmetrization of Ψ(z) over images
of z by all elements of Mp and the operators Tp are called Hecke operators.

These operators form a commutative algebra with the following product
(see e.g. [54])

TnTm =
∑

d|(n,m)

Tnm/d2 (88)

where the summation is done over all divisors of the greatest common divisor
of m and n. The most important case corresponds to Hecke operators with
prime indices because all the others can be obtained from (88).

When p is a prime number

(TpΨ)(z) =
1√
p

⎡
⎣Ψ(pz) +

∑
0≤j<p

Ψ

(
z + j

p

)⎤
⎦ .

Since Hecke operators involve only fractional transformations all of them com-
mute with the Laplace–Beltrami operator. Consequently, if Ψ(x, y) is an eigen-
function of the Laplace–Beltrami operator, then (TpΨ)(x, y) will also be an
eigenfunction with the same eigenvalue. If there is no spectral degeneracy
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(which strongly suggested by numerics) every eigenfunction of the Laplace–
Beltrami operator is in the same time an eigenfunction of all Hecke operators

(TpΨn)(x, y) = λp(n)Ψn(x, y) . (89)

It is known (see e.g. [54]) that eigenfunctions of the Laplace–Beltrami operator
for the modular group have the following Fourier expansion

Ψn(x, y) = y1/2
∞∑

p=−∞
cp(n)Ksn−1/2(2πpy)e2πipx

where the eigenvalue of the Laplace–Beltrami operator En = sn(sn − 1) and
Kν(x) is the Hankel function.

One has z = x + iy and (az + b)/d = (ax + b)/d + iay/d, therefore

(TmΨn)(x, y) =
1√
m

∑
a,b,d

(ay

d

)1/2 ∑
p

cp(n)Ksn−1/2

(
2πp

ay

d

)
e2πip(ax+b)/d

where the first summation is performed over all a, b, d as in (87).
The summation over b gives zero if d does not divide p. Otherwise

(TmΨn)(x, y) = y1/2
∑

d|p,d|m
cp(n)Ksn−1/2(2πypm/d2)e2πipmx/d2

.

Let k = m/d and u = pm/d2. Then p = mu/k2 and

(TmΨn)(x, y) = y1/2
∑

u

∑
k|(m,u)

cmu/k2(n)Ksn−1/2(2uy)e2πiux .

If TmΨn = λm(n)Ψn then by comparing the first Fourier coefficient one gets

cm(n) = λm(n)c1 .

Assuming c1 �= 0 and using a convenient normalization c1 = 1 one concludes
that eigenvalues of the Hecke operators coincide with the Fourier coefficients.

We note also that similarly to the construction of the Selberg trace for-
mula one can build the trace formulas for Hecke operators (see e.g. [24] and
references therein). Such trace formula schematically has the form (cf. (29))

∑
n

λp(n)h(kn) =
1√
p

∑
hyperbolic

lp
2 sinh(Lp/2)

g(Lp)

+ smooth, parabolic, and elliptic terms .

Here h(k) is a test function like in Sect. 2.8 and g(l) is its Fourier transform.
In the left-hand side the summation is performed over all eigenvalues En =
k2

n + 1/4 of the Laplace–Beltrami operator and λp(n) is the eigenvalue of the
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Hecke operator Tp (89) applied to the eigenfunction of the Laplace–Beltrami
operator with eigenvalue En. In the right-hand side the summation is done
over all ‘hyperbolic’ matrices from Mp with Tr mp �= p+1. Lp is the ‘length’
associated with matrix mp

2 cosh(Lp/2) = |Tr mp|/√p

and lp is the minimal length of modular group matrices commuting with mp.

6 Jacquet–Langlands Correspondence

Another curious fact about arithmetic groups is the Jacquet–Langlands cor-
respondence (see [40]) which claims that for an arithmetic group derived from
a quaternion group over lQ (with a finite fundamental domain) one can find
a subgroup of the modular group (with infinite fundamental domain) in such
a way that amongst all automorphic eigenvalues of the Laplace–Beltrami op-
erator for this modular subgroup one can find all eigenvalues of the compact
arithmetic group.

The simplest arithmetic group Γ derived from quaternion algebra over lQ
with division is (see Sect. 2.2)

Γ =
(

k1 + k2
√

a k3 + k4
√

a
b(k3 − k4

√
a) k1 − k2

√
a

)

where b is a prime number, a is an integer such that the equation x2 ≡
a ( mod b) has no integer solution (e.g. a = 3, b = 5), and integers ki are such
that

det(γ) = k2
1 − ak2

2 − bk2
3 + abk2

4 = 1 .

Denote z = x + iy, τ = u + iv (y, v > 0) and define for all nj

α = n1 + n2

√
a , β = n3 + n4

√
a ,

γ = b(n3 − n4

√
a) , δ = n1 − n2

√
a .

Fix an arbitrary z0 and compute the following kernel

Φ(τ, z) =
+∞∑

nj=−∞
exp K(τ, z)

where

K(τ, z) = −πImτ
|αz0 + β − z(γz̄0 + δ)|2

Im zImz0
+ 2πiτ̄(αδ − βγ) .

Here z̄ is the complex conjugate of z.
Let ψn(z) be an eigenfunction of the Laplace–Beltrami operator automor-

phic with respect to the quaternion group Γ . It means that
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• (∆L−B + En) ψn(z) = 0 ,
• ψn(Mz) = ψn(z) for all M ∈ Γ .

Then the function

Ψ(τ) = Imτ

∫
D

Φ(τ, z)ψn(z)
dxdy

y2

where the integral is taken over the fundamental domain of the group Γ is an
eigenfunction the Laplace–Beltrami operator with the same eigenvalue En but
automorphic with respect to the congruence subgroup of the modular group
Γ0(4ab) where

Γ0(N) =
(

m n
k l

)
∈ SL(2,ZZ)

with an additional condition that

k ≡ 0 ( mod N) .

Direct (but tedious) proof of this statement can be found in [40].

7 Non-arithmetic Triangles

In the precedent Section we have seen that arithmetic systems have the Pois-
son spectral statistics. But what about non-arithmetic models?

Let us consider, as example, the so-called Hecke triangles which are hy-
perbolic triangles with angles (0, π/2, π/n). All of them tesselate the upper
half-plane and are fundamental domains of the discrete groups generated by
reflections across their sides. The modular billiard is one of them correspond-
ing to n = 3. Similar to it they all have an infinite cusp.

According to Table 1 the Hecke triangles are arithmetic only for n =
3, 4, 6,∞. All these arithmetic triangles have an exponential degeneracies of
periodic orbit lengths which leads to the Poisson-like statistics of energy levels.

The simplest non-arithmetic Hecke triangle is the one with n = 5. At
Fig. 19 we present the results of numerical calculations of the nearest-neighbor
distribution for 6000 first energy levels for this triangle with the Dirichlet
boundary conditions. For others Hecke triangles one gets similar pictures.
It is clearly seen that numerics agrees very well with the predictions of the
Gaussian Orthogonal ensembles of random matrices as it should be for generic
chaotic models.

But what are the multiplicities of periodic orbit lengths for non-arithmetic
Hecke triangles? As these model are not-arithmetic, one would expect that
their length multiplicities should be equal to two as for generic time-reversal
invariant systems. Nevertheless numerical calculations (see [24] for details)
demonstrated that this is not always the case. At Fig. 20 we present the
numerically computed mean length multiplicities for the Hecke triangles with
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Fig. 19. The nearest-neighbor distribution of 6000 energy levels for the non-
arithmetic Hecke triangular billiard with n = 5. The solid line – the GOE prediction.
Dotted line – the Poisson result.
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Fig. 20. Mean length multiplicities of periodic orbits for the Hecke triangles with
(from top to bottom) n = 12, n = 5, n = 8, and n = 10. White lines are numerical
fits (90).
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n = 5, 8, 10, 12 for lengths l < 20. White lines indicate a two-parameter fit
to these data in the form ḡ(l) = anebnl

n = 5 : ḡ(l) ≈ 1.235e.114l ,

n = 8 : ḡ(l) ≈ 1.095e.114l , (90)
n = 10 : ḡ(l) ≈ 1.143e.065l ,

n = 12 : ḡ(l) ≈ .986e.150l .

These expressions fit numerical data in the given interval of lengths quite well
and indicate that for, at least, certain Hecke triangles mean length multiplic-
ity increases exponentially. We stress that (90) are only the best least-square
numerical fits and no attempts were made to determine the accuracy of coef-
ficients.

The discussion of the origin of such unexpected multiplicities for non-
arithmetic triangles is beyond the scope of these lectures (on this subject
see [26]). However it is of interest to understand why exponentially large
multiplicities of periodic orbit lengths do not contradict the observed GOE
behaviour of spectral statistics (cf. Fig. 19).

Assume that a system has an exponentially large number of periodic orbits
with the same length l increasing as

g(l) ∼ eλl

l

with λ ≤ 1/2.
Let us repeat the arguments of Sect. 1.2 for this case with exact degen-

eracicies. In Sect. 1.2 it was demonstrated that periodic orbits with different
lengths can be treated in the diagonal approximation if

lp1 − lp2 � k

∆E
(91)

where k is the momentum and ∆E is the width of the energy average inherent
in the definition of correlation functions of dynamical systems.

As the density of orbits with different lengths is

ρdiff. lengths ≈ el

g(l)l
∼ e(1−λ)l

it follows that the inequality (91) is valid till maximal length

lm ∼ 1
1 − λ

ln
∆E

k
∼ 1

1 − λ
ln k . (92)

Notice that due to assumed large multiplicity lm is different from (51).
From (78) it follows that the two-point correlation form factor in the di-

agonal approximation up to numerical factor is
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K(t) ∼ k

l
|A(l)|2g(l)el

where t = l/2k and A(l) ∼ lel/2/k. Combining all terms together one obtains
that during the maximal time of applicability of the diagonal approximation
tm = lm/2k with lm from (92) the form factor increases till

K(tm) ∼ eλlm

k
∼ k(2λ−1)/(1−λ) .

Hence, if λ = 1/2 as for arithmetic systems the two-point correlation form
factor during the time of validity of the diagonal approximation increases
till a constant value of the order of 1. But if λ < 1/2 the form factor for
the time of validity can reach only a value of the order of k−ν with ν =
(1 − 2λ)/(1 − λ) > 0. As k → ∞ this value tends to zero and no apparent
contradiction with standard random matrix ensembles can be derived within
the diagonal approximation.

8 Summary

Arithmetic groups are a special sub-class of discrete groups characterized by
the existence of a representation by matrices with integer elements. A readable
mathematical review of such groups is given in [42]. There are two types of
arithmetic groups. The first includes groups commensurable with the modular
group and having non-compact fundamental domains with infinite cusps. The
second type of compact arithmetic groups combines groups commensurable
with groups derived from quaternion algebras with division. These groups
have finite fundamental domains.

From classical viewpoint the free motion on surfaces generated by arith-
metic groups is as chaotic as for any hyperbolic surfaces. But quantum me-
chanics on these arithmetic surfaces is very special. In particular, spectral
statistics of the Laplace–Beltrami operator automorphic with respect to arith-
metic group is described by the Poisson statistics typical for integrable systems
and not by the random matrix statistics typical for chaotic models.

The origin of this peculiarity can be traced to the existence in arithmetic
systems of a very large number of periodic orbits with exactly the same length.
For all arithmetic groups the mean multiplicity of periodic orbits with length
l behaves like el/2/l. This has to be compared with the total density of peri-
odic orbits which for all discrete groups is el/l. It is the cumulative effect of
the interference of many periodic orbits with the same length which changes
drastically the spectral statistics.

In the diagonal approximation the two-point correlation form factor K(t)
for arithmetic systems at small t increases exponentially like ekt/k and dur-
ing the Ehrenfest time (which is the limit of applicability of the diagonal
approximation) reaches a constant value.
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More detailed information can be obtained for the modular group where it
is possible to compute the two-point correlation form factor analytically. The
final answer is

K(t) =
1

2π2k

∑
(p,q)=1

∣∣∣∣qpβ(p, q)
∣∣∣∣
2

δ(t − tp,q)

where
tp,q =

1
k

ln
kq

πp

and β(p, q) is a number-theoretical function given in Sect. 4.3.
This formula means that the two-point form factor for the modular group

is a sum over δ-functions at special points tp,q situated in a vicinity of the
Ehrenfest time. The set of δ-functions is dense but the largest peaks corre-
spond to the smallest ratios p/q. Nevertheless, small peaks with p/q � 1 are
much more numerous and integrally they dominate. In the limit t fixed and
k → ∞ K(t) → d̄ thus confirming the Poisson nature of the spectral statistics
of the modular group.

Arithmetic groups have many interesting properties. Hecke operators and
the Jacquet–Langlands correspondence are the most remarkable.

Acknowledgement

It is a pleasure to thank Charles Schmit for his aid in the preparation of these
lectures and A.M. Odlyzko for presenting numerical data of the two-point
correlation function of Riemann zeros. Laboratoire de Physique Théorique et
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1 Introduction

The connection between L-functions and random matrix theory began with
the 1972 discovery by Montgomery and Dyson that the zeros of the Riemann
zeta-function seem to be distributed on the 1/2-line like the eigenvalues of
large random hermitian matrices (the GUE ensemble studied by physicists).
Since then there has been a lot of development. In the 1990s Hejhal gen-
eralized Montgomery’s work to triple correlation and Rudnick and Sarnak
to n-correlation for arbitrary n. In the last five years though, the subject
has really taken off due to several developments. One was the conjectures of
Keating-Snaith and Conrey-Farmer on moments of zeta- and L-functions and
another was the development of the notion of symmetry type of families of L-
functions by Katz-Sarnak. Added to these was the work of Conrey-Ghosh,
Conrey-Gonek, Duke-Friedlander-Iwaniec, Kowalski-Michel-Vanderkam, Ju-
tila, Motohashi, Ivic, Soundararajan, Rubinstein, and others on moments of
families of L-functions which provide the evidence for the random matrix
conjectures.

We now have at our disposal very accurate models for the behavior of L-
functions (i.e. the distribution of values including zeros) and can use these to
make arithmetical predictions. Three examples of conjectures on L-functions
that have been motivated by random matrix theory will illustrate some of this
development.
Conjecture 1 [CFKRS1]: Let ζ(s) denote the Riemann zeta-function. Then,
for any ε > 0,

1
T

∫ T

0

|ζ(1/2 + it)|6 dt = P3(log
T

2π
) + Oε(T ε−1/2)

where

P3(x) = 0.00000570852x9 + 0.00040502x8 + 0.011072x7 + 0.148400x6

+1.04592x5 + 3.98438x4 + 8.607319x3 + 10.274330x2

+6.593913x + 0.916515.

Conjecture 2 [CKRS]: Let E : y2 = x3 + Ax + B be an elliptic curve, where
A and B are integers. For a squarefree integer d, let Ed be the twisted elliptic
curve which has equation d2y = x3 + Ax + B. Let rd denote the rank of the
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elliptic curve Ed; this is just the number of independent points with rational
coordinates required to generate the group of all rational points on the curve.
Now restrict attention to those d∗ for which the rank is at least 2. Then we
conjecture (a) that there exist constants CE and νE which depend only on E
such that

∑
d∗≤x

1 ∼ CEx3/4(log x)νE

and (b) that for any prime p, the limit as x → ∞ of the ratio of d∗ ≤ x with
d∗ being a square modulo p to the d∗ ≤ x which are non-square modulo p is
equal to

√
p + 1 − ap

p + 1 + ap

where ap = p − Np and Np is the number of solutions of y2 ≡ x3 + Ax + B
modulo p.
Conjecture 3 [U]: There exists a number c > 0, a sequence of N → ∞ with an
elliptic curve EN of conductor N such that the rank of EN is at least c log N

log log N .
The first two of these conjectures have been numerically tested extensively

with excellent agreement.
One of the purposes of these notes will be to explain the relationship of

conjectures like these to random matrix theory. Another purpose is to gather in
one place a collection of useful formulas and examples for researchers working
in these fields. We begin with the random matrix side of the story and finish
with the L-function side; there are a few brief comments about finite field zeta-
functions in the middle. Much of the material is taken from [C], [CFKRS],
and [CKRS].

2 Random matrix Theory

2.1 The Classical Groups

In these notes we will be interested in the classical compact matrix groups
with their Haar measures. In the case of the unitary group, this ensemble
coincides with what is called CUE in the physics literature. However, the
orthogonal and symplectic groups we are interested in are different from COE
and CSE in the physics literature. Below we define the groups and give their
Haar measures and indicate some of the statistics we are interested in and
how to compute them.

• The unitary group U(N) is the group of N ×N matrices U with entries
in C for which UU∗ = I where U∗ denotes the conjugate transpose of U ,
i.e. if U = (ui,j), then U∗ = (uj,i).
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• The special orthogonal group SO(N). This is the subgroup of U(N)
consisting of real matrices with determinant 1. SO(2N) leads to the sym-
metry type O+ and SO(2N+1) leads to the symmetry type O−. In these
notes we will deal only with SO(2N) and O+; we will abuse notation
somewhat and refer to this as O.

• The symplectic group USp(2N) is the subgroup of U(2N) of matrices
U for which UZU t = Z where U t denotes the transpose of U and

Z =
(

0 IN

−IN 0

)

Since all of our matrices are unitary, their eigenvalues all have modulus 1.
The N×N matrix A ∈ U(N) has N eigenvalues on the unit circle, eiθ1 , . . . eiθN

with the eigenangles satisfying 0 ≤ θ1 ≤ θ2 · · · ≤ θN < 2π. Thus, the average
spacing between the eigenangles is 2π/N . In the cases of Sp(2N) and SO(2N)
the eigenvalues come in pairs e±iθj with 0 ≤ θ1 ≤ · · · ≤ θN < π and the
average spacing between the eigenangles is π/N . If we want to scale the eige-
nangles to have average spacing 1, then we consider θ̃j = Nθj/π or Nθj/(2π),
whichever is appropriate.

2.2 The Weyl Integration Formula

In order to do analysis on these groups we need to know how to work with the
measures. Weyl’s formula provides a convenient way to reduce the integrations
to ordinary multiple integrals.

The conjugacy classes of N × N unitary matrices can be parametrized
by their N eigenvalues on the unit circle. Any configuration of N points on
the unit circle corresponds to a conjugacy class in U(N). If f(A) = f(θ) =
f(θ1, . . . θN ) is a symmetric function of N variables, then Weyl’s formula for
the Haar measure gives∫

U(N)

f(A)dAU(N) =
1

(2π)NN !

∫
[0,2π]N

f(θ)
∏

1≤j<k≤N

|eiθj − eiθk |2 dθ1 . . . dθN

where dAU(N) is the Haar measure. Similarly, on Sp(2N) and SO(2N) we have
respectively

∫
Sp(N)

f(A)dASp(2N) =
2N2

πNN !

∫
[0,π]N

f(θ)
∏
j<k

(cos θj−cos θk)2
N∏

j=1

sin2 θj

N∏
j=1

dθj ;

∫
SO(2N)

f(A)dASO(2N) =
2(N−1)2

πNN !

∫
[0,π]N

f(θ)
∏
j<k

(cos θj − cos θk)2
N∏

j=1

dθj .

For example, if you wanted to compute the average of the square of the
absolute value of the trace of 3 × 3 unitary matrices you would compute the
integral
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1
6(2π)3

∫ 2π

0

∫ 2π

0

∫ 2π

0

|eiθ1 + eiθ2 + eiθ3 |2

|eiθ1 − eiθ2 |2|eiθ1 − eiθ3 |2|eiθ2 − eiθ3 |2 dθ1 dθ2 dθ3;

which equals 1.

Alternate formulation of the Haar measure

The Weyl formulas above are especially useful for computing moments of char-
acteristic polynomials, as we shall soon see. For computing “local statistics”
such as the neighbor spacing, especially in the large N limit, it is useful to
have the Weyl formulas for the Haar measures written in an alternate form.

Let

LU(N)(θj , θk) = exp
(−i(N−1)(θj−θk)

2

) N−1∑
n=0

ein(θj−θk) =
sin N(θj−θk)

2

sin θj−θk

2

LSp(2N)(θj , θk) = 2
N∑

n=1

sin nθj sin nθk

=
sin(N + 1

2 )(θj − θk)

2 sin θj−θk

2

− sin(N + 1
2 )(θj + θk)

2 sin θj+θk

2

and

LSO(2N)(θj , θk) = 1 + 2
N−1∑
n=1

cos nθj cos nθk

=
sin(N − 1

2 )(θk − θk)

2 sin θj−θk

2

+
sin(N + 1

2 )(θj + θk)

2 sin θj+θk

2

.

Then

dAU(N) =
1

(2π)NN !
det

N×N
(LU(N)(θj , θk))

N∏
j=1

dθj

dASp(2N) =
1

πNN !
det

N×N
(LSp(2N)(θj , θk))

N∏
j=1

dθj

dASO(2N) =
1

πNN !
det

N×N
(LSO(2N)(θj , θk))

N∏
j=1

dθj

A key thing to note is that since

lim
N→∞

N sin x
N = sin x

it follows that
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lim
N→∞

1
Nn

det
n×n

LU(N)

(
2πxj

N
,
2πxk

N

)
= det

n×n

(
sin π(xj − xk)

π(xj − xk)

)
.

Similarly,

lim
N→∞

1
Nn

det
n×n

LSp(2N)

(πxj

N
,
πxk

N

)
= det

n×n

(
sin π(xj − xk)

π(xj − xk)
− sin π(xj + xk)

π(xj + xk)

)

and

lim
N→∞

1
Nn

det
n×n

LSO(2N)

(πxj

N
,
πxk

N

)
= det

n×n

(
sin π(xj − xk)

π(xj − xk)
+

sin π(xj + xk)
π(xj + xk)

)
.

2.3 Four Statistics

In these notes we are particularly interested in theorems and conjectures about
moments and values of characteristic polynomials of random matrices and L-
functions (these represent a “global” perspective) and we are also interested in
things like spacing of consecutive eigenvalues and zeros (these represent a “lo-
cal” perspective). In this section we describe some local statistics of interest.
Note that in the physics literature “n-level density” and “n-correlation” for
GUE, GOE, and GSE are not distinguished because the associated measures
are rotationally invariant. Here, however, the distinction is important.

There is a simple combinatorial relation (described in section 2.6) between
neighbor-spacing statistics and correlation statistics.

For the matrix groups U(N), SO(2N), and Sp(2N) we are interested in
the statistics “nearest neighbor” and “n-level correlation” are the same for
all three groups whereas “n-level density” and “jth eigenvalue” are different
for all three groups. In the physics literature these statistics are different for
all three matrix ensembles GUE, GOE, and GSE. Now we describe these
statistics.

Suppose we have a sequence T = {TN}∞N=1 of N -tuples of numbers TN =
(tN,1, tN,2, . . . , tN,N ) where tN,1 ≤ tN,2 ≤ · · · ≤ tN,N and such that tN,N −
tN,1 ∼ N as N → ∞, so that the average spacing is 1.

• The n-level density of T is W (x1, . . . xn) means that

lim
N→∞

∑
(i1,...in),ij≤N

ij �=ik

f(tN,i1 , . . . tN,in
)

=
∫

Rn

f(x1, . . . , xn)W (x1, . . . , xn) dx1, . . . , dxn .

for any compactly supported smooth symmetric function f : R
n → C.

• The j-th lowest zero density is νj(x) means that for any compactly
supported smooth function f : R → C

lim
N→∞

1
N

∑
n≤N

f(tn,j) =
∫ ∞

0

f(x)νj(x) dx .
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• The consecutive spacing density or nearest neighbor density is µ(x)
means that for any compactly supported smooth function f : R

n → C we
have

lim
N→∞

1
N

∑
i≤N−1

f(tN,i+1 − tN,i) =
∫ ∞

0

f(x)µ(x) dx .

Wigner conjectured that µ(x) is equal to π
2 xe−

π
4 x2

. This conjecture, which
is very accurate for small x, is known as Wigner’s surmise.

• The n-correlation density is V (x1, . . . , xn) means that for any smooth
symmetric function f that depends only on the differences of the variables
(i.e. f(x1+u, . . . , xn+u) = f(x1, . . . , xn) for all u), and is rapidly decaying
on the hyperplane Pn : {(x1, . . . , xn :

∑
xi = 0}, we have, as N → ∞,

lim
N→∞

1
N

∑
ti1

,...tin
∈TN

ij �=ik

f(ti1 , . . . tin
)

=
∫

Pn

f(x1, . . . , xn)V (x1, . . . , xn) dx1 . . . dxn−1

as N → ∞. The spacing and n-correlation densities are universal, i.e. the same
for each of O, Sp, and U, whereas the n-level and j-th lowest zero densities
depend on the symmetry type.

2.4 Formulas for the Density Functions

In this section we compile the formulas for the density functions of the statis-
tics described in the last section. In the next two sections we describe some
of the computations leading to these formulae.

The 1-level density functions are

W (O)(x) = 1 +
sin 2πx

2πx
,

W (Sp)(x) = 1 − sin 2πx

2πx
,

W (U)(x) = 1 .

• The n–level density is

Wε(x1, . . . , xn) = det
n×n

(
sin π(xi − xj)

π(xi − xj)
− ε

sin π(xi + xj)
π(xi + xj)

)

where ε = 0 for U; ε = 1 for Sp; ε = −1 for O+.
• The lowest zero density is ν1(x) where

ν1(x) = − d

dx

∞∏
j=0

(1 − λj(x)) U ;
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ν1(x) = − d

dx

∞∏
j=0

(1 − λ2j+1(2x)) Sp ;

ν1(x) = − d

dx

∞∏
j=0

(1 − λ2j(2x)) O ,

where 1 ≥ λ0(x) ≥ λ1(x) · · · ≥ 0 are the eigenvalues of the integral equa-
tion ∫ x/2

−x/2

sin π(t − u)
π(t − u)

f(u) du = λ(x)f(t)

• The consecutive spacing density is

µ(x) =
d2

dx2

∞∏
j=0

(1 − λj(x)) .

• The n–correlation density is V (x1, . . . , xn) = W0(x1, . . . , xn),

2.5 Gaudin’s Lemma

The critical device for calculating the density functions for the “local” statis-
tics is due to Gaudin and is described in this section.

Associated to each N ×N unitary matrix A are its N eigenvalues exp(iθj)
where 0 ≤ θ1 ≤ · · · ≤ θN ≤ 2π. We let X(A) denote this sequence of θ. We
integrate a function F (A) over U(N) by parametrizing the group by the θi

and using Weyl’s formula to convert the integral into an N -fold integral over
the θi.

Often one wants to integrate with respect to Haar measure over a group G
a function f̃(A) = f̃(θ1, . . . , θN ) of N variables that is “lifted” from a function
f of n variables:

f̃(θ1, . . . , θN ) =
∑

1≤i1<i2<···<in≤N

f(θi1 , . . . , θin
)

where the sum is over all possible n-tuples (i1, . . . , in) of distinct integers
between 1 and N . Gaudin’s lemma gives a simplification of this computation
from an N -fold integral to an n-fold integral. Define the measure dAN,U(n) on
U(n) by

dAN,U(n) =
1

n!(2π)n
det
n×n

(LU(N)(θj , θk))
n∏

j=1

dθj ,

the measure dA2N,Sp(2n) on Sp(2n) by

dA2N,Sp(2n) =
1

n!πn
det
n×n

(LSp(2N)(θj , θk))
n∏

j=1

dθj ,
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and the measure dA2N,SO(2n) on SO(2n) by

dA2N,SO(2n) =
1

n!πn
det
n×n

(LSO(2N)(θj , θk))
n∏

j=1

dθj ,

Then Gaudin’s Lemma asserts that∫
U(N)

f̃(A)dAU(N) =
∫

U(n)

f(A)dAN,U(n)

and ∫
Sp(2N)

f̃(A)dASp(2N) =
∫

Sp(2n)

f(A)dA2N,Sp(2n)

and ∫
SO(2N)

f̃(A)dASO(2N) =
∫

SO(2n)

f(A)dA2N,SO(2n)

One way to view Gaudin’s Lemma is just as a collection of integration
formulas; for example

(N

n

) ∫
[0,2π]N−n

det
N×N

(SN (θj − θk))
dθn+1 . . . dθN

(2π)NN !
= det

n×n
(SN (θj − θk))

1
(2π)nn!

where SN (x) = (sin Nx/2)/(sin x/2).
We illustrate the utility of Gaudin’s formula by computing the n-level

density function for U(N). Let f(x1, . . . , xn) be a suitable test function. To
compute the n-level density we need to evaluate

lim
N→∞

∫
U(N)

∑
(i1,...,in)

ij �=ik

f
(

Nθi1
2π , . . . ,

Nθin

2π

) ∏
j<k

|eiθk − eiθj |2 dθ1 . . . dθN

where we have rescaled the eigenangles of the matrix A ∈ U(N) so that they
have mean spacing 1. The sum over tuples (i1, . . . , in) with the ij distinct is
n! times the sum over ordered tuples 1 ≤ i1 < i2 < · · · < iN ≤ N . Thus by
Gaudin’s lemma and after using the new expression for the Haar measure and
changing variables θj → 2πxj/N , the above is equal to

lim
N→∞

1
Nn

∫
[0,N ]n

f(x1, . . . , xn) det
n×n

LU(N)(2πxj/N, 2πxk/N)
n∏

j=1

dxj .

Thus, our integral is

=
∫

Rn

f(x1, . . . , xn) det
n×n

(
sin π(xj − xk)

π(xj − xk)

)
dx1 . . . dxn,

so that WU,n(x1, . . . , xn) = detn×n

(
sin π(xj−xk)

π(xj−xk)

)
. Similar calculations lead to

the density functions for Sp(2N) and SO(2N).
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As a second example we sketch the computation of the pair–correlation
statistic for each group. Let Gε(N) stand for U(N) if ε = 0, Sp(2N) if ε = 1,
and SO(2N) if ε = −1. Let f(x, y) = f(y, x) = g(x − y) where g is even,
smooth, and compactly supported (or of rapid decay). To compute the pair-
correlation statistic for the Gε we need to evaluate

lim
N→∞

1
N

∫
G(N)

∑
i1,i2∈{1,...,N}

i1 �=i2

f
(

Nθi1
(2−|ε|)π ,

Nθi2
(2−|ε|)π

)
dAG(N).

By Gaudin’s lemma and a change of variables, this is

= lim
N→∞

1
N3

∫ N

0

∫ N

0

g(x1 − x2) det
2×2

(
LG(N)(

(2−|ε|)πxj

N , (2−|ε|)πxk

N )
)

dx1 dx2.

For large N ,

1
N2

det
2×2

(
LG(N)(

(2−|ε|)πxj

N , (2−|ε|)πxk

N )
)
≈

det

(
1 − ε sin 2πx1

2πx1

sin π(x1−x2)
π(x1−x2)

− ε sin π(x1+x2)
π(x1+x2)

sin π(x1−x2)
π(x1−x2)

− ε sin π(x1+x2)
π(x1+x2)

1 − ε sin 2πx2
2πx2

)
.

Now let u = x1 − x2 and v = x2 in the double integral. Then the double
integral is asymptotically

1
N

∫ N

−N

g(u)
∫ max{N,N−u}

min{0,−u}
det

(
1 − ε sin 2π(u+v)

2π(u+v)
sin πu

πu − εsin π(u+2v)
π(u+2v)

sin πu
πu − ε sin π(u+2v)

π(u+2v) 1 − ε sin 2π(u+v)
2π(u+v)

)
dv du.

The integrals with respect to v of the terms with a sin(u + v) or sin(u + 2v)
will be bounded. The other terms are constant with respect to v. Since the
length of the integration in the v-integral is N − |u|, our expression is

∼
∫ N

−N

g(u)
(

1 − |u|
N

)
det

(
1 sin πu

πu
sin πu

πu 1

)
du

→
∫ ∞

−∞
g(u) det

(
1 sin πu

πu
sin πu

πu 1

)
du.

Finally, the last expression is

=
1
2

∫
x1+x2=0

f(x1, x2) det

(
1 sin π(x1−x2)

π(x1−x2)
sin π(x1−x2)

π(x1−x2)
1

)
dx1.

Similarly, in computing the n-correlation statistic we are led to consider

1
N

∫
. . .

∫
[0,N ]n

f(x1, . . . , xn) det
n×n

(
sin π(xj − xk)

π(xj − xk)
− ε

sin π(xj + xk)
π(xj + xk)

)
dx1. . . dxn

as N → ∞.
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2.6 Some Notation from Katz-Sarnak
and a Combinatorials Identity

The purpose of this section is to explain some notation from Katz-Sarnak and
to give a combinatorial lemma which shows how to pass between neighbor
spacing statistics and correlation statistics. Let a ≥ 0 be an integer and s ≥ 0
real. Let G(N) denote one of the groups U(N), SO(2N) or Sp(2N) and for
A ∈ G(N) let X(A) be the sequence X(1) ≤ X(2) ≤ . . . X(N) be the sequence
of eigenangles in increasing order (from 0 to 2π for U(N) and from 0 to π for
SO(2N) or Sp(2N). Define

Sep(a)(s) := #{(i, j) : 1 ≤ i < j ≤ N, j − i = a + 1, X(j) − X(i) = s}
and

Clump(a)(s) := {1 ≤ i0 < i1 < · · · < ia+1 ≤ N : X(ia+1) − X(i0) = s}.
Clearly Sep is related to neighbor spacing statistics and Clump is related to
correlation statistics. Their relationship is given by

Clump(a)(s) =
∑
b≥a

(
b

a

)
Sep(b)(s).

This leads to the identities between generating functions:
∞∑

a=0

Clump(a)(s)T a =
∞∑

b=0

Sep(b)(s)(T + 1)b

and ∞∑
b=0

Sep(b)(s)T b =
∞∑

a=0

Clump(a)(s)(T − 1)a

Katz and Sarnak further define

Sep(a, f) := Sep(a, f,N,X) =
∫

f(s)dSep(a, s)

for a one variable integrable function f . From this definition, it is an easy
matter to scale the sequence X so as to have mean spacing 1 (replace X(A)
by NX(A)/(2π) when G(N) = U(N), for example); then integrate over G(N)
with the Haar measure, divide by N and let N → ∞ to obtain the ath neigh-
bor spacing statistic. Similarly with Clump and the a-correlation function.
Katz and Sarnak also define these statistics for vectors a and multi-variable
integrable functions f .

2.7 First Eigenvalue and Neighbor Spacings

We sketch some of the ideas needed to compute the density functions for
these statistics. (This is taken from Mehta’s book.) Initially, we work with the
unitary group, for which the measure is rotationally invariant. Let
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BN (α) =
∫

[α,2π−α]N
dAU(N)

so that BN (α) is the measure of the set of unitary N × N matrices with all
eigenangles in [α, 2π − α]. Now we use the fact that dAU(N) is essentially the
square of a Vandermonde determinant:

(2π)NN !dAU(N) =
∏

1≤j<k≤N

|eiθk − eiθj |2 =
∏

1≤j<k≤N

(eiθk − eiθj )(e−iθk − e−iθj )

=
∣∣∣det

(
ei(j−1)θk

)∣∣∣2 .

Now we use Gram’s identity in the form: for an interval S and functions φ,

1
N !

∫
SN

| det
N×N

(φj(xk))|2 dx1 . . . dxN = det
N×N

(∫
S

φj(x)φk(x) dx

)
.

(By the way, Gram’s formula with S = [0, 2π] and φj(x) = ei(j−1)x gives a
quick proof that the Haar measure for the unitary group has total mass 1.)
Thus,

BN (α) =
1

(2π)N
det

N×N

(∫ 2π−α

α

ei(k−j)y dy

)

= det
N×N

(
δjk − 1

2π

∫ α

−α

ei(k−j)y dy

)

This determinant is just the characteristic polynomial, evaluated at 1, of the
matrix A = (ajk) with entries ajk = 1

2π

∫ α

−α
ei(k−j)y dy and so is equal to∏N

j=1(1 − λj,N (α)) where the λj,N (α) are the eigenvalues of A. It is easy to
check that the eigenvalues of A are the same as the eigenvalues of the integral
operator

(Kψ)(x) =
1
2π

∫ α

−α

N−1∑
j=0

eij(x−y)ψ(y) dy

which acts on the N -dimensional vector space of trigonometric polynomials
of degree N − 1; an eigenvector v = (v0, . . . vN−1) of A with eigenvalue λ cor-
responds to an eigenfunction ψ(x) =

∑N−1
j=0 vje

ijx with the same eigenvalue.
The kernel function

N−1∑
j=0

eij(x−y) = LU(N)(x, y)

satisfies

lim
N→∞

LU(N)(2πx/N, 2πy/N) =
sin π(x − y)

π(x − y)
.
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Thus, we are led to consider the eigenvalues of the integral equation with
the kernel function sin π(x−y)

π(x−y) . Then it can be deduced (see [KS] for the details
of the limiting process) that

B(α) := lim
N→∞

BN (Nα/(2π)) =
∞∏

n=1

(1 − λn(α))

where the λn(α) are the eigenvalues of the integral operator with kernel
sin π(x−y)

π(x−y) on the interval [−α, α]. This formula gives a rapidly converging
infinite product for the desired density function. See Mehta [Meh] for tables,
graphs and more information about these functions. The function B(α) is the
probability that no rescaled eigenvalues are smaller than α in absolute value.
Then it is a simple matter to conclude that the probability of the smallest
eigenvalue being α is −B′(α) and the probability density function for the
nearest neighbor spacing is B′′(α).

This argument works for the unitary group because of the rotational in-
variance of the measure. However, we have already pointed out that the near-
est neighbor spacing can be determined combinatorially from the correlation
functions and that the correlation functions are the same for all three of our
G(N). Therefore, this calculation gives the nearest neighbor spacing statistic
for all three groups.

For the lowest eigenvalue these calculations can be carried out for the other
groups using the kernels sin π(x−y)

π(x−y) − ε sin π(x+y)
π(x+y) .

2.8 The Selberg Integral

For computing global statistics such as moments of characteristic polynomials
we require Selberg’s integral, which is a generalization of the Euler’s beta-
integral. There are many versions of Selberg’s integral; three of them follow
(see [Meh]).

∫ 1

0

. . .

∫ 1

0

|∆(x)|2γ
n∏

j=1

xα−1
j (1 − xj)β−1 dx1 . . . dxn

=
n−1∏
j=0

Γ (1 + γ + γj)Γ (α + jγ)Γ (β + jγ)
Γ (1 + γ)Γ (α + β + (n + j − 1)γ)

for �α > 0,�β > 0,�γ > −min( 1
n , �α

n−1 , �β
n−1 ). Here

∆(x) =
∏

1≤j<�≤n

(xj − x�).

Alternatively,
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∫ 1

−1

. . .

∫ 1

−1

∏
1≤i<j≤N

|xi − xj |2γ
n∏

j=1

(1 − xj)α−1(1 + xj)β−1dxj

= 2γn(n−1)+n(α+β−1)
n−1∏
j=0

Γ (1 + γ + jγ)Γ (α + jγ)Γ (β + jγ)
Γ (1 + γ)Γ (α + β + γ(n + j − 1))

.

Another version has
∫ ∞

0

. . .

∫ ∞

0

|∆(x)|2γ
n∏

j=1

xα−1
j (1 + x)−α−β−2γ(n−1)

n∏
j=1

dxj

=
n−1∏
j=0

Γ (1 + γ + γj)Γ (α + jγ)Γ (β + jγ)
Γ (1 + γ)Γ (α + β + (n + j − 1)γ)

.

2.9 Characteristic Polynomials of Random Matrices

In this section we describe the properties of characteristic polynomials of
unitary matrices, expressing things in a way that highlights the connection
with number theory. You may find it helpful to refer to section 4 for the basic
properties of L-functions.

Let
Λ(s) = ΛA(s) = det(I − As)

denote the characteristic polynomial of an N × N matrix A. We want to
compare characteristic polynomials with L-functions, so here we outline some
of the relevant properties of these characteristic polynomials.

If we expand Λ(s), we obtain

Λ(s) =
N∑

n=0

ansn,

which is analogous to the Dirichlet series representation for L-functions.

• Analytic continuation: Since Λ(s) is a polynomial, it is an entire function.
• Functional equation: Since A is unitary, we have

Λ(s) = (−1)NsN det Adet(I − A†s−1),

and so, writing
det A = eiφ

(where unitarity implies that φ ∈ R), we have

Λ(s) = (−1)NsNeiφΛ(1
s ).

This plays the same role for Λ(s) as the functional equation for L-functions:
it represents a symmetry with respect to the unit circle (s = reiα → 1

s =
1
r e−iα).
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As just indicated, the critical line corresponds to the unit circle, and fur-
thermore, the half-plane to the right of the critical line corresponds to the
interior of the unit circle.

• Critical values: The critical point for Λ(s) is s = 1 = ei·0, and Λ(1) is the
critical value.

• Location of zeros: Since A is unitary, its eigenvalues all have modulus 1,
so the zeros of Λ(s) lie on the unit circle.

• Average spacing of zeros: Since the N × N matrix A has N eigenvalues
on the unit circle, the average spacing between zeros of ΛA(s) is 2π/N .
When modeling a family of L-functions, we choose N as a function of the
conductor of L(s) so that the L-function and the characteristic polynomial
have the same average spacing between their zeros.

• Approximate functional equation

N∑
n=0

ansn = (−1)Neiφ
N∑

n=0

ansN−m

and so
an = (−1)NeiφaN−n.

Hence, when N is odd, we have

Λ(s) =

N−1
2∑

n=0

ansn + (−1)NeiφsN

N−1
2∑

n=0

ans−n,

which corresponds to the approximate functional equation for L-functions.

When N is even, there is an additional term: aN
2

s
N
2 .

The above discussion applies to any unitary matrix. We also consider ma-
trices which, in addition to being unitary, are also either symplectic or orthogo-
nal. We use these three ensembles of matrices to model families of L-functions.
While the notion of “family of L-functions” has not yet been made precise,
we give several natural examples in section 4. Associated to each family is
a “symmetry type” which identifies the matrix ensemble which will be used
to model the family. This correspondence is most easily seen in terms of the
sign of the functional equation, which is analogous to the determinant of the
matrix. If A is unitary symplectic, then detA = 1 (i.e. φ = 0), and if A is
orthogonal, then detA = ±1. Correspondingly, the functional equations for
L-functions with unitary symmetry involve a (generally complex) phase fac-
tor, whereas for L-functions with symplectic symmetry this phase factor is
unity, and in the case of orthogonal symmetry it is either +1 or −1.

2.10 Moments of Characteristic Polynomials

Keating and Snaith [KSn1] and [KSn2] calculated exact formulas for the mo-
ments of characteristic polynomials of our ensembles for the purpose of com-
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paring with moments of families of L-functions. These are calculated from
Weyl’s formulas together with appropriate uses of Selberg’s integral formula.

MU(N)(λ) =
∫

U(N)

|det(I − Aeit))|2λ dA

=
N∏

j=1

Γ (j)Γ (j + 2λ)
Γ (j + λ)2

,

MSp(2N)(λ) =
∫

Sp(2N)

|det(I − A)|λ dA

= 22Nλ
N∏

j=1

Γ (1 + N + j)Γ (1/2 + λ + j)
Γ (1/2 + j)Γ (1 + λ + N + j)

,

MSO(2N)(λ) =
∫

SO(2N)

|det(I − A)|λ dA

= 2Nλ
N∏

j=1

Γ (N + j − 1)Γ (λ + j − 1/2)
Γ (j − 1/2)Γ (λ + j + N − 1)

.

In the first formula, t is any real number and the right side is independent
of t. The right side of this first formula can be re-written in the case λ is an
integer k as a polynomial in N :

g(k,N) :=
(N + 1)(N + 2)2 . . . (N + k)k(N + k + 1)k−1 . . . (N + 2k − 1)

1 · 22 · 33 . . . kk(k + 1)k−1 . . . (2k − 1)
.

For fixed k, this is asymptotic to

Nk2

1 · 22 · 33 . . . kk(k + 1)k−1 . . . (2k − 1)
=

gk

k2!
Nk2

as N → ∞. Keating and Snaith identified the number gk as the critical con-
stant that was missing from number theorist’s attempts to formulate a conjec-
ture for the 2kth moment of the Riemann zeta-function. We will see that the
role of N is played by log T

2π in the case of the zeta-function. Similar remarks
apply to the moments for the other groups and their relation to moments of
families of L-functions.

2.11 Lower Order Terms and Permutation Sums

The polynomial g(k,N) above can be expanded and expressions for the lower
order terms in N explicitly displayed; however, it transpires that this is not
a good way to approach lower order terms for moments of L-functions. For
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the more detailed analysis of lower order terms in our moment formulas for
L-functions we need a different method than Selberg’s integral. Basically, it
is necessary to consider shifted moments and to look at a kind of additive
reformulation of g(k,N).

The formulas we arrive at are slightly complicated but can be simplified
through some integral formulas which we relate here. Here is an example of
one of our formulas. (Recall that ΛA(s) = det(I − As).)∫

U(N)

ΛA(e−α)ΛA(e−β)ΛA∗(e−γ)ΛA∗(e−δ) dAN

= Z(α, β, γ, δ) + eN(α+γ)Z(−γ, β,−α, δ) + eN(α+δ)Z(−δ, β, γ,−α)
+eN(β+γ)Z(α,−γ,−β, δ) + eN(β+δ)Z(α,−δ, γ,−β)
+eN(α+β+γ+δ)Z(−γ,−δ,−α,−β)

where

Z(α, β, γ, δ) = z(1 + α + γ)z(1 + α + δ)z(1 + β + γ)z(1 + γ + δ)

with z(x) = 1/(1 − ex).
We will see that an analogous formula (with error term) holds for the

shifted fourth moment of the zeta-function, but with z(x) replaced by ζ(1+x)
and with N replaced by log t

2π and with the inclusion of an arithmetic factor
in each term.

Notice that the main term here consists of six terms. The sum of these
six terms can be expressed as the residue of a four-fold contour integral as
described below.

Suppose F (a; b) = F (a1, . . . , ak; b1, . . . , bk) is a function of 2k variables,
which is symmetric with respect to the first k variables and also symmetric
with respect to the second set of k variables. Suppose also that F is regular
near (0, . . . , 0). Suppose further that f(s) has a simple pole of residue 1 at
s = 0 but is otherwise analytic in a neighborhood about s = 0. Let

G(a1, . . . , ak; b1, . . . bk) = F (a1, . . . ; . . . , bk)
k∏

i=1

k∏
j=1

f(ai − bj).

If for all 1 ≤ i, j ≤ k, αi − αj+k is contained in the region of analyticity of
f(s) then

∑
σ∈Ξ

G(ασ(1), . . . , ασ(k);ασ(k+1) . . . ασ(2k)) =
(−1)k

k!2
1

(2πi)2k
×

∮
· · ·

∮
G(z1, . . . , zk; zk+1, . . . , z2k)∆(z1, . . . , z2k)2∏2k

i=1

∏2k
j=1(zi − αj)

dz1 . . . dz2k,

where one integrates about small circles enclosing the αj ’s, and where Ξ

is the set of
(
2k
k

)
permutations σ ∈ S2k such that σ(1) < · · · < σ(k) and

σ(k + 1) < · · · < σ(2k).
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The above applies to the Unitary case. The next formula is useful in the
Symplectic and Orthogonal cases.

Suppose F is a symmetric function of k variables, regular near (0, . . . , 0),
and f(s) has a simple pole of residue 1 at s = 0 and is otherwise analytic in
a neighborhood of s = 0, and let

G(a1, . . . , ak) = F (a1, . . . , ak)
∏

1≤i≤j≤k

f(ai + aj)

or
G(a1, . . . , ak) = F (a1, . . . , ak)

∏
1≤i<j≤k

f(ai + aj).

If αi + αj are contained in the region of analyticity of f(s) then

∑
εj∈{−1,1}

G(ε1α1, . . . , εkαk) =
(−1)k(k−1)/2

(2πi)k

2k

k!

∮
· · ·

∮
G(z1, . . . , zk)

∆(z2
1 , . . . , z2

k)2
∏k

j=1 zj∏k
i=1

∏k
j=1(zi − αj)(zi + αj)

dz1 · · · dzk,

and

∑
εj∈{−1,1}

(
k∏

j=1

εj)G(ε1α1, . . . , εkαk) =
(−1)k(k−1)/2

(2πi)k

2k

k!

∮
· · ·

∮
G(z1, . . . , zk)

∆(z2
1 , . . . , z2

k)2
∏k

j=1 αj∏k
i=1

∏k
j=1(zi − αj)(zi + αj)

dz1 · · · dzk,

where the path of integration encloses the ±αj ’s.

3 Zeta and L-functions Over Finite Fields

In transition to our discussion of L-functions we mention briefly the finite
field analogues. These zeta-and L-functions are polynomials with all roots on
a circle and so in fact are characteristic polynomials of matrices (orthogonal
and symplectic). Deligne’s equidistribution theorem allowed Katz and Sarnak
to calculate local statistics for these zeros, which turn out to be the same as
the statistics for the matrix groups, after scaling and taking large N limits.

Sarnak and Katz developed their theory of symmetry types of families of
L-functions by studying zeta and L-functions over finite fields. In this context
they were able to rigorously prove that the zeros of the families obeyed the
statistics of the random matrix models; the relevant random matrix group
depending on the “geometric monodromy” of the family of L-functions. We
give a brief overview of some of their results.
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To begin with consider the case of curves over finite fields. Let Fq be
the finite field with q elements. Consider a homogeneous form F (X,Y, Z) in
three variables of degree d over Fq. This corresponds to a curve of genus
g = d(d − 1)/2 provided that F and its partial derivatives have no zeros in
common. The zeta-function for F is

Z(F/Fq, T ) = exp

( ∞∑
n=1

Nn

n
Tn

)

where Nn is the number of solutions of F (X,Y, Z) = 0 in F
3
q (where two

solutions (X,Y, Z) and (X ′, Y ′, Z ′) are the same if (X ′, Y ′, Z ′) = λ(X,Y, Z)
for some λ. Then, Z is a rational function of T of the form P (T )/(1− T )(1−
qT ). Moreover,

P (T ) =
2g∏

j=1

(1 − αjT )

where |αj | =
√

q – this is the Riemann Hypothesis for Z. Writing αj =
√

qeiφj

with 0 ≤ φ1 ≤ φ2 ≤ · · · ≤ φ2g < 2π, we can study the distribution of the
angles φj .

If we suitably normalize the angles and average with respect to all curves
of genus g, then when we take the limit as q → ∞ and then as g → ∞ the
resulting nearest neighbor distribution is the same as for the unitary group.

The lowest lying zero statistic for this collection is identical to that for Sp.
Another example of symmetry type Sp arises from curves of the form

y2 = f(x) where f(x) is monic and square-free.
An example where the orthogonal symmetry type arises is for Dy2 =

x(x−1)(x− t) – quadratic twists of an elliptic curve. Here D is a fundamental
discriminant and t varies

The critical component to their results is Deligne’s equidistribution theo-
rem.

See the book by Katz and Sarnak for more details.

4 L-functions

The definition of L-function which we give below is a slight modification of
what has come to be called the “Selberg class” Let s = σ + it with σ and t
real. An L-function is a Dirichlet series

L(s) =
∞∑

n=1

λn

ns
,

with λn �ε nε for every ε > 0, which has three additional properties.
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• Analytic continuation: L(s) continues to a meromorphic function of finite
order, with at most finitely many poles, and all poles are located on the
σ = 1 line.

• Functional equation: There is a number ε with |ε| = 1, and a function
γL(s) of the form

γL(s) = P (s)Qs
k∏

j=1

Γ (wjs + µj)

where P is a polynomial whose only zeros in σ > 0 are at the poles of
L(s), Q > 0, wj > 0, and �µj ≥ 0, such that

ξL(s) := γL(s)L(s)

is entire, and
ξL(s) = εξL(1 − s),

where ξL(s) = ξL(s).
It is sometimes convenient to write the functional equation in asymmetric
form:

L(s) = εXL(s)L(1 − s),

where XL(s) =
γL(1 − s)

γL(s)
.

• Euler product: For σ > 1 we have

L(s) =
∏
p

Lp(1/ps),

where the product is over the primes p, and

Lp(1/ps) =
∞∑

k=0

λpk

pks
= exp

( ∞∑
k=1

bpk

pks

)
,

where bn � nθ with θ < 1
2 .

Note that L(s) ≡ 1 is the only constant L-function, the set of L-functions
is closed under products, and if L(s) is an L-function then so is L(s + iy)
for any real y. An L-function is called primitive if it cannot be written as a
nontrivial product of L-functions, and it can be shown, assuming Selberg’s
orthonormality conjectures, that any L-function has a unique representa-
tion as a product of primitive L-functions. It is believed that L-functions
only arise from arithmetic objects, such as characters, automorphic forms,
and automorphic representations. Very little is known about L-functions
beyond those cases which have been shown to be arithmetic.
There are several interesting consequences of the above properties, and
many conjectures which have been established in few (or no) cases. We
highlight some of those properties which have random matrix analogues
as described in section 2.8.
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• Location of zeros: Since ξL(s) is entire, L(s) must vanish at the poles of the
Γ -functions in the γL factor. These are known as the trivial zeros of the L-
function. By the functional equation and the Euler product, the only other
possible zeros of L(s) lie in the critical strip 0 ≤ σ ≤ 1. By the argument
principle, the number of nontrivial zeros with 0 < t < T is asymptotically
(W/π)T log T , where W =

∑
wj . The Riemann Hypothesis for L(s) asserts

that the nontrivial zeros of L(s) lie on the critical line σ = 1
2 . The much

weaker (but still deep) assertion that L(s) �= 0 on σ = 1 has been proven
for arithmetic L-functions.

• Average spacing of zeros: By the zero counting result described above, the
average gap between zeros of L(s) with imaginary part T is π/W log T . In
the notation of (1.1.2), the average spacing between the first few zeros of
L(s) is log Q + W +

∑ |�(µj)|.
• Critical values: The value L(1

2 ) is called the critical value of the L-function.
The significance of s = 1

2 is that it is the symmetry point of the functional
equation. The mean values we study in this paper are averages of (powers
of) critical values of L-functions, where the average is taken over a “family”
of L-functions.
Note. If the set {µj} is stable under complex conjugation and the λn are
real, then ε is commonly called the sign of the functional equation. If the
sign is −1 then L(s) has an odd order zero at s = 1

2 ; more generally, if
the sign is not 1 then L( 1

2 ) = 0. When L( 1
2 ) vanishes, it is common to use

the term ‘critical value’ for the first nonzero derivative L(j)( 1
2 ), but in this

paper we use ‘critical value’ to mean ‘value at the critical point.’
• Approximate functional equation and analytic conductor: A standard tool

for studying analytic properties of L-functions is an approximate func-
tional equation for L(s):

L(s) =
∑

1≤n≤x

λn

ns
+ εXL(s)

∑
1≤n≤y

λn

n1−s
+ error term

where xy = (t/2π)2W . The name comes from the fact that the right side
looks like L(s) if x is large, and like εXL(s)L(1 − s) if x is small, which
suggests the asymmetric form of the functional equation. The quantity
(t/2π)2W is called the analytic conductor for this L-function. In general,
there is a conductor associated with a family of L-functions; this conductor
varies “continuously” with the family. Even though the family is often a
discrete family, this is a useful concept; for example, the analytic conductor
is the basic parameter which goes to ∞ in our discussion of moments.

Below we give some specific examples. In each example we try to give an
up-to-date account of what is known about these L-functions, especially with
regard to their moments. In every situation our knowledge of moments is con-
sistent with the conjectures made in [CFKRS] where we give recipes for how
to determine all of the main terms for averages of L-functions over families.
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An amazing fact emerges: when dealing with L-functions, each family has its
own basic harmonic detector which on the surface appears to be very different
from the detectors from other families, yet in the end somehow functions the
same. When trying to prove asymptotic formulas for moments in a family
of L-functions, at each step to a higher moment a new aspect or feature of
the harmonic detector comes into view and assumes center stage yet some-
how conspires to contribute appropriately to the same simple formula that is
analogous to the RMT formulas. Moreover, in studying two different families
but with the same symmetry type, the end formulas, apart from arithmetic
constants, are always the same. We refer the reader to [CFKRS] for a detailed
description of the recipes for these conjectures.

4.1 The Riemann Zeta-function

The Riemann zeta-function is given by

ζ(s) := 1 +
1
2s

+
1
3s

+ · · · =
∞∑

n=1

1
ns

.

The series converges in the half-plane where the real part of s is larger than
1. Riemann proved that ζ(s) has an analytic continuation to the whole plane
apart from a simple pole at s = 1. Moreover, he proved that ζ(s) satisfies a
functional equation which in its symmetric form is given by

ξ(s) := 1
2s(s − 1)π− s

2 Γ
(s

2

)
ζ(s) = ξ(1 − s)

where Γ (s) is the usual Gamma-function. The zeta-function had been studied
previously by Euler and others, but only as a function of a real variable. In
particular, Euler proved that

ζ(s) =
(

1 +
1
2s

+
1
4s

+
1
8s

+ . . .

)(
1 +

1
3s

+
1
9s

+ . . .

)(
1 +

1
5s

+ . . .

)
. . .

=
∏
p

(
1 − 1

ps

)−1

where the infinite product (called the Euler product) is over all the prime
numbers. The product converges when the real part of s is greater than 1 and
is an analytic version of the fundamental theorem of arithmetic, which states
that every integer can be factored into primes in a unique way. The Euler
product implies that there are no zeros of ζ(s) with real part greater than
1; the functional equation implies that there are no zeros with real parts less
than 0, apart from the trivial zeros at s = −2,−4,−6, . . . . Thus, all of the
complex zeros are in the critical strip 0 ≤ �s ≤ 1. The functional equation
shows that the complex zeros are symmetric with respect to the line �s = 1

2 .
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Riemann calculated the first few complex zeros 1
2 +i14.134 . . . , 1

2 +i21.022 . . .
and proved that the number N(T ) of zeros with imaginary parts between 0
and T is

N(T ) =
T

2π
log

T

2πe
+

7
8

+ S(T ) + O(1/T )

where S(T ) = 1
π arg ζ(1/2 + iT ) is computed by continuous variation starting

from arg ζ(2) = 0 and proceeding along straight lines, first up to 2 + iT
and then to 1/2 + iT . Riemann also proved that S(T ) = O(log T ). Note for
future reference that at a height T the average gap between zero heights is
∼ 2π/ log T . Riemann suggested that the number N0(T ) of zeros of ζ(1/2+it)
with 0 < t ≤ T seemed to be about

T

2π
log

T

2πe
;

and then made his conjecture that all of the zeros of ζ(s) in fact lie on the
1/2-line; this is the Riemann Hypothesis.

Weil’s explicit formula

André Weil proved the following formula which is a generalization of Rie-
mann’s formula mentioned above and which specifically illustrates the depen-
dence between primes and zeros. Let h be an even function which is holomor-
phic in the strip |�t| ≤ 1/2+δ and satisfying h(t) = O((1+ |t|)−2−δ) for some
δ > 0, and let

g(u) =
1
2π

∫ ∞

−∞
h(r)e−iur dr.

Then we have the following duality between primes and zeros:

∑
γ

h(γ) = 2h( i
2 )−g(0) log π+

1
2π

∫ ∞

−∞
h(r)

Γ ′

Γ
( 1
4+ 1

2 ir) dr−2
∞∑

n=1

Λ(n)√
n

g(log n).

In this formula, a zero is written as ρ = 1/2 + iγ where γ ∈ C; of course RH
is the assertion that all of the γ are real. Also, von Mangoldt’s function Λ(n)
is equal to log p if n is a power of the prime p and is 0 if n is not a power of a
prime (Λ(1) = 0.) Using this duality Weil gave a criterion for RH: RH if and
only if ∑

γ

h(γ) > 0

for every (admissible) function h of the form h(r) = h0(r)h0(r).

Orthogonality

Deriving statistics for families of L-functions are built around orthogonality
relations. We can consider the Riemann zeta-function ζ(s) (or any L-function
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by itself) as being a “family” in the parameter t where s = σ + it. Then, the
basic orthogonality relation is given by

∫ T

0

mitn−it dt =

{
T if m = n
(m/n)iT −1
i log(m/n) if m �= n

The mean-value theorem of Montgomery and Vaughan asserts that

∫ T

0

∣∣∣∣∣
N∑

n=1

λnnit

∣∣∣∣∣
2

dt =
N∑

n=1

(T + O(n)|λn|2.

Approximate functional equation

Hardy and Littlewood proved what they called an approximate functional
equation for ζ(s):

ζ(s) =
∑

n≤
√

|t|
2π

1
ns

+ χ(s)
∑

n≤
√

|t|
2π

1
n1−s

+ O(|t|1/4−σ)

where χ(s) = χ(1 − s)−1 is the factor from the asymmetric form of the func-
tional equation:

χ(1 − s) = 2(2π)−sΓ (s) cos πs/2.

This formula is useful for proving moment theorems. The analytic conductor
is t/(2π).

General remarks on approximate functional equations

In general, an approximate functional equation is obtained as follows. Suppose
that we have an L-function L(s) =

∑∞
n=1 λnn−s where the series converges

absolutely for σ > 1 which is entire and satisfies the functional equation
L(s) = X(s)L(1−s). Let G(z) be a suitable function which satisfies G(0) = 1
and is analytic in −1 − δ < �z < 1 + δ for some δ > 0. Consider

I(s, Y ) =
1

2πi

∫
(1)

L(s + z)G(z)Y z dz

z

where we are thinking of s having �s ≈ 1/2. On the one hand, we integrate
term-by-term (note that 1 + �s > 1) and have

I(s, x) =
∞∑

n=1

λn

ns
G̃(n/Y )

where
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G̃(r) =
1

2πi

∫
(1)

G(z)r−z dz

z
.

The “suitability” of G is supposed to ensure convergence here. On the other
hand, we move the path of integration to σ = −1, crossing the pole at s = 0
with residue L(s); then we change variables z → −z and use the functional
equation to obtain

I(s,X) = L(s) +
1

2πi

∫
(1)

L(1 − s + z)X(s − z)G(−z)Y −z dz

z
.

Let Hs(z) = X(s−z)G(−z)/X(s) and assume further that H(s, z) is analytic
in the strip −1 − δ < �z < 1 + δ. ( Note that this does not really entail an
additional assumption because X(z) = Az

∏
Γ (wi(1 − z) + µi)/Γ (wiz + µi)

for some wi > 0 and complex µi with �µi ≥ 0. Therefore, the leftmost poles
of X(z) will have real parts ≥ 1.) Integrating term-by-term again we finally
obtain

L(s) =
∞∑

n=1

λn

ns
G̃(n/Y ) + X(s)

∞∑
n=1

λn

n1−s
H̃s(nY ).

The suitability of G is such that the transforms G̃(y) and H̃s(y) should decay
as y → ∞ so that the series converge. Generally speaking these transforms
should be about 1 for small y and about 0 for larger y. In this way, we obtain
our “approximate” functional equations.

Note that this technique works fine for products

L1(s1)L2(s2) . . . Lk(sk)

too.

Moment theorems

The second moment of |ζ(1/2+ it)| was proven by Hardy and Littlewood and
refined by Ingham. It states that

1
T

∫ T

0

|ζ(1/2 + it)|2 dt = log
T

2π
+ 2γ − 1 + O(T 1/2).

The exponent on the error term has been improved to slightly less than 1/3.
If we consider the shifted moment we get a more general statement: Sup-

pose that |α|, |β| � 1/ log T . Then
∫ T

1

ζ(1/2 + it + α)ζ(1/2 − it − β) dt

=
∫ T

1

(
ζ(1 + α − β) +

(
t

2π

)β−α

ζ(1 + β − α)

)
dt

+O(T 1/2)
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The asymptotics of the fourth power moment was first achieved by Ingham:

1
T

∫ T

0

|ζ(1/2 + it)|4 dt ∼ 1
2π2

log4 T.

Subsequent works of Atkinson and Heath-Brown revealed that

1
T

∫ T

0

|ζ(1/2 + it)|4 dt =
∫ T

0

P2

(
log

t

2π

)
dt + O(T 7/8+ε)

where P2 is a polynomial of degree 4. This polynomial was computed explicitly
by Conrey:

P2(x) =
1

2π2
x4 +

8
π4

(
γπ2 − 3ζ ′(2)

)
x3

+
6
π6

(−48γζ ′(2)π2 − 12ζ ′′(2)π2 + 7γ2π4 + 144ζ ′(2)2 − 2 γ1π
4
)
x2

+
12
π8

(
6γ3π6 − 84γ2ζ ′(2)π4 + 24γ1ζ

′(2)π4 − 1728ζ ′(2)3 + 576γζ ′(2)2π2

+ 288ζ ′(2)ζ ′′(2)π2 − 8ζ ′′′(2)π4 − 10γ1γπ6 − γ2π
6 − 48γζ ′′(2)π4

)
x

+
4

π10

(
−12ζ ′′′′(2)π6 + 36γ2ζ

′(2)π6 + 9γ4π8 + 21γ2
1π8 + 432ζ ′′(2)2π4

+ 3456γζ ′(2)ζ ′′(2)π4 + 3024γ2ζ ′(2)2π4 − 36γ2γ1π
8 − 252γ2ζ ′′(2)π6

+ 3γγ2π
8 + 72γ1ζ

′′(2)π6 + 360γ1γζ ′(2)π6 − 216γ3ζ ′(2)π6

− 864γ1ζ
′(2)2π4 + 5γ3π

8 + 576ζ ′(2)ζ ′′′(2)π4 − 20736γζ ′(2)3π2

− 15552ζ ′′(2)ζ ′(2)2π2 − 96γζ ′′′(2)π6 + 62208ζ ′(2)4
)

The point of displaying this formula is for comparison with how simple the
formula becomes when recast in terms of shifts below. We note that numeri-
cally,

P2(x) = 0.05066x4 + 0.69886x3 + 2.42596x2 + 3.22790x + 1.312424

Following work of Motohashi [M2] it was discovered how to put the shifted
mean value of ζ(s) into a nice symmetric form. Let s = 1/2 + it and let
α, β, γ, δ � 1/ log T . Then

∫ T

0

ζ(s + α)ζ(s + β)ζ(1 − s + γ)ζ(1 − s + δ) dt

=
∫ T

0

(Z(α, β, γ, δ) + τ−α−γZ(−γ, β,−α, δ) + τ−α−δZ(−δ, β, γ,−α)

+τ−β−γZ(α,−γ,−β, δ) + τ−β−δZ(α,−δ, γ,−β)
+τ−α−β−γ−δZ(−γ,−δ,−α,−β)) dt + O(T 7/8)
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where τ =
√

t
2π and

Z(α, β, γ, δ) =
ζ(1 + α + γ)ζ(1 + α + δ)ζ(1 + β + γ)ζ(1 + γ + δ)

ζ(2 + α + β + γ + δ)
.

This formula should be compared with the analogous formula for the shifted
fourth moment of unitary characteristic polynomials presented in section 2.11.

Conrey and Ghosh [CGh] conjectured that
∫ T

0

|ζ(1/2 + it)|6 dt ∼ 42
∏
p

(
1 − 1

p

)4 (
1 +

4
p

+
1
p2

)
log9 T

9!

and in general that
∫ T

0

|ζ(1/2 + it)|2k dt ∼ gkak
logk2

T

k2!

where

ak =
∏
p

(
1 − 1

p

)(k−1)2 k−1∑
j=0

(
k − 1

j

)2

p−j

for some integer gk.
Conrey and Gonek [CGo] conjectured that
∫ T

0

|ζ(1/2 + it)|8 dt ∼ 24024
∏
p

(
1 − 1

p

)9 (
1 +

9
p

+
9
p2

+
1
p3

)
log16 T

16!

Keating and Snaith made the key connection with random matrix theory
and conjectured that

gk = k2!
k−1∏
j=0

j!
(j + k)!

.

Conrey, Farmer, Keating, Rubinstein, and Snaith [CFKRS1] have found a
way to express all of the lower order terms as well. Their conjecture is

∫ T

0

|ζ(1/2 + it)|2k dt =
∫ T

0

Pk

(
log t

2π

)
dt + O(T

1
2+ε)

as T → ∞, where Pk is the polynomial of degree k2 given by the 2k-fold
residue

Pk(x) =
(−1)k

k!2
1

(2πi)2k

∮
· · ·

∮

G(z1, . . . , z2k)∆(z1, . . . , z2k)2
2k∏

j=1

z2k
j

e
x
2

∑k

j=1
zj−zj+k dz1 . . . dz2k,
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where one integrates over small circles about zi = 0, with

G(α1, . . . , α2k) = Ak(α1, . . . , α2k)
k∏

i=1

k∏
j=1

ζ(1 + αi − αj+k),

and Ak is the Euler product which is absolutely convergent for
∑k

j=1 |αj | +
|βj | < 1/2, defined by Ak(α) =

∏
p

k∏
i=1

k∏
j=1

(
1 − 1

p1+αi−αj+k

)∫ 1

0

k∏
j=1

(
1 − e(θ)

p1/2+αj

)−1 (
1 − e(−θ)

p1/2−αj+k

)−1

dθ.

More generally, with s = 1/2 + it,

∫ T

0

ζ(s + α1) . . . ζ(s + αk)ζ(1 − s + αk+1) . . . ζ(1 − s + α2k) dt

=
∫ T

0

Pk

(
α, log t

2π

)
dt + O(T

1
2+ε),

where Pk(α, x) =

(−1)k

k!2
1

(2πi)2k

∮
· · ·

∮
G(z1, . . . , z2k)∆(z1, . . . , z2k)2

2k∏
j=1

2k∏
i=1

(zj − αi)

e
x
2

∑k

j=1
zj−zj+k dz1. . . dz2k,

with the path of integration being small circles surrounding the poles αi. For
example,

P3(x) = 0.00000570852x9 + 0.00040502x8 + 0.011072x7 + 0.148400x6

+1.04592x5 + 3.98438x4 + 8.607319x3 + 10.274330x2

+6.593913x + .916515.

When |ζ(1/2 + it)|6 is integrated numerically from 0 to 2,350,000 the ratio
between the actual value and the conjectured value is 1.00017.

Pair Correlation of zeros

In 1972, Hugh Montgomery was investigating the spacings between zeros of the
zeta-function in an attempt to solve the class number problem. Montgomery’s
theorem is that, under the assumption of the Riemann Hypothesis, if |α| < 1,
then

F (α, T ) =
1

N(T )

∫ ∞

−∞

∣∣∣∣∣∣
∑
γ≤T

T iαγw(t − γ)

∣∣∣∣∣∣
2

dt = T−2α log T (1+o(1))+|α|+o(1)
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as T → ∞. Here w is a suitable weight function (Montgomery used w(x) =√
2/π4/(4 + x2).) Montgomery conjectured, based on the above and on

conjectures for the distribution of twin primes and other prime pairs that
F (α, T ) = 1 + o(1) for |α| ≥ 1. From this conjecture, he deduced that

∑
2πα
log T <γ−γ′≤ 2πβ

log T

1 ∼ N(T )
∫ β

α

(
1 −

(
sin πu

πu

)2
)

du.

The sum on the left counts the number of pairs 0 < γ, γ′ < T of ordinates of
zeros with normalized spacing between positive numbers 0 < α < β. The inte-
gral on the right is the pair-correlation function from random matrix theory.
It was this fortuitous discovery, made in a conversation between Montgomery
and Freeman Dyson at tea-time at the Institute for Advanced Study, that set
in motion the circle of ideas involving L-functions and RMT.

Higher correlations

In 1996 Rudnick and Sarnak [RS] made some interesting progress on the
GUE conjecture. To explain their result, number the ordinates of the zeros of
ζ(s): 0 < γ1 ≤ γ2 ≤ . . . . Introduce a scaling γ̃ = γ log γ

2π so that the γ̃ have
asymptotic mean spacing 1. Then Rudnick and Sarnak proved that

lim
T→∞

1
T

∑
γj1

,...,γjn
≤T

jm �=jn

f(γ̃j1 , . . . , γ̃jn
) =

∫
Pn

WU,n(x)f(x) dx

where WU,n(x) = WU,n(x1, . . . , xn) is the n-correlation function for the
Gaussian Unitary Ensemble and where f is any function satisfying (1)
f(x + t(1, . . . , 1)) = f(x) for t ∈ R; (2) f is smooth and symmetric in
the variables and decays rapidly as x → ∞ in the hyperplane Pn :=
{(x1, . . . , xn) :

∑n
j=1 xj = 0}; (3) the Fourier transform f̂(u) of f is sup-

ported in
∑n

j=1 |uj | < 2. The condition (1) assures that f is a function of the
differences of the γj . This result agrees with RMT.

4.2 Dirichlet L-functions

In order to see the full analogy between L-functions and Random Matrix
Theory, it is necessary to consider a variety of families of L-functions with
different symmetry types. The simplest L-function after the ζ-function is the
Dirichlet L-function for the non-trivial character of conductor 3:

L(s, χ−3) = 1 − 1
2s

+
1
4s

− 1
5s

+
1
7s

− 1
8s

+ − . . . .

This can be written as an Euler product
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L(s, χ−3) =
∏

p≡1 mod 3

(1 − p−s)−1
∏

p≡2 mod 3

(1 + p−s)−1,

satisfies the functional equation

ξ(s, χ−3) :=
(

π
3

)− s
2 Γ ( s+1

2 )L(s, χ3) = ξ(1 − s, χ−3),

and is expected to have all of its non-trivial zeros on the 1/2-line. A similar
construction works for any primitive Dirichlet character. In general, a Dirichlet
character is a completely multiplicative periodic function χ : N → C; i.e.
χ(mn) = χ(m)χ(n) for all m,n and χ(m + q) = χ(m) for some integer q. It
is the primitive characters which lead to the arithmetic L-functions. We now
describe how to construct the primitive characters. For each q ≥ 1 there are
precisely

ψ(q) =
∑
d|q

µ(d)φ(q/d)

primitive characters to the modulus q. If q has the factorization q = pe1
1 . . . per

r ,
then any primitive character χ mod q has a unique representation as a product
χ = χ1 . . . χr where χj is a primitive character modulo p

ej

j . We now describe
how to construct the primitive characters modulo pe. If p is odd, then the
number of integers less than or equal to pe and relatively prime to pe is given
by φ(pe) = pe−pe−1. These reduced residues modulo pe form a multiplicative
group which is cyclic; let g be a generator of this group (i.e. a primitive root
of pe.) We can specify any character χ modulo pe by saying what the value
of χ(g) is (clearly this value must be a φ(pe) root of unity). The primitive
characters are those for which χ(g) = exp(2πia/φ(pe)) where (a, φ(pe)) = 1.
For p = 2, the reduced residues modulo 2e do not form a cyclic group unless
e = 1 or 2. If e ≥ 3 then the reduced residues are given by ±5j with j =
0, 1, . . . 2e−2. The primitive characters χ modulo 2e are determined by the
value of χ(5) = exp(2πia/2e−2) with 1 ≤ a ≤ 2e−2 odd and by the value
of χ(−1) = ±1. This describes all primitive characters. For each primitive
character χ mod q the Gauss sum is given by

τ(χ) =
q∑

n=1

χ(n)e(n/q).

It satisfies |τ(χ)| =
√

q; we write τ(χ) = εχ
√

q. The Dirichlet L-function is
given by

L(s, χ) =
∞∑

n=1

χ(n)
ns

=
∏
p

(
1 − χ(p)

ps

)−1

for σ > 1. Odd characters are those for which χ(−1) = −1; even characters
have χ(−1) = 1. The functional equation for an even character is

ξ(s, χ) := (π/
√

q)−s/2Γ (s/2)L(s, χ) = εqξ(1 − s, χ).
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For an odd character, the functional equation is

ξ(s, χ) := (π/
√

q)−s/2Γ ((s + 1)/2)L(s, χ) = εqξ(1 − s, χ).

All characters

We have described the primitive characters above. Imprimitive characters arise
in two ways. First, the principal character χ0 modulo p defined by χ0(n) =
0 if p | n and= +1 if p � n is an imprimitive character. Second, a primitive
character modulo pe regarded as a character modulo pf where f > e is an
imprimitive character. Finally, the product of a primitive character with an
imprimitive character is an imprimitive character. Any character χ (primitive
or imprimitive) which satisfies χ(m + q) = χ(m) is called a character modulo
q. There are φ(q) characters modulo q. The analytic conductor is qt/(2π); in
the context of averaging over the characters, the t part is suppressed at that
the conductor is q/(2π).

Orthogonality relations

The basic orthogonality relation is then expressed by: if (mn, q) = 1, then

∑
χ mod q

χ(m)χ(n) =

{
φ(q) if m = n mod q

0 if m �= n mod q

For primitive characters, this takes the shape: if (mn, q) = 1,then
∑�

χ mod q

χ(m)χ(n) =
∑

d|(q,m−n)

φ(d)µ(q/d).

The Polya-Vinogradov inequality asserts that

|
N∑

n=1

χ(n)| � q1/2 log q

for any non-principal character χ mod q.
The large sieve inequality asserts that

∑
q≤Q

q

φ(q)

∑�

χ mod q

∣∣∣∣∣
N∑

n=1

anχ(n)

∣∣∣∣∣
2

≤ (Q2 + N)
N∑

n=1

|an|2.

Pair correlation of zeros

Ali Ozluk, in his thesis [Oz] gave a generalization to Dirichlet L-functions of
Montgomery’s Pair Correlation results. Let
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FK(α,Q) =
1

NK(Q)

∑
q≤Q

1
φ(q)

∑
χ mod q

∣∣∣∣∣
∑

γ

K(
1
2

+ iγ)Qiαγ

∣∣∣∣∣
2

,

where the inner sum is over the imaginary parts γ of zeros of L(s, χ). Here
K(s), is a suitable weight function and NK(Q) =

∑
γ K(1/2 + iγ) is the

normalization factor. The main result of the paper is an asymptotic formula
for FK(α,Q) in the interval |α| < 2. For |α| ≤ 1, the result obtained is
an analogous to Montgomery’s result. For 1 < |α| < 2 Ozluk shows that
Fk(α,Q) = 1 + O(1/ log Q), which supports Montgomery’s conjecture.

Moments

For the second moment Heath-Brown [H-B2] showed that
∑�

χ mod p

|L(1/2, χ)|2 = (p − 1)
(
log

p

8π
+ γ

)
+ 2ζ(1/2)2p1/2 + O(1)

and for the fourth moment, he proved ([H-B3] that

∑�

χ mod p

|L(1/2, χ)|4 =
p − 1
2π2

log4 p + O(log3 p)

in analogy with the second and fourth moments of the Riemann zeta-function.
Here the * indicates that the sum is over primitive characters modulo the
prime p. An analogous formula can be proven in the case of the second moment
for primitive characters modulo a composite number q; however, the analogue
for the fourth moment for all large moduli q has not yet been proven.

A second moment for shifted L-functions averaged over primitive charac-
ters has been proven by Conrey (unpublished); this formula agrees with the
analogous formula for the shifted second moment of unitary characteristic
polynomials:

2
ψ(q)

∑�

χ mod q
χ(−1)=1

L(1/2 + α, χ)L(1/2 + β, χ)

= ζ(1 + α + β)
∏
p|q

(
1 − 1

p1+α+β

)
+

X+(q, α, β)ζ(1 − α − β)
∏
p|q

(
1 − 1

p1−α−β

)
+ O(qε−1/2).

Here

X+(q, α, β) =
4
q

( q

2π

)1−α−β
Γ ( 1

2 − α)Γ ( 1
2 − β) cos π

2 ( 1
2 − α) cos π

2 ( 1
2 − β)

is the factor from the functional equation, as expected.
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4.3 Real primitive characters

A special role is played by the real or quadratic Dirichlet characters. These
we denote by χd where d is a fundamental discriminant: d can be positive
or negative, is either odd, square-free, and congruent to 1 modulo 4, or is 4
times a square-free integer congruent to 2 or 3 modulo 4. Thus, the sequence of
positive fundamental discriminants begins d = 1, 5, 8, 12, 13, 17, 21, 24, 28, . . .
and the sequence of negative fundamental discriminants begins d=-3, -4, -7,
-8, -11, -15, -19,-20, -23, -24, . . . . The character χd only takes on the values
+1, 0,−1; it is primitive with the modulus |d|. If d > 0, then χd is an even
character and if d < 0 it is an odd character. The character χd is the character
associated with the quadratic field Q(

√
d). In particular, the prime p splits

or factors in this field if χd(p) = +1; it remains prime if χd(p) = −1; and it
ramifies or is a square if χd(p) = 0. The real characters χd can be decomposed
into a product of characters χ−4, χ8, χ−8, and χ±p for odd primes p where

χ±p(n) =
(

n
p

)
is the Legendre symbol (= 1 if n is a non-zero square modulo p,

and = −1 if n is a non-zero non-square modulo p, = 0 if p | n). The character
χ−4(n) is 0 for even n, is +1 for n congruent to 1 modulo 4, and is −1 for
n congruent to 3 modulo 4. The character χ8(n) is 0 for even n, is +1 for n
congruent to ±1 modulo 8, and is −1 for n congruent to ±3 modulo 8. Finally,
χ−8(n) is 0 for even n, is +1 for n congruent to 1 or 3 modulo 8, and is −1
for n congruent to 5 or 7 modulo 8.

Orthogonality

First of all, the number N+
q (x) of fundamental discriminants d with 0 < d ≤ x

and (d, q) = 1 satisfies N+
q (x) ∼ 3

π2
φ(q)

q x and similarly the number N−
q (x) of

negative fundamental discriminants d with 0 < −d < x and (d, q) = 1 satisfies
N−

q (x) ∼ 3
π2

φ(q)
q x.

By the Polya-Vinogradov inequality,

∑
0<d≤x

χd(n) =

{
N+

n (x) if n is a square
O(n1/2+ε) if n is not a square

Heath-Brown [H-B4] proved a very useful large-sieve type inequality:

∑
|d|≤Q

∣∣∣∣∣
N∑

n=1

anχd(n)

∣∣∣∣∣
2

�ε (QN)ε(Q + N)
∑

n1n2=�
|an1an2 |.

Soundararajan [So] gave a Poisson summation formula for smooth (real)
character sums:

∑
d

χd(n)F (d/X) =
X

n

∞∑
k=−∞

F̂ (kX/n)τk(n)
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where

τk(n) =
n∑

a=1

(a

n

)
e(ak/n)

is a Gauss sum.

Approximate functional equations

For integers j ≥ 1 put ωj(0) = 1 and for ξ > 0 define ωj(ξ) by

ωj(ξ) =
1

2πi

∫
(c)

(
Γ ( s

2 + 1
4 )

Γ ( 1
4 )

)j

ξ−s ds

s

where c is any positive real number. As usual, dj(n) will denote the j-th
divisor function; that is the coefficient of n−s in the Dirichlet series expansion
of ζ(s)j . For integers j ≥ 1, we define

Aj(d) =
∞∑

n=1

dj(n)χd(n)√
n

ωj

(
n

(
π

|d|
) j

2
)

.

Then for all integers j ≥ 1,

L( 1
2 , χd)j = 2Aj(d).

The analytic conductor is |d|/(2π).

Moments

Jutila [Jut] proved that

∑
0<d<X

L(1/2, χd) =
P (1)
4ζ(2)

X

(
log

X

π
+

Γ ′

Γ
(1/4) + 4γ − 1 + 4

P ′(1)
P (1)

)

+O(X3/4+ε)

where P (s) =
∏

p

(
1 − 1

(p+1)ps

)
and for the same sum but with negative

discriminants −d < X, the term Γ ′
Γ (1/4) is replaced by Γ ′

Γ (3/4). In the same
paper, he obtains that

∑
0<d<X

L(1/2, χd)2 =
c

ζ(2)
X log3 X + O(X(log X)5/2+ε)

and the same for the sum over negative discriminants where

c =
1
48

∏
p

(1 − (4p2 − 3p + 1)/(p4 + p3)).
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Soundararajan [So] obtains a full degree three polynomial for the mean-square,
a full degree six polynomial for the cubic moment, and a conjecture for the
fourth moment. These results and conjecture can be summarized, using D∗ =∑

|d|≤D 1, as :
1

D∗
∑

|d|≤D

L( 1
2 , χd) ∼ a1 log(D

1
2 );

1
D∗

∑
|d|≤D

L2( 1
2 , χd) ∼ 2

a2 log3(D
1
2 )

3!
;

1
D∗

∑
|d|≤D

L3( 1
2 , χd) ∼ 16

a3 log6(D
1
2 )

6!
;

1
D∗

∑
|d|≤D

L4( 1
2 , χd) ∼ 768

a4 log10(D
1
2 )

10!
.

The general conjecture stated by Keating and Snaith using random matrix
theory is:

1
D∗

∑
|d|≤D

Lk( 1
2 , χd) ∼

k∏
�=1

�!
2�!

ak logk(k+1)/2(D)

where

ak =
∏
p

(
1 − 1

p

) k(k+1)
2(

1 + 1
p

)
((

1 − 1√
p

)−k +
(
1 + 1√

p

)−k

2
+

1
p

)
.

The conjectures all agree.
More generally, we conjecture that∑

0<−d<D

L(1/2, χd)k =
∑

0<−d<D

Qk(log |d|
2π ) + O(D1/2+ε)

as D → ∞, where Qk is the polynomial of degree k(k + 1)/2 given by the
k-fold residue

Qk(x) =
(−1)k(k−1)/22k

k!
1

(2πi)k

∮
· · ·

∮

G−(z1, . . . , zk)∆(z2
1 , . . . , z2

k)2
k∏

j=1

z2k−1
j

e
x
2

∑k

j=1
zj dz1 . . . dzk,

where

G−(α1, . . . , αk) = Ak(α1, . . . , αk)
k∏

j=1

(
Γ (3

4 + αj

2 )2αj

Γ ( 3
4 − αj

2 )

) 1
2 ∏

1≤i≤j≤k

ζ(1+αi+αj),
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and Ak is the Euler product which is absolutely convergent for
∑k

j=1 |αj | <
1/2, defined by

Ak(α1, . . . , αk) =
∏
p

∏
1≤i≤j≤k

(
1 − 1

p1+αi+αj

)

×
⎛
⎝1

2

⎛
⎝ k∏

j=1

(
1 − 1

p
1
2+αj

)−1

+
k∏

j=1

(
1 +

1

p
1
2+αj

)−1
⎞
⎠ +

1
p

⎞
⎠

(
1 +

1
p

)−1

.

Still more generally, we conjecture that
∑

0<−d<D

ξ(1/2+α1, χd) . . . ξ(1/2+αk, χd) =
∑�

0<−d<D

Qk(α, log |d|
2π )+O(D1/2+ε),

where

Qk(α, x) =
(−1)k(k−1)/22k

k!
1

(2πi)k

×
∮

· · ·
∮

G−(z1, . . . , zk)∆(z2
1 , . . . , z2

k)2
∏k

j=1 zj

k∏
�=1

k∏
j=1

(zj − α�)(zj + α�)

e
x
2

∑k

j=1
zj dz1 . . . dzk,

where the path of integration encloses the ±α’s. There is a similar conjec-
ture for the analogous sum over positive fundamental discriminants. For this
conjecture G− is replaced by G+, where

G+(α1, . . . , αk) = Ak(α1, . . . , αk)
k∏

j=1

(
Γ ( 1

4 + αj

2 )2αj

Γ ( 1
4 − αj

2 )

) 1
2 ∏

1≤i≤j≤k

ζ(1+αi+αj),

and Ak is as before.

4.4 Modular L-functions

Ramanujan’s tau-function, defined implicitly by

x

∞∏
n=1

(1 − xn)24 =
∞∑

n=1

τ(n)xn,

also yields an L-function. The associated Fourier series

∆(z) :=
∞∑

n=1

τ(n) exp(2πinz)
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satisfies

∆

(
az + b

cz + d

)
= (cz + d)12∆(z)

for all integers a, b, c, d with ad− bc = 1. A function satisfying these equations
is called a modular form of weight 12. The associated L-function

L∆(s) :=
∞∑

n=1

τ(n)/n11/2

ns
=

∏
p

(
1 − τ(p)/p11/2

ps
+

1
p2s

)−1

satisfies the functional equation

ξ∆ := (2π)−sΓ (s + 11/2)L∆(s) = ξ∆(1 − s)

and it is expected that all of its complex zeros are on the 1/2-line. In general
a cusp form of weight k for the full modular group is a holomorphic function
f on the upper half-plane which satisfies

f

(
az + b

cz + d

)
= (cz + d)kf(z)

for all integers a, b, c, d with ad − bc = 1 and also has the property that
limy→∞ f(iy) = 0. Cusp forms for the whole modular group exist only for even
integers k = 12 and k ≥ 16. The cusp forms of a given weight k of this form
make a complex vector space Sk of dimension [k/12] if k �= 2 mod 12 and of
dimension [k/12]−1 if k = 2 mod 12. Each such vector space has a special basis
Hk of Hecke eigenforms which consist of functions f(z) =

∑∞
n=1 λf (n)e(nz)

for which
λf (m)λf (n) =

∑
d|(m,n)

dk−1λf (mn/d2).

The Fourier coefficients λf (n) are real algebraic integers of degree equal to the
dimension of the vector space = #Hk. Thus, when k = 12, 16, 18, 20, 22, 26
the spaces are one dimensional and the coefficients are ordinary integers. We
can express these explicitly in terms of the Eisenstein series

E4(z) = 1 + 240
∞∑

n=1

σ3(n)e(nz)

and

E6(z) = 1 − 504
∞∑

n=1

σ5(n)e(nz)

where σr(n) is the sum of the rth powers of the positive divisors of n:

σr(n) =
∑
d|n

dr.
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Then, ∆(z)E4(z) gives the unique Hecke form of weight 16; ∆(z)E6(z) gives
the unique Hecke form of weight 18; ∆(z)E4(z)2 is the Hecke form of weight
20; ∆(z)E4(z)E6(z) is the Hecke form of weight 22; and ∆(z)E4(z)2E6(z) is
the Hecke form of weight 26. The two Hecke forms of weight 24 are given by

∆(z)E4(z)3 + x∆(z)2

where x = −156 ± 12
√

144169. The L-function associated with a Hecke form
f of weight k is given by

Lf (s) =
∞∑

n=1

λf (n)/n(k−1)/2ns =
∏
p

(
1 − λf (p)/p(k−1)/2

ps
+

1
p2s

)−1

.

By Deligne’s theorem λf (p)/p(k−1)/2 = 2 cos θf (p) for a real θf (p). It is
conjectured (Sato-Tate) that for each f the {θf (p) : p prime} is uniformly
distributed on [0, π) with respect to the measure 2

π sin2 θ dθ. We write
cos θf (p) = αf (p) + αf (p) where αf (p) = eiθf (p); then

Lf (s) =
∏
p

(
1 − αf (p)

ps

)−1
(

1 − αf (p)
ps

)−1

.

The functional equation satisfied by Lf (s) is

ξf (s) = (2π)−sΓ (s + (k − 1)/2)Lf (s) = (−1)k/2ξf (1 − s).

Orthogonality relations

The Petersson inner product on the space Sk is defined by

〈f, g〉 =
∫∫

D
f(z)g(z)yk dxdy

y2
.

Here the integration is over the fundamental domain

D := {(x, y) : −1/2 ≤ x ≤ 1/2, y ≥
√

1 − x2}.
Let F be an orthogonal basis of Sk with respect to this inner product. The
Petersson formula tells us that

Γ (k − 1)
(4π

√
mn)k−1

∑
f∈F

λf (m)λf (n)
〈f, f〉 = δm,n+2πi−k

∞∑
c=1

S(m,n, c)
c

Jk−1

(
4π

√
mn

c

)

where Jk−1 is the Bessel function of index k − 1 and S(m,n, c) is the Kloost-
erman sum

S(m,n, c) =
∑

(x,c)=1

e((mx + nx)/c)

where the sum is over a set of reduced residue classes modulo cand where x
satisfies xx = 1 mod c. By a theorem of Weil, |S(m,n, c)| ≤ (m,n, c)1/2d(c)

√
c

where d(c) is the number of positive divisors of c.
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Higher level modular forms

An example of a higher level modular form is the modular form
∑∞

n=1 λne(nz)
associated to an elliptic curve E : y2 = x3 + Ax + B where A,B are integers.
The associated L-function, called the Hasse-Weil L-function, is

LE(s) =
∞∑

n=1

λ(n)/n1/2

ns
=

∏
p�q

(
1−λ(p)/p1/2

ps
+

1
p2s

)−1 ∏
p|q

(
1−λ(p)/p1/2

ps

)−1

where q is the conductor of the curve. The coefficients λn are constructed
easily from λp for prime p; in turn the λp are given by λp = p−Np where Np

is the number of solutions of E when considered modulo p. The work of Wiles
and others proved that these L-functions are associated to modular forms of
weight 2. This modularity implies the functional equation

ξE(s) := (2π/
√

q)−sΓ (s + 1/2)LE(s) = ξE(1 − s).

It is believed that all of the complex zeros of LE(s) are on the 1/2-line. A
similar construction should work for other sets of polynomial equations but
so far this has not been proven.

Level q cusp forms with no multiplier system

We let Γ0(q) denote the group of matrices
(

a b
c d

)
with integers a, b, c, d satis-

fying ad − bc = 1 and q | c. This group is called the Hecke congruence group
of level q. A function f holomorphic on the upper half plane satisfying

f

(
az + b

cz + d

)
= (cz + d)kf(z)

for all matrices in Γ0(q) and limy→0 f(a/q + iy) = 0 for all rational numbers
a/q is called a cusp form for Γ0(q); the space of these is a finite dimensional
vector space Sk(q). The space Sk above is the same as Sk(1). Again, these
spaces are empty unless k is an even integer. If k is an even integer, then

dimSk(q) =
(k−1)

12
ν(q)+

([
k

4

]
− k−1

4

)
ν2(q)+

([
k

3

]
− k−1

3

)
ν3(q)− ν∞(q)

2

where ν(q) is the index of the subgroup Γ0(q) in the full modular group Γ0(1):

ν(q) = q
∏
p|q

(
1 +

1
p

)
;

ν∞(q) is the number of cusps of Γ0(q):
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ν∞(q) =
∑
d|q

φ((d, q/d));

ν2(q) is the number of inequivalent elliptic points of order 2:

ν2(q) =

{
0 if 4 | q∏

p|q(1 + χ−4(p)) otherwise

and ν3(q) is the number of inequivalent elliptic points of order 3:

ν3(q) =

{
0 if 9 | q∏

p|q(1 + χ−3(p)) otherwise
.

It is clear from this formula that the dimension of Sk(q) grows approximately
linearly with q and k. For the spaces Sk(q) the issue of primitive forms and
imprimitive forms arise, much as the situation with characters. In fact, one
should think of the Fourier coefficients of cusp forms as being a generalization
of characters. They are not periodic, but they act as harmonic detectors, much
as characters do, through their orthogonality relations (below). Imprimitive
cusp forms arise in two ways. Firstly , if f(z) ∈ Sk(q), then f(z) ∈ Sk(dq) for
any integer d > 1. Secondly, if f(z) ∈ Sk(q), then f(dz) ∈ Sk(Γ0(dq)) for any
d > 1. The dimension of the subspace of primitive forms is given by

dimSnew
k (q) =

∑
d|q

µ2(d) dim Sk(q/d)

where µ2(n) is the multiplicative function defined for prime powers by
µ2(pe) = −2 if e = 1, = 1 if e = 2 , and = 0 if e > 2. The subspace of
newforms has a Hecke basis Hk(q) consisting of primitive forms, or newforms,
or Hecke forms. These can be identified as those f which have a Fourier series

f(z) =
∞∑

n=1

λf (n)e(nz)

where the λf (n) have the property that the associated L-function has an Euler
product

Lf (s) =
∞∑

n=1

λf (n)/n(k−1)/2

ns

=
∏
p�q

(
1 − λf (p)/p(k−1)/2

ps
+

1
p2s

)−1 ∏
p|q

(
1 − λf (p)/p(k−1)/2

ps

)−1

.

We can express this as

Lf (s) =
∏
p

(
1 − αf (p)

ps

)−1 (
1 − α′

f (p)
ps

)−1
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where if p � q then α′
f (p) = αf (p) whereas if p | q then α′

f (p) = 0. The
functional equation of the L-function is

ξf (s) := (2π/q)−sΓ (s + (k − 1)/2)Lf (s) = ±ξf (1 − s).

Now the ± depends on more than the weight k.

Examples of cuspforms with level > 1

We give a small table of the dimensions of the spaces Sk(q) of cuspforms
and of newforms Snew

k (q) and give some explicit constructions of some of the
elements of Hk(q).

Table 1. Dimensions of spaces Sk(q) of cusp forms

q\k 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

1 0 0 0 0 0 1 0 1 1 1 1 2 1 2 2

2 0 0 0 1 1 2 2 3 3 4 4 5 5 6 6

3 0 0 1 1 2 3 3 4 5 5 6 7 7 8 9

4 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 0 1 1 3 3 5 5 7 7 9 9 11 11 13 13

6 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27

7 0 1 3 3 5 7 7 9 11 11 13 15 15 17 19

8 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27

9 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27

10 0 3 5 9 11 15 17 21 23 27 29 33 35 39 41

11 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Notice that all of the cusp forms of level 1 are primitive. Each such form
f(z) leads to d(q) old forms f(dz) of level q. Some of the newforms of low
level and weight can be expressed as eta-products. Thus, the unique newform
of level 2 and weight 8 is given explicitly by

e(z)
∞∏

n=1

(1 − e(nz))8(1 − e(2nz))8;

the unique newform of weight 6 and level 3 is

e(z)
∞∏

n=1

(1 − e(nz))6(1 − e(3nz))6;

the unique newform of weight 6 and level 4 is

e(z)
∞∏

n=1

(1 − e(2nz))12;
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Table 2. Dimensions of spaces Snew
k (q) of primitive forms

q\k 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

1 0 0 0 0 0 1 0 1 1 1 1 2 1 2 2

2 0 0 0 1 1 0 2 1 1 2 2 1 3 2 2

3 0 0 1 1 2 1 3 2 3 3 4 3 5 4 5

4 0 0 1 0 1 1 1 1 2 1 2 2 2 2 3

5 0 1 1 3 3 3 5 5 5 7 7 7 9 9 9

6 0 1 1 1 1 3 1 3 3 3 3 5 3 5 5

7 0 1 3 3 5 5 7 7 9 9 11 11 13 13 15

8 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

9 0 1 1 3 3 4 5 6 6 8 8 9 10 11 11

10 0 1 3 1 3 5 3 5 7 8 7 9 7 9 11

11 1 2 4 6 8 8 12 12 14 16 18 18 22 22 24

the unique newform of weight 4 and level 5 is

e(z)
∞∏

n=1

(1 − e(nz))4(1 − e(5nz))4;

The first cusp form of weight 2 is for level 11. This newform corresponds to
the elliptic curve of conductor 11. It can be expressed as a product

e(z)
∞∏

n=1

(1 − e(nz))2(1 − e(11nz))2.

Orthogonality

The space Sk(q) can be made into a Hilbert space by introducing the Petersson
inner product, as we did earlier for the case q = 1, except that the integral
is over the fundamental domain D(q) of Γ0(q) which can be represented as a
union of ν(q) copies of the fundamental domain D. Let Fk(q) be an orthogonal
basis of Sk(q) with respect to this inner product. The Petersson formula tells
us that

Γ (k − 1)
(4π

√
mn)k−1

∑
f∈Fk(q)

λf (m)λf (n)
〈f, f〉

= δm,n + 2πi−k
∑

c=0 mod q

S(m,n, c)
c

Jk−1

(
4π

√
mn

c

)
.

Let

ψf (n) =
(

Γ (k − 1)
(4πn)k−1

)1/2

λf (n)

and let
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Lf (b) =
N∑

n=1

bnψf (n).

Then for any complex numbers bn

∑
f∈Fk(q)

|Lf (b)|2 =
(

1 + O

(
N

q

)) N∑
n=1

|bn|2.

A variant of this involves summing over k for a fixed q. Suppose that g is
smooth and supported in [K, 2K]. Then

2
∑

k even

g(k − 1)
∑

f∈Fk(q)

|Lf (b)|2 = (ĝ(0) + η(K,N))
N∑

n=1

|bn|2

where ĝ(0) =
∫

g(y) dy and

η(K,N) �
(

N

qK3
+

(
N

qK2

)j
)

N log 2N

for any j ≥ 0 and the implied constant depends only on j. These results are
taken from [Iwa2], Chapter 5.

1-level density or low lying zeros

The average spacing for all the zeros of all the L(f, s) with f ∈ Hk(q) up to
a fixed height t0 is asymptotic to 2π/ log(k2q). Let φ be a test function which
is even and rapidly decaying. Iwaniec, Luo, and Sarnak [ILS] proved that if
the support of φ̂ is contained in (−2, 2), then

lim
KQ→∞

K∑
k=2

∑
q≤Q

1
|Hk(q)|

∑
f∈Hk(q),Lf (1/2+iγf )=0

φ

(
γf log k2Q

2π

)

=
∫ ∞

−∞
φ(x)W (O)(x) dx .

Similar results hold if the summation is restricted to even forms or to odd
forms in which case the integral on the right side has W (O±)(x).

It should be pointed out that the Fourier transforms of the density func-
tions W (O)(x), W (O+)(x), and W (O−)(x) all agree in the diagonal range; so
it is only when one goes beyond the diagonal that the distinguishing features
of these three symmetry types becomes apparent.
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Approximate functional equation

Using the functional equation we can represent the central values Lf ( 1
2 ) by

partial sums of lengths about O(kq). To this end we choose a function G(s)
which is holomorphic in |Re s| ≤ A such that

G(s) = G(−s)

Γ (k
2 )G(0) = 1

Γ (s + k
2 )G(s) � (|s| + 1)−2A

for some A ≥ 1. Consider the integral

I = 1
2πi

∫
(1)

ξf (s + 1
2 , χ)G(s)s−1 ds.

Moving the integration to the line Re s = −1 we derive

ξf ( 1
2 )G(0) = 2I.

On the other hand, integrating termwise we derive

I =
∞∑
1

λf (n)χ(n)
( q

2πn

) 1
2

V

(
n

q

)

where V (y) is the inverse Mellin transform of (2π)−sΓ (s + k
2 )G(s)s−1,

V (y) =
1

2πi

∫
(1)

Γ (s + k
2 )G(s)(2πy)−ss−1 ds.

Hence we get: For any Hecke form f ∈ Hk(q) we have

Lf ( 1
2 ) = 2

∞∑
1

λf (n)χ(n)n− 1
2 V (n/q).

Observe that V (y) satisfies the following bounds

V (y) = 1 + O(yA),
V (y) � (1 + y)−A,

V (�)(y) � yA(1 + y)−2A,

for 0 < � < A. One can choose G(s) depending on k so that

V (y) � k(1 + y/k)−A,

therefore the series dies rapidly as soon as n exceeds kq. If one is not concerned
with the dependence of implied constants on the parameter k then one has a
simple choice G(s) = Γ (k/2)−1 getting the incomplete gamma function

V (y) =
1

Γ (k
2 )

∫ ∞

2πy

e−xx
k
2−1 dx.
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Moments

In this section let q be a prime number. Let
∑h denote the harmonic average

over f ∈ H2(q), that is we weight the term associated with f in the sum
by 1/〈f, f〉. This leads to simpler results. Then, work of Duke, and of Duke,
Friedlander and Iwaniec, and of Kowalski, Michel and Vanderkam, we know

∑h

f∈H2(q)

L(1/2, f) ∼ a1

∑h

f∈H2(q)

L2(1/2, f) ∼ 2a2 log q
1
2

∑h

f∈H2(q)

L3(1/2, f) ∼ 8a3
log3 q

1
2

3!

∑h

f∈H2(q)

L4(1/2, f) ∼ 128a4
log6 q

1
2

6!

where ak = A(0, . . . 0) with

Ak(α1, . . . , αk) =
∏
p

∏
1≤i<j≤k

(
1 − 1

p1+αi+αj

)

× 2
π

∫ π

0

sin2 θ

k∏
j=1

eiθ
(
1 − eiθ

p
1
2 +αj

)−1

− e−iθ
(
1 − e−iθ

p
1
2 +αj

)−1

eiθ − e−iθ
dθ.

A general conjecture is:

∑h

f∈H2(q)

Lk(1/2, f) ∼ 2k−1
k−1∏
�=1

�!
2�!

ak logk(k−1)/2 q .

A more precise conjecture is

∑h

f∈H2(q)

Lf (1/2)k = Rk

(
log q

4π2

)
+ O(q−1/2+ε)

as q → ∞, where Rk is a polynomial of degree k(k − 1)/2 given by the k-fold
residue

Rk(x) =
(−1)k(k−1)/22k−1

k!
1

(2πi)k

∮
· · ·

∮

H(z1, . . . , zk)∆(z2
1 , . . . , z2

k)2∏k
j=1 z2k−1

j

e
x
2

∑k

j=1
zj dz1 . . . dzk,
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where

H(α1, . . . , αk) = Ak(α1, . . . , αk)
k∏

j=1

Γ (1 + αj)
∏

1≤i<j≤k

ζ(1 + αi + αj)

Maass forms

There is another kind of cusp form associated with the group Γ0(q). This is
a function f(z) which is real analytic on the upper half-plane. It transforms
like a weight 0 cusp form and is an eigenfunction of the Laplace operator:

∆ := y2

(
∂2

∂x2
+

∂2

∂y2

)
.

It has a Fourier expansion as a linear combination of terms e(nx) in which
the dependence on y is expressed through K-Bessel functions. The prototype
for these is given by the Eisenstein series (for the full modular group)

E(z, s) =
∑

γ∈Γ∞\Γ0(1)

y(γz)s =
∑

(c,d)=1

ys

|cz + d|2s

where y(z) denotes the imaginary part of z and where Γ∞ is the group which

fixes ∞, i.e. the group of matrices
(

1 b
0 1

)
for integer b. This is not a cusp form

(because it doesn’t vanish at iy as y → ∞.) However, its Fourier expansion is
similar to that of the Maass cusp forms for which no explicit construction is
known (apart from some forms with eigenvalue 1/4). Let

θ(s) := π−sΓ (s)ζ(2s) = θ(1 − s).

Then θ(s)E(z, s) =

θ(s)ys + θ(1 − s)y1−s + 4y1/2
∞∑

n=1

∑
ab=n

(a/b)s−1/2Ks−1/2(2πny) cos(2πnx).

Since θ(s),
∑

ab=n(a/b)s−1/2 and Ks−1/2(2πny) are all invariant under s →
1 − s, we see that θ(s)E(z, s) = θ(1 − s)E(z, 1 − s).

A Maass form f with eigenvalue λ = 1/2 + κ2 satisfies (∆ + λ)f = 0 and
has Fourier expansion

f(z) = y1/2
∞∑

n=1

λf (n)Kiκ(2πny) cos(2πnx)

for an even Maass form and

f(z) = y1/2
∞∑

n=1

λf (n)Kiκ(2πny) sin(2πnx)
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for an odd Maass form.
The L-function Lf (s) =

∑∞
n=1 λf (n)N−s associated with a Maass from is

entire, has an Euler product, and satisfies the functional equation

ξf (s) := π−sΓ ((s + iκ)/2)Γ ((s − iκ)/2)Lf (s) = ξf (1 − s)

for even Maass forms and

ξf (s) := π−sΓ ((s + 1 + iκ)/2)Γ ((s + 1 − iκ)/2)Lf (s) = ξf (1 − s)

for odd Maass forms.
Selberg’s trace formula provides us with a kind of Weyl law for the number

of Maass forms with eigenvalue less than a given quantity.
Ramanujan’s conjecture for Maass forms is that |λf (p)| ≤ 2. However, this

has not yet been proven. The best result is λf (p) � p1/9.

Moments

Motohashi [M1] and Ivic [Iv] have computed moments of these L-series at the
central critical points. These have been achieved for the first through fourth
moments and agree with random matrix conjectures.

Quadratic twists of modular L-functions

In this section we give a specific example of what we mean by these quadratic
twists. This example should be sufficient to allow the reader to understand a
more general situation. Let

L11(s) =
∞∑

n=1

λn

n1/2+s

be the L-function of conductor 11 of the elliptic curve

y2 + y = x3 − x2.

The coefficients λn are obtained from cusp form of weight two and level 11
given by

∞∑
n=1

λnqn = q

∞∏
n=1

(1 − qn)2(1 − q11n)2.

Expanding the right hand side using Euler’s pentagonal theorem provides an
efficient means to compute the λn’s.

L11(s) satisfies an even functional equation (i.e. its sign is +1)

(
111/2

2π

)s

Γ (s + 1/2)L11(s) =
(

111/2

2π

)1−s

Γ (3/2 − s)L11(1 − s),
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and L11(s) may be written as a product over primes

L11(s) =
1

1 − 11−s−1/2

∏
p�=11

1
1 − λpp−s−1/2 + p−2s

.

Consider now quadratic twists of L11(s),

L11(s, χd) =
∞∑

n=1

λn

n1/2+s
χd(n).

with (d, 11) = 1. L11(s, χd) satisfies the functional equation

L11(s, χd) = χd(−11)
Γ (3/2 − s)
Γ (s + 1/2)

(
2π

N1/2

)2s−1

|d|2(1/2−s)L11(1 − s, χd).

We wish to look at moments of L11(1/2, χd) but only for those L(s, χd) that
have an even functional equation, i.e. χd(−11) = 1. We further only look at
d < 0 since in that case a theorem of Kohnen and Zagier enables us to easily
gather numerical data for L11(1/2, χd) with which to check our conjecture.

When d < 0, χd(−1) = −1, hence, in order to have an even functional
equation, we require that χd(11) = −1, i.e. d = 2, 6, 7, 8, 10 mod 11. The
sum over fundamental discriminants is

∑�

−D<d<0
d=2,6,7,8,10 mod 11

L11(1/2, χd)k

=
∑�

−D<d<0
d=2,6,7,8,10 mod 11

Dk

(
log

( |d|111/2

2π

))
+ O(D

1
2+ε)

where Dk is the polynomial of degree k(k − 1)/2 given by the k-fold residue

Dk(x) =
(−1)k(k−1)/22k

k!
1

(2πi)k

∮
· · ·

∮

R11(z1, . . . , zk)∆(z2
1 , . . . , z2

k)2
k∏

j=1

z2k−1
j

e
x
∑k

j=1
zj dz1 . . . dzk,

where

R11(z1, . . . , zk) = Ak(z1, . . . , zk)
k∏

j=1

(
Γ (1 + zj)
Γ (1 − zj)

) 1
2 ∏

1≤i<j≤k

ζ(1 + zi + zj),

and Ak is the Euler product which is absolutely convergent for
∑k

j=1 |zj | <
1/2,
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Ak(z1, . . . , zk) =
∏
p

R11,p(z1, . . . , zk)
∏

1≤i<j≤k

(
1 − 1

p1+zi+zj

)

with, for p �= 11, R11,p =
(
1 + 1

p

)−1

×
⎛
⎝1

p
+

1
2

⎛
⎝ k∏

j=1

1
1 − λpp−1−zj + p−1−2zj

+
k∏

j=1

1
1 + λpp−1−zj + p−1−2zj

⎞
⎠

⎞
⎠

and

R11,11 =
k∏

j=1

1
1 + 11−1−zj

.

The local factor R11,11 differs slightly from (4.3.13) because we are restricting
ourselves to χd(11) = −1, therefore only one term appears.

In [CFKRS] we compare moments computed numerically with moments
estimated by our conjecture. The two agree to within the accuracy we have for
the moment polynomial coefficients. We believe that if one were to compute
the coefficients to higher accuracy, one would see an even better agreement
with the data.

While one can compute L11(1/2, χd) using standard techniques, one can in
our case exploit a theorem of Kohnen and Zagier which relates L11(1/2, χd),
for fundamental discriminants d < 0, d = 2, 6, 7, 8, 10 mod 11, to the coeffi-
cients c11(|d|) of a weight 3/2 modular form

L11(1/2, χd) = κ11c11(|d|)2/
√

d

where κ11 is a constant. The weight 3/2 form in question was determined by
Rodriguez-Villegas (private communication)

∞∑
n=1

c11(n)qn = (θ1(q) − θ2(q))/2

= −q3 + q4 + q11 + q12 − q15 − 2q16 − q20 . . .

where

θ1(q) =
∑

(x,y,z)∈Z3
x=y mod 2

qx2+11y2+11z2
= 1 + 2q4 + 2q11 + 4q12 + 4q15 + 2q16 + . . .

and

θ2(q) =
∑

(x,y,z)∈Z3
x=y mod 3
y=z mod 2

q(x2+11y2+33z2)/3 = 1 + 2q3 + 2q12 + 6q15 + 6q16 + . . . .

This was used to compute the c11(|d|)’s for d < 85, 000, 000; the numerical
evidence supports the conjectures.
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Moments

The first moment of these twists, for a general element of Hk(q) has been
evaluated by Murty and Murty [MM] and by Bump, Friedberg, and Hoffstein
[BFH]. Iwaniec [Iwa] has given a particularly elegant proof of the first moment.

4.5 Symmetric Square L-functions

Recall that the Euler product for a level q modular form has the shape

Lf (s) =
∏
p

(
1 − αf (p)

ps

)−1 (
1 − α′

f (p)
ps

)−1

.

We can form the symmetric square L-function associated to f as

Lf (sym2, s) =
∏
p

(
1 − α2

f (p)
ps

)−1 (
1 − αf (p)α′

f (p)
ps

)−1
(

1 − α′
f (p)2

ps

)−1

.

Note that this L-function has a degree three Euler product associated with it.
Shimura proved that this is an entire function which satisfies the functional
equation

ξf (sym2, s) : = π−3s/2qsΓ (s/2)Γ ((s + k − 1)/2)Γ ((s + k)/2)Lf (sym2, s)
= ξf (sym2, 1 − s).

1-level density

The average spacing for all the zeros of all the Lf (sym2, s) with f ∈ Hk(1)
up to a fixed height t0 is asymptotic to 2π/ log(k2). Let φ be a test function
which is even and rapidly decaying. Iwaniec, Luo, and Sarnak [ILS] proved
that if the support of φ̂ is contained in (−3/2, 3/2), then (for fixed q)

lim
K→∞

K∑
k=2

1
|Hk(q)|

∑
f∈Hk(q),Lf (sym2,1/2+iγf )=0

φ

(
γf log k2q2

2π

)

=
∫ ∞

−∞
φ(x)W (Sp)(x) dx .

Moments

The first moment for symmetric square L-functions can be evaluated asymp-
totically, but so far not the second, see Iwaniec and Michel [IM]. The symme-
try type of this family is symplectic and the difficulty of achieving the second
moment over this family is like the fourth moment of quadratic L-functions.
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4.6 Convolution L-functions

Given two cuspidal L-functions

Lf (s) =
∏
p

(
1 − αf (p)

ps

)−1 (
1 − α′

f (p)
ps

)−1

where f ∈ Hk(q1) and

Lg(s) =
∏
p

(
1 − βg(p)

ps

)−1 (
1 − β′

g(p)
ps

)−1

where g ∈ H�(q2) with (q1, q2) = 1 we form the convolution L-function

Lf×g(s) =
∏
p

(
1 − αf (p)βg(p)

ps

)−1 (
1 − αf (p)β′

g(p)
ps

)−1

×
(

1 − α′
f (p)βg(p)

ps

)−1 (
1 − α′

f (p)β′
g(p)

ps

)−1

.

If f �= g, then this L-function is entire – an Euler product of degree 4 –
and satisfies the functional equation

ξf×g(s) : = (2π)−2s(q1q2)sΓ (s + (|k − �|)/2)Γ (s − 1 + (k + � − 1)/2)Lf×g(s)
= ±ξf×g(1 − s).

Moments

Kowalski, Michel, and Vanderkam have successfully computed all of the main
terms (see (http://www.math.univ-montp2.fr/∼michel/publi.html [22]) in the
second moment of the convolution L-function at the central point for a fixed g
and f varying over Hk(q) for large prime q. The leading term is of size q log3 q
in accordance with the expectation that this is an orthogonal family.

5 Other Directions

Here we describe a few things that there weren’t room for in the notes; or
things that are still being developed.

5.1 Integrals of Ratios of Zeta-functions

In 1994 Farmer [F] made the conjecture that

1
T

∫ T

0

ζ(s + a)ζ(1 − s + b)
ζ(s + u)ζ(1 − s + v)

dt ∼ 1 +
T−u+v − 1

(u + v)(a + b)
.
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Here, s = 1/2 + ir and the real parts of u and v are positive. Farmer showed
that this conjecture implies Montgomery’s pair-correlation conjecture. He
later made a conjecture for an integral of a ratio of three zetas over 3 ze-
tas.

After a lecture at MSRI in June 1999 Martin Zirnbauer and Stephen Non-
nemacher proposed to Farmer and colleagues a way to generalize this conjec-
ture to the integral of a ratio with any number of zeta-factors in the numerator
and denominator. Their suggestion was based on an analogous moment for
characteristic polynomials.

They have a method to compute exact formulas for the average over U(N),
Sp(N), or SO(2N) of such a ratio. The method involves representation theory
– supersymmetry and Weyl’s formula for the characters of representations.

5.2 Mollifiers

For many applications in number theory one needs to compute moments of
‘mollified’ L-functions. Examples include

∫ T

0

|ζ(1/2 + it)|2
∣∣∣∣∣∣
∑
n≤y

µ(n) log y/n

n1/2+it

∣∣∣∣∣∣
2

dt.

This example is relevant to proofs that a positive proportion of zeros of ζ(s)
are on the one-half line. Levinson used an asymptotic formula for this with
the length y of the mollifier taken to be y = T 1/2−ε to show that at least one-
third of the zeros are on the critical line; Conrey used such a moment with
y = T 4/7−ε to prove that at least two-fifths of the zeros are on the critical
line.

Farmer’s conjecture from the previous section can be used to prove an
asymptotic formula for this mollified mean-square with an arbitrary length.
Such a formula would imply that almost all of the zeros are on the critical
line.

In [CF] formulas are given for the mollified mean square of L-functions from
three different families. The asymptotic formula are conjectured to depend
only on the symmetry type of the family and not on the family itself.

The more general conjectures for ratios could be used to conjecture for-
mulas for any moment of an L-function times a mollifier (not just the second
moment).

5.3 Connections with Primes in Short Intervals

Montgomery and Goldston showed that Montgomery’s Pair Correlation con-
jecture is equivalent to an assertion about a second moment of primes in short
intervals.

The method relates both quantities to an asymptotic formula for
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∫ T

0

∣∣∣∣ζ
′(1/2 + a + it)

ζ(1/2 + a + it)

∣∣∣∣
2

dt

with small a with positive real part.
It should be mentioned that Bogolmony and Keating showed how a heuris-

tic beginning with the Hardy-Littlewood conjectures for pairs of primes leads
to all of the CUE n-correlation statistics for the zeros of the Riemann zeta-
function.

5.4 Distribution of Zeros of Derivatives

The Riemann Hypothesis is equivalent to the assertion that all of the zeros
of ζ ′(s) have real parts greater than or equal to 1/2. The question of the
distribution of the real parts of these zeros arises in Levinson’s method. The
proper scaling at a height T is 1/ log T . So the question is to determine the
distribution function

d(α) := lim
T→∞

#{ρ′ = β′ + iγ′ : 0 < γ′ < T, β′ < 1/2 + α/ log T}.

The analogous question for CUE has to do with the distribution of the zeros
of Z ′(U, s) inside the unit circle on the scale of 1/N . Francesco Mezzadri [Mez]
has made some progress on this question but has not solved it completely.

A similar question arises about the distribution of zeros of ξ′(s) on the
critical line.

5.5 Moments of Derivatives

The asymptotics of the moments

∫ T

0

|ζ ′(1/2 + it)|2k dt

can be conjectured for integral k (see [Hu]) but so far not for non-integral k
and, of course, the analogous question for moments of derivatives of charac-
teristic polynomials.

5.6 Lower Order Terms for Non-integral Moments of L-functions

We [CFKRS1] have conjectures for all of the main terms for the 2k-th moment
of L-functions in families. The leading main term is an analytic function of
k; similarly for the second main term, third, and so on for any fixed term.
However, we don’t yet have an analytic expression for all of the terms taken
together.
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5.7 Extremely Large Values

We would like to know the size of the largest values of |ζ(1/2+it)|. These could
presumably be deduced from our conjectured formula for the 2k-th moment
by taking k extremely large. However, we have been unable so far to determine
the large k asymptotics for the conjecture when we include all of the lower
order terms. See [CGo], [Hu], and [U].

5.8 Distribution of Small Values

Random Matrix Theory does seem to predict very well the small and interme-
diate size values of L-functions. These models can be used [CKRS] together
with an appropriate discretization to predict the frequency of vanishing to or-
der two within certain families of the central values of the L-functions in the
family. This prediction is especially of interest with regard to elliptic curves
and their ranks. However, we don’t seem to be able to use Random matrix
Theory to predict vanishing to order three.
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Summary. One of the central aims in quantum chaos is to classify quantum systems
according to universal statistical properties. It has been conjectured that the energy
levels of generic integrable quantum systems have the same statistical properties as
random numbers from a Poisson process (Berry & Tabor 1977), and chaotic quantum
systems the same as eigenvalues of random matrices from suitably chosen ensembles
(Bohigas, Giannoni & Schmit 1984). I review some recent developments concerning
simple classes of integrable systems, where the study of eigenvalue correlations leads
to subtle lattice point counting problems which, in some instances, can be solved by
ergodic theoretic techniques. In a special example (the so-called “boxed oscillator”)
energy level statistics are related to the statistical distribution of the fractional
parts of the sequence n2α. We will see that the error term of this distribution can
be identified with an almost modular function, and that the fluctuations of the error
term are governed by a general limit theorem for such functions.
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1 Introduction

The classification of quantum systems according to universal statistical prop-
erties is one of the central objectives in quantum chaos. The topic is discussed
in detail in Eugene Bogomolny’s lectures [7] and I will here concentrate on a
special class of quantum systems whose level statistics can be understood in
terms of lattice point counting problems. Let us consider a Hamiltonian with
discrete energy spectrum λ1 ≤ λ2 ≤ . . . → ∞. We assume that the number of
levels (counted with multiplicity) grows asymptotically as

#{j : λj ≤ λ} ∼ N(λ) (λ → ∞) (1)

where N(λ) = cλγ with constants c > 0, γ ≥ 1. To investigate its statistical
properties it is convenient to rescale the sequence by setting Xj = N(λj)
which yields mean density = 1, i.e.,

#{j : Xj ≤ X} ∼ X (X → ∞). (2)

The central conjecture, put forward by Berry and Tabor in 1977 [1], is that if
the Hamiltonian is classically integrable (and sufficiently “generic”) then the
Xj have the same local statistical properties as independent random variables
from a Poisson process. This means that

N (T, L) := #{j : T ≤ Xj ≤ T + L}, (3)

the number of Xj in a randomly shifted interval [T, T +L] of fixed length L, is
distributed according to the Poisson law Lk

k! e−L. More precisely, let ρ : R>0 →
R≥0 be a continuous probability density with compact support, and define the
family of probability densities ρX with X ∈ R≥1 by ρX(T ) = X−1ρ(TX−1).
The assertion is now that N (T, L) has a Poisson limit distribution, if T is
distributed according to ρX and X → ∞. That is, for any bounded function
g : Z≥0 → C we have

∫ ∞

0

g
(N (T, L)

)
ρX(T ) dT →

∞∑
k=0

g(k)
Lk

k!
e−L . (4)

This is in contrast to chaotic systems where the spectral statistics are expected
to follow those of random matrix ensembles.

The central idea behind the Berry-Tabor conjecture is that the energy
levels of an integrable Hamiltonian are in semiclassical approximation given
by the EBK quantization

λj(�) ∼ H(�(m + α)), � → 0, (5)

where H(I) is the classical Hamiltonian in the action variables; m runs over
integer lattice points and α is a fixed vector determined by topological data
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such as Maslov indices. One case where this approximation can be controlled
sufficiently well to study spectral correlations is when H is the negative Lapla-
cian −∆ on surfaces with integrable geodesic flow. For examples in the case
of surfaces of revolution (with some technical assumptions) one has [10, 11]

λj = F (m1,m2 + 1
2 ), (m1,m2) ∈ Z

2, |m1| ≤ m2, (6)

where F (x) = F2(x) + F0(x) + O(‖x‖−1), ‖x‖ → ∞, and F2, F0 are smooth
homogeneous functions of degree 2 and 0, respectively. Note that in the case
of the Laplacian the semiclassical limit � → 0 is equivalent to the high energy
limit j → ∞.

Sinai [42] and Major [17] proved the Poisson limit theorem (4) for generic
F in a certain function space. A “generic” function has, however, level curves
F (x) = 1 which are not twice differentiable. Advances towards a proof of the
Poisson conjecture for systems with analytic F , such as the Laplacian on sur-
faces with integrable geodesic flow, have been made only recently. Sarnak [38]
showed that the pair correlation statistics are Poisson for the eigenvalues of
tori with a generic flat metric (we shall see below that pair correlation or two-
point statistics correspond to the variance of the distribution of N (T, L)). The
eigenvalues of a flat torus are given by positive definite binary quadratic forms
αm2 +βmn+γn2 (m,n ∈ Z), and “generic” refers to a choice of (α, β, γ) in a
set of full Lebesgue measure. These results were extended by VanderKam to
tori of arbitrary dimension [43] and also to higher-order correlation functions
[44]. Eskin, Margulis and Mozes [12] strengthened considerably Sarnak’s re-
sult by giving explicit diophantine conditions on (α, β, γ) under which the pair
correlation statistics of two-dimensional flat tori is Poisson. It is interesting to
note, however, that the fluctuations of the spectral form factor (the Fourier
transform of the pair correlation density) are in this case not consistent with
the Poisson model [18].

Berry and Tabor point out that there are many examples of integrable
systems which violate their general conjecture, and that hence the Poisson
distribution should only be expected for “generic” systems. One of the most in-
teresting counter examples is the multi-dimensional harmonic oscillator whose
eigenvalues are given by the values of the linear form ω · m at lattice points
m ∈ N

k; see Berry and Tabor’s original work [1], and subsequent papers by
Pandey, Bohigas, Giannoni and Ramaswamy [30, 31], Bleher [2, 3], Mazel and
Sinai [29], Greenman [13, 14], and myself [21].

In the present paper we focus on two special classes of integrable systems.
The first example is the k-dimensional standard torus T

k threaded by flux
lines, where the question of energy level statistics corresponds to counting
lattice points in thin spherical shells centered at α. It was first studied in
connection with the Berry-Tabor conjecture by Cheng, Lebowitz and Major
[8, 9]. In sections 2 and 3 I will review recent results on the pair correlation
statistics [24, 25], which were announced in [22, 23].

The second example is the “boxed oscillator”, i.e., a particle constrained
by a box in x-direction and by a harmonic potential in the y-direction, so that
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H = −∂2
x−∂2

y+ω2y2. In this case the eigenvalue correlations are closely related
with the local statistics of the fractional parts of the sequence n2α, which
were studied by Sinai [41], Pellegrinotti [32], Rudnick, Sarnak and Zaharescu
[35, 36, 45], and Zelditch [46]. In sections 4 and 5 I will discuss joint work
with Strömbergsson [28], which relates the pair correlation problem for n2α
to a natural equidistribution problem in hyperbolic geometry.

It is crucial in the Poisson limit theorem (4) that L is kept fixed. If L
increases (sufficiently slowly) with T then the left-hand-side is expected to
converge to a Gaussian distribution, see Bleher’s review [5] for a detailed dis-
cussion. (In a recent paper [16], Hughes and Rudnick prove a central limit
theorem for lattice points in annuli.) If, on the other hand, L grows suffi-
ciently fast with T (e.g. L = T ) the limiting distribution (provided it exists)
is typically non-universal. In the case when the eigenvalues are given by values
of positive definite binary quadratic forms (or more general functions homo-
geneous of degree two) the work of Heath-Brown [15] and Bleher [4, 5] shows
that the limit distribution can be described in terms of almost periodic func-
tions. Bleher and Bourgain obtained a similar result for the multidimensional
torus threaded by flux lines, under certain diophantine conditions on the flux
strength [6].

In the case of the boxed oscillator, we will see in section 6 that, rather
than almost periodic functions, almost modular functions will describe the
distribution of the error term. This last section is based on the papers [26, 27].

2 Torus threaded by flux lines and lattice points in thin
spherical shells

The quantum mechanics of a free particle on a k-dimensional torus threaded
by flux lines of strength α = (α1, . . . , αk) is described by the Hamiltonian

H =
∑

j

(
1

2πi
∂

∂xj
− αj

)2

(7)

acting on periodic functions ϕ, i.e., ϕ(x + l) = ϕ(x), for all l ∈ Z
k. The

eigenfunctions of H are ϕm(x) = e(m · x), where m = (m1, . . . , mk) ∈ Z
k,

and its eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · → ∞ are given by

‖m − α‖2 = (m1 − α1)2 + · · · + (mk − αk)2. (8)

Geometrically, the eigenvalues of H thus correspond to squared radii of spheres
with center α which contain at least one lattice point m ∈ Z

k; the multiplicity
of the eigenvalue corresponds to the number of lattice points on the sphere.
Since the number of lattice points in a ball of large radius is approximately its
volume, we find that (1) holds with N(λ) = Bkλk/2 where Bk is the volume of
the unit ball. According to the Berry-Tabor conjecture we expect the rescaled
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sequence Xj = Bk‖m−α‖k to satisfy the Poisson limit theorem (4), at least
for “generic” choices of α. Hence, in geometric terms, the conjecture says that
the number of lattice points inside a random spherical shell with fixed volume
L, whose inner sphere encloses a ball of volume T (randomly distributed with
law ρX), has a Poisson limit distribution as X → ∞.

As a first step towards a proof of the conjecture we shall here show that
the second moment of N (T, L), the number variance

Σ2(X,L) :=
1
X

∫ ∞

0

{N (T, L) − L}2ρ

(
T

X

)
dT, (9)

converges indeed to the variance of the Poisson distribution, which is L. Note
in the above definition of Σ2(X,L) that, in view of (2), the expectation value
of N (T, L) is asymptotically

1
X

∫ ∞

0

N (T, L) ρ

(
T

X

)
dT → L. (10)

As we shall see the set of “generic” α can be characterized by an explicit
diophantine condition which is in fact satisfied by a set of α of full Lebesgue
measure.

The vector α = (α1, . . . , αk) ∈ R
k is said to be diophantine of type κ, if

there exists a constant C > 0 such that

max
j

∣∣∣∣αj − mj

q

∣∣∣∣ >
C

qκ
(11)

for all m1, . . . , mk, q ∈ Z, q > 0. The smallest possible value for κ is κ = 1+ 1
k .

In this case α is called badly approximable. Examples of badly approximable
vectors are α such that the components of (α, 1) form a basis of a real algebraic
number field of the degree k + 1 ([39], Theorem 6F). On the other hand, for
any κ > 1 + 1

k , the set of diophantine vectors of type κ is of full Lebesgue
measure ([39], Theorem 6G).

Theorem 1 (Poisson limit of the number variance). Suppose α is dio-
phantine of type κ < k−1

k−2 and the components of the vector (α, 1) ∈ R
k+1 are

linearly independent over Q. Then, for every L > 0,

lim
X→∞

Σ2(X,L) = L. (12)

This theorem is a corollary of a more general statement on the convergence
of the pair correlation density of the Xj , which is proved in [24, 25]. For any
ψ ∈ C0(R>0×R>0×R) (i.e., continuous and of compact support) let us define
the pair correlation function

R2(ψ, λ) =
1

Bkλk/2

∞∑
i,j=1

ψ

(
λi

λ
,
λj

λ
, λk/2−1(λi − λj)

)
. (13)

We then have the following statement (Theorem 2.2, [25]).
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Theorem 2 (Poisson limit of pair correlation). Let ψ ∈ C0(R>0×R>0×
R). Suppose the components of (α, 1) ∈ R

k+1 are linearly independent over
Q, and assume α is diophantine of type κ < k−1

k−2 . Then

lim
λ→∞

R2(ψ, λ) =
k

2

∫ ∞

0

ψ(r, r, 0)rk/2−1dr

+
k2

4
Bk

∫
R

∫ ∞

0

ψ(r, r, s)rk−2dr ds. (14)

To see more clearly what this theorem says about the distribution of the
rescaled sequence Xj , let us put

R̃2(ψ, X) =
1
X

∞∑
i,j=1

ψ

(
Xi

X
,
Xj

X
,Xi − Xj

)
. (15)

The map

ω : R>0 × R>0 × R → R>0 × R>0 × R,

⎛
⎝r1

r2

s

⎞
⎠ �→

⎛
⎜⎝

Bkr
k/2
1

Bkr
k/2
2

BkR(r1, r2)s

⎞
⎟⎠ (16)

with R(r1, r2) = (rk/2
1 − r

k/2
2 )/(r1 − r2) is invertible, continuous and in

particular maps compact sets to compact sets. We may therefore choose
as a suitable test function in Theorem 2 the function ψ = ψ̃ ◦ ω, for any
ψ̃ ∈ C0(R>0 × R>0 × R). So

ψ(r1, r2, s) = ψ̃(Bkr
k/2
1 , Bkr

k/2
2 , BkR(r1, r2)s). (17)

After a simple change of variables this shows that Theorem 2 is equivalent to
the statement that (under the same conditions on α) for any ψ̃ ∈ C0(R>0 ×
R>0 × R) we have

lim
X→∞

R̃2(ψ̃, X) =
∫ ∞

0

ψ̃(r, r, 0) dr +
∫

R

∫ ∞

0

ψ̃(r, r, s) dr ds. (18)

The first term represents the asymptotic contribution of the diagonal terms
(i = j) in the sum, while the second asserts that the spacings Xi − Xj (for
i �= j) are uniformly distributed, as one would expect from independent ran-
dom variables with constant mean spacing. We will show in Appendix A that
Theorem 1 follows in fact from (18) for a special choice of test function ψ.

The diophantine conditions in the above theorems are in fact sharp; there
are diophantine vectors α of type κ = k−1

k−2 such that the components of
(α, 1) ∈ R

k+1 are linearly independent over Q, for which the conclusion of
the theorems do not hold. Such α are of the form α = (α1, . . . , αk) where
(α1, . . . , αk−2) ∈ R

k−2 is badly approximable by rationals (i.e., diophantine
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of type k−1
k−2 = 1+ 1

k−2 ) and (αk−1, αk) ∈ R
2 are very well approximable vectors

which form a set of second Baire category in R
2. (A set of second category is a

set which cannot be represented as a countable union of nowhere dense sets.)
The idea here is that the pair correlation function diverges at a logarithmic
rate for α with (αk−1, αk) ∈ Q

2, which is still felt by well approximable
(αk−1, αk); see [24, 25] for details. (Note that the set C in Theorem 1.7 [25]
is wrongly characterized as a second category subset in R

k, since we impose
diophantine conditions. C is only a dense subset in R

k.)

3 Theta sums and unipotent flows

Let us firstly note that it is sufficient (see [25] for details) to prove Theorem
2 for pair correlation functions of the form

R2(ψ1, ψ2, h, λ) =
1

Bkλk/2

∞∑
i,j=1

ψ1(
λi

λ
)ψ2(

λj

λ
)ĥ

(
λk/2−1(λi − λj)

)
, (19)

Here ψ1, ψ2 ∈ S(R≥0) are real-valued, and S(R≥0) denotes the Schwartz class
of infinitely differentiable functions of the half line R≥0 which, as well as their
derivatives, decrease rapidly at +∞. ĥ is the Fourier transform of a compactly
supported function h ∈ C0(R), ĥ(s) =

∫
R

h(u)e(1
2us) du with the shorthand

e(z) := e2πiz.
A short calculation shows that R2(ψ1, ψ2, h, λ) can be written as an inte-

gral over a product of theta sums,

R2(ψ1, ψ2, h, λ) =
1

Bk
vk/2−1×

×
∫

R

Θf

(
u + i

1
λ

, 0;
(

0
α

))
Θg

(
u + i

1
λ

, 0;
(

0
α

))
h(vk/2−1u) du, (20)

for the choice of functions f(w) = ψ1(‖w‖2) and g(w) = ψ2(‖w‖2). Here the
theta sum Θf is defined for any Schwartz function f ∈ S(Rk) by

Θf (τ, φ; ξ) = vk/4
∑

m∈Zk

fφ((m − y)v1/2) e( 1
2‖m − y‖2u + m · x), (21)

where

τ = u + iv, (u ∈ R, v ∈ R>0), φ ∈ R, ξ =
(

x
y

)
(x,y ∈ R

k). (22)

The family of functions fφ is an extension of f =: fφ

∣∣
φ=0

defined by

fφ(w) =
∫

Rk

Gφ(w,w′)f(w′) dw′, (23)
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with the integral kernel

Gφ(w,w′) = e(−kσφ/8)| sin φ|−k/2e

[ 1
2 (‖w‖2 + ‖w′‖2) cos φ − w · w′

sin φ

]
,

(24)
where σφ = 2ν+1 when νπ < φ < (ν+1)π, ν ∈ Z. The operators Uφ : f �→ fφ

are unitary, and in particular U0 = id.
The idea behind the introduction of the extra variables φ and x is that

the product ΘfΘg can be identified with a function on the finite volume
homogeneous space M = Γ\Gk where Gk = SL(2, R)�R

2k and Γ is a lattice
in Gk. The multiplication law for Gk is (M ; ξ)(M ′; ξ′) = (MM ′; ξ + Mξ′)
where M,M ′ ∈ SL(2, R) and ξ, ξ′ ∈ R

2k; the action of SL(2, R) on R
2k is

defined by

Mξ =
(

ax + by
cx + dy

)
, M =

(
a b
c d

)
, ξ =

(
x
y

)
. (25)

The connection between M ∈ SL(2, R) and the variables τ = u + iv, φ used
above is given by the Iwasawa decomposition

M =
(

1 u
0 1

) (
v1/2 0
0 v−1/2

)(
cos φ − sin φ
sin φ cos φ

)
. (26)

The first of the two crucial ingredients in the proof of the Poisson limit
of the pair correlation functions is following equidistribution theorem [24, 25]
whose proof in turn uses Ratner’s classification of ergodic measures invariant
under a unipotent flow [33, 34]. The following theorem may be viewed (strictly
speaking only in the case σ = 0) as a special case of Shah’s Theorem 1.4 [40];
for a proof see [24] (σ = 0) and [25] (σ > 0).

Theorem 3 (Equidistribution of translates of unipotent orbits). Let
Γ be a subgroup of SL(2, Z)�Z

2k of finite index, and assume the components of
the vector (y, 1) ∈ R

k+1 are linearly independent over Q. Let h be a continuous
function R → R≥0 with compact support. Then, for any bounded continuous
function F on Γ\Gk and any σ ≥ 0, we have

lim
v→0

vσ

∫
R

F

(
u + iv, 0;

(
0
y

))
h(vσu) du =

1
µ(Γ\Gk)

∫
Γ\Gk

F dµ

∫
R

h(w) dw

(27)
where µ is the Haar measure of Gk.

The dynamical interpretation of the above average is the following. Let us
define the flows Ψu, Φt : Γ\Gk → Γ\Gk by right translation with

Ψu
0 =

((
1 u
0 1

)
;0

)
, Φt

0 =
( (

e−t/2 0
0 et/2

)
;0

)
, (28)

respectively. Then
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Γ

(
u+i e−t, 0;

(
0
y

) )
= Γg0Ψ

u
0 Φt

0 = Φt◦Ψu(Γg0), g0 :=
(

1;
(

0
y

))
(29)

and we can thus view the integral for t = 0 as an integral along an orbit of the
unipotent flow Ψu which includes (at time u = 0) the point g0; for t > 0 we
obtain a translate by Φt of the above orbit which, by Theorem 3, eventually
becomes equidistributed in Γ\Gk.

The integral on the right-hand-side of the above equidistribution theorem
can be worked out explicitly for F = ΘfΘg and yields precisely the first term
in Theorem 2. The problem is that F is not a bounded function. To prove
convergence in this case we need to ensure that the translated orbit stays
sufficiently far away from the singularities of F ; this is achieved by imposing
diophantine conditions on y. The only exception is a small piece of the orbit at
u = 0 which runs into the singularity and produces an additional contribution,
which in fact yields the second term in Theorem 2.

4 The boxed oscillator, lattice points in thin parabolic
strips, and distribution modulo one

The Hamiltonian of the boxed oscillator is H = − ∂2

∂x2 − ∂2

∂y2 + ω2y2, where
we assume Dirichlet boundary conditions at x = 0, �. Its eigenvalues are Ej =
(π/�)2n2 + (2m + 1)ω, for n = 1, 2, 3, . . . and m = 0, 1, 2, . . .. Up to overall
additive and multiplicative constants these can be written as λj = n2α + m
with α = (π/�)2/2ω. The eigenvalue number is asymptotically #{j : λj ≤
λ} ∼ cλ3/2 where c = meas{x, y ≥ 0, αx2 + y ≤ 1} = 2

3
√

α
.

The statistical properties of the sequence λj are directly related to those
of n2α mod 1. For consider those λj = n2α + m, which fall into the interval
[λ, λ + 1), for some fixed λ > 0. Clearly for every n = 1, 2, . . . such that
n2α < λ + 1 there exists a unique m = 0, 1, 2, . . . such that λj ∈ [λ, λ + 1).
The values of λj in this interval are thus in one-to-one correspondence with
n2α mod 1, n = 1, . . . , N <

√
(λ + 1)/α. The distribution of the λj in small

random intervals can therefore be understood in terms of the distribution of
n2α mod 1 in small (i.e. of size of the order of 1/N) random intervals of the
unit circle. Let [ξ, ξ + N−1σ] + Z be such an interval where ξ is uniformly
distributed on the unit circle; define the analogue of the counting function (3)
by

N (N, ξ, σ) = #{n = 1, . . . , N : n2α ∈ [ξ, ξ + N−1σ] + Z}. (30)

In view of the Berry-Tabor conjecture we expect that—for generic α— this
number is Poisson distributed as N → ∞, i.e., for any bounded function
g : Z≥0 → C, ∫ 1

0

g
(N (N, ξ, σ)

)
dξ →

∞∑
k=0

g(k)
σk

k!
e−σ . (31)

The best result we have in this direction is again for the number variance



172 Jens Marklof

Σ2(N, σ) :=
∫ 1

0

{N (N, ξ, σ) − σ}2 dξ, (32)

which can be shown to converge to the Poisson limit for almost all α.

Theorem 4 (Poisson limit of the number variance). There is a set P ⊂
R of full Lebsgue measure such that, for every α ∈ P and every σ > 0,

lim
N→∞

Σ2(N, σ) = σ. (33)

As for Theorem 1 above, this theorem follows from the Poisson distribution
of the more general pair correlation function

R2(ψ, N) =
1
N

N∑
j,k=1

∑
ν∈Z

ψ
(
N(j2α − k2α + ν)

)
(34)

where ψ ∈ C0(R), continuous and with compact support. The following the-
orem is proved by Rudnick and Sarnak [35] by averaging R2(ψ, N) and its
square over α and using a variant of the Borel-Cantelli argument.

Theorem 5 (Poisson limit of pair correlation). There is a set P ⊂ R

of full Lebsgue measure such that, for every α ∈ P and every ψ ∈ C0(R), we
have

lim
N→∞

R2(ψ, N) = ψ(0) +
∫

R

ψ(x) dx. (35)

The number variance is in this case in fact identical to the pair correlation
function, i.e., Σ2(N, σ) = R2(ψ, N)−σ2 for the choice ψ(x) = max{σ−|x|, 0},
see Appendix B.

5 On n2α mod 1 and the equidistribution of Kronecker
sequences along closed horocycles

In view of Theorems 1 and 2, one would like to give a more explicit char-
acterization (in terms of diophantine conditions) for the set of α for which
n2α mod 1 is Poisson distributed. Would, for instance, the assertion in Theo-
rem 5 hold for α =

√
2 ? Motivated by the affirmative answer in the case of

the pair correlation problem for quadratic forms discussed in the previous sec-
tion, the idea is to look for an equidistribution problem involving unipotent
orbits, which can be employed to understand the pair correlation densities
of n2α mod 1. To this end, consider a pair correlation function with smooth
weighting,

R2(f, h,N) =
1
N

∑
j,k∈Z

∑
ν∈Z

f

(
j

N

)
f

(
k

N

)
ĥ
(
N(j2α − k2α + ν)

)
(36)
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where f ∈ C
∞
0 (R), h ∈ C0(R) with Fourier transform

ĥ(s) =
∫

R

h(u)e(1
2us) du = O(|s|−2) (37)

for s → ∞. Applying Poisson summation to the ν-sum, we obtain

R2(f, h,N) =
1
N

∑
m∈Z

h

(
m

N

)∣∣Θf (mα + iN−2, 0)
∣∣2 (38)

where Θf (τ, φ) is the theta sum (21) for dimension k = 1 at ξ = 0, i.e.,

Θf (τ, φ) = v1/4
∑

n∈Zk

fφ(nv1/2) e( 1
2n2u). (39)

The pair correlation function may thus be viewed as a special case of averages
of the form

1
M

M∑
m=1

F (mα + iv, 0) (40)

as M → ∞ and v → 0, where F is a continuous function on M = Γ\SL(2, R),
where Γ is a lattice in SL(2, R) which contains the parabolic subgroup{(

1 j
0 1

)
: j ∈ Z

}
; we will also assume for simplicity that −1 ∈ Γ . In partic-

ular, for Γ = Γθ, the invariance group of |Θf | (the “theta group”), one can
show [28] that if for some fixed α ∈ R and F = |Θf |2 we have

lim
M→∞

1
M

M∑
m=1

F (mα + iv, 0) =
1

µ(M)

∫
M

F dµ, v = M−2 → 0, (41)

then the limiting pair correlation density of n2α mod 1 is Poisson.
The equidistribution theorem (41) we are here interested in combines two

classical equidistribution problems. The first is the equidistribution of long
closed horocycles [37], i.e.,

lim
y→0

∫ 1

0

F (u + iv, 0) du =
1

µ(M)

∫
M

F dµ, (42)

for any sufficiently nice test function F , e.g., bounded continuous. The second
is the distribution of the Kronecker sequence α, 2α, 3α . . . , Mα mod 1, which
is well known to be equidistributed as M → ∞ for all irrational α; that is

lim
M→∞

1
M

M∑
m=1

F (mα + iv, 0) =
∫ 1

0

F (u + iv, 0) du (43)

for fixed v > 0. Taking both limits M → ∞, v → 0 simultaneously requires
a careful analysis. Of particular interest is the case when the number M of
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points on the horocycle grows slower than the length of the horocycle, v−1.
In this case the problem is that the mean distance between the points on
the horocycles grows as v → 0. It seems therefore difficult to show that any
possible limit measure is invariant under some unipotent action, and hence
Ratner’s theorem cannot be applied (in the present approach, that is). The
proof of the following theorem uses instead methods from spectral analysis
[28].

Theorem 6 (Equidistribution of mα mod 1 along closed horocycles).
Let Γ be a lattice in SL(2, R) as described above. Fix ν > 0. Then there is a
set P = P (Γ, ν) ⊂ R of full Lebesgue measure such that for any α ∈ P , any
bounded continuous function F : M → C, and any constants 0 < C1 < C2,
we have

1
M

M∑
m=1

F (mα + iv, 0) → 1
µ(M)

∫
M

F dµ (44)

uniformly as M → ∞ and C1M
−ν ≤ v ≤ C2M

−ν .

This theorem holds in fact for a larger class of test functions F which are
continuous but unbounded, and which allow the choice F = |Θf |2. Theorem 6
thus implies Rudnick & Sarnak’s result [35] that the pair correlation density
of n2α mod 1 is Poisson for almost all α.

If Γ = SL(2, Z) or a congruence subgroup, and we increase the number of
points on the horocycles sufficiently fast (i.e., ν is chosen sufficiently small)
we are able to prove equidistribution under explicit diophantine conditions.
The best possible result is obtained under the assumption that the Fourier
coefficients of the eigenfunctions on the Laplacian on Γ\H (H denotes the
complex upper half plane) are almost bounded; this hypothesis is usually
referred to as the Ramanujan conjecture for Maass wave forms.

Theorem 7 (Equidistribution of mα mod 1 along closed horocycles).
Let Γ be a congruence subgroup of SL(2, Z) and assume the Ramanujan con-
jecture for Maass waveforms on Γ\H holds. Let α ∈ R be of type κ ≥ 2, and
fix ν < min{2, 2

κ−2}. Then for any bounded continuous function F : M → C,
and any constant C1 > 0, we have

1
M

M∑
m=1

F (mα + iv, 0) → 1
µ(M)

∫
M

F dµ (45)

uniformly as M → ∞, v → 0 so long as v ≥ C1M
−ν .

This statement is proved in [28]. If κ ≥ 3, then ν < 2
κ−2 is in fact the best

possible restriction on ν, in the sense that there are otherwise counter exam-
ples for which the assertion of the theorem is wrong [28]. Thus, in contrast
with the equidistribution theorem for unipotent flows (Theorem 3), we must
impose diophantine conditions even in the case of bounded test functions.
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It would be very interesting to extend Theorem 7 to ν = 2, which, as
mentioned above, is the case relevant to the pair correlation problem. Note
that the theta group Γθ is a congruence subgroup of SL(2, Z).

6 Distribution modulo one and almost modular functions

In the previous section we have presented some evidence that the distribution
of n2α mod 1 in intervals of size 1/N is described by a Poisson distribution.
In the same vein (as mentioned in the introduction) it can be expected that
a central limit theorem holds for slightly larger intervals. Let us here consider
the case when the interval size is macroscopic. For any fixed interval [ξ, ξ +η],
0 < η < 1, we are interested in the counting function

Nα(N, ξ, η) = #{n = 1, . . . , N : n2α ∈ [ξ, ξ + η] + Z}. (46)

For irrational α, the sequence n2α is equidistributed mod 1, which means that
N (N, ξ, η) ∼ Nη as N → ∞. The error term is thus

Eα(N, ξ, η) = Nα(N, ξ, η) − Nη. (47)

There are two possibilities to study the fluctuations of this function. Fix
the interval and take α to be uniformly distributed in [0, 1), or fix α and take
ξ to be uniformly distributed in [0, 1) with η fixed as usual (note, however,
that this time we consider large intervals compared with the mean separation
1/N). In the first case we have the following statement.

Theorem 8 (Limit theorem for the error term). For α uniformly dis-
tributed in [0, 1), N−1/2Eα(N, ξ, η) has a limit distribution as N → ∞. That
is, there exists a probability measure νξ,η on R such that, for any bounded
continuous function g : R → R, we have

lim
N→∞

∫ 1

0

g
(
N−1/2Eα(N, ξ, η)

)
dα =

∫
R

g(w) νξ,η(dw). (48)

Furthermore, νξ,η is even.

This is a special case of Theorem 2.1 in [26], which also provides an ex-
plicit formula for the variance of the limit distribution. To sketch the proof of
Theorem 8 let us write

Eα(N, ξ, η) =
N∑

n=1

ψ(n2α) − N

∫ 1

0

ψ(t) dt, (49)

where ψ is the characteristic function of [ξ, ξ + η]. ψ could in fact be a more
general real- or complex-valued function; we will only require that its Fourier
coefficients



176 Jens Marklof

ψ̂k =
∫ 1

0

ψ(t) e(−kt) dt. (50)

satisfy
ψ̂0 = 0, (51)

and that there are constants β > 1/2 and C(ψ) > 0 such that

|ψ̂k| ≤ C(ψ)
|k|β (52)

for all k �= 0. Fourier expansion (which converges only in the L2 sense) yields

Eα(N, ξ, η) =
∑
k �=0

ψ̂k

{
N∑

n=1

e(kn2x)

}
. (53)

It is known [19] that the theta sums inside the curly brackets individually
have a limit distribution, as N → ∞. This result follows from the observation
(cf. previous sections) that theta sums can be identified with functions on the
metaplectic cover of SL(2, R) which are invariant under certain subgroups of
finite index in the metaplectic analogue of SL(2, Z). The limit theorem is then
a direct consequence for the equidistribution of long closed horocycles on the
metaplectic cover [20].

One can show that the truncated Fourier expansion

E(K)
α (N, ξ, η) =

∑
0<|k|≤K

ψ̂k

{
N∑

n=1

e(kn2x)

}
(54)

can as well be identified with functions on the metaplectic cover of SL(2, R),
where the index of the invariance subgroup is still finite but becomes large
with increasing K. Following the same steps as in [19] one can therefore show
that E

(K)
α (N, ξ, η) satisfies the limit theorem, Theorem 8.

The variance of the difference Eα(N, ξ, η) − E
(K)
α (N, ξ, η) is, uniformly in

N � 1, arbitrarily small for K sufficiently large; hence the distributions of
Eα(N, ξ, η) and E

(K)
α (N, ξ, η) are arbitrarily close for K large. Theorem 8

follows now from standard probabilistic arguments.
The fact that each approximation E

(K)
α (N, ξ, η) is a modular function, but

Eα(N, ξ, η) is not (in general), suggests the name almost modular function, in
close analogy with almost periodic functions in the sense of Besicovitch. The
above arguments can in fact be extended to general classes of almost modular
functions, which are characterized by the approximability (with respect to a
certain Lp norm) by modular functions invariant under congruence subgroups
of large index [26].

Another interesting example of an almost modular function is the loga-
rithm of
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∞∏
n=1

(
1 − e(n2z)

)
, (55)

which is studied in [27]. Its limit distribution in the complex plane is in fact
rotation-invariant.
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A Proof of Theorem 1

Because of (2) we have, for large X,

Σ2(X,L) ∼ 1
X

∫ ∞

0

N (T, L)2ρ
(

T

X

)
dT − L2. (56)

Expand

N (T, L) =
∑

j

χ1

(
Xj − T

L

)
, (57)

where χ1 is the indicator function of the interval [0, 1]. This yields

Σ2(X,L) + L2 ∼ 1
X

∑
i,j

∫ ∞

−∞
χ1

(
Xi − T

L

)
χ1

(
Xj − T

L

)
ρ

(
T

X

)
dT. (58)

We have replaced 0 in the lower limit by −∞, which is permitted since ρ is
supported on the positive half line. Substitute T by T + 1

2 (Xi + Xj), and the
right hand side becomes

1
X

∑
i,j

∫ ∞

−∞
χ1

( 1
2 (Xi − Xj) − T

L

)
×

× χ1

( 1
2 (Xj − Xj) − T

L

)
ρ

( 1
2 (Xi + Xj) + T

X

)
dT. (59)

The integration in T is restricted by the inequalities

0 ≤ 1
2
(Xi − Xj) − T ≤ L, 0 ≤ 1

2
(Xj − Xi) − T ≤ L, (60)

which imply 0 ≤ −T ≤ L, so T is bounded. Therefore, by the continuity of ρ,
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ρ

( 1
2 (Xi + Xj) + T

X

)
∼ ρ

( 1
2 (Xi + Xj)

X

)
, (61)

and it is sensible to write (59) as

1
X

∑
i,j

ρ

( 1
2 (Xi + Xj)

X

)
W (Xi − Xj) + error term (62)

where

W (s) :=
∫ ∞

−∞
χ1

(
T + 1

2s

L

)
χ1

(
T − 1

2s

L

)
dT = max{L − |s|, 0}. (63)

Since the function ψ(r1, r2, s) = ρ( 1
2 (r1 + r2))W (s) is continuous and has

compact support, (18) yields

lim
X→∞

Σ2(X,L) + L2 =
∫ ∞

0

ψ(r, r, 0) dr +
∫

R

∫ ∞

0

ψ(r, r, s) dr ds = L + L2,

(64)
which proves Theorem 1, provided the above error term is indeed small. To
investigate this, note that

|error term| ≤ 1
X

∑
i,j

ρ̃

( 1
2 (Xi + Xj)

X

)
W (Xi − Xj) (65)

where ρ̃ is a continuous function with compact support such that

sup
0≤−T≤L

∣∣∣∣ρ
(

r +
T

X

)
− ρ(r)

∣∣∣∣ ≤ ρ̃(r) (66)

for all r. It is evident that for any given ε > 0 we can find a function ρ̃
meeting this requirement for all X large enough and satisfying in addition∫ ∞
0

ρ̃(r)dr < ε. By (18) the right hand side of (65) converges to

(L2 + L)
∫ ∞

0

ρ̃(r)dr < (L2 + L)ε (67)

which means that the error term is smaller than any ε > 0, hence zero. ��

B Proof of Theorem 4

We have
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Σ2(N, σ) + σ2

=
∞∑

j,k=1

∑
ν,ν′∈Z

∫ 1

0

{
χ[0,σ]

(
N(j2α + ξ + ν)

)
χ[0,σ]

(
N(k2α + ξ + ν′)

)}
dξ

=
∞∑

j,k=1

∑
ν∈Z

∫
R

{
χ[0,σ]

(
N(j2α + ξ + ν)

)
χ[0,σ]

(
N(k2α + ξ)

)}
dξ

=
1
N

∞∑
j,k=1

∑
ν∈Z

∫
R

{
χ[0,σ]

(
N(j2α − k2α + ν) + ξ

)
χ[0,σ](ξ)

}
dξ (68)

and thus Σ2(N, σ)+σ2 = R2(ψ, N) for ψ(x) =
∫

R

{
χ[0,σ](x+ξ)χ[0,σ](ξ)

}
dξ =

max{σ − |x|, 0}. Since ψ ∈ C0(R), and ψ(0) +
∫

R
ψ(x) dx = σ + σ2, Theorem

4 is thus indeed a special case of Theorem 5. ��
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1 Introduction

The distribution of the eigenvalues of a quantum Hamiltonian is a central
subject that is studied in quantum chaos. There are some generally accepted
conjectures about the nearest-neighbor spacing distributions of the eigenval-
ues.

Unless otherwise stated we use the following assumptions: The quantum
mechanical system is desymmetrized with respect to all its unitary symme-
tries, and whenever we examine the distribution of the eigenvalues we regard
them on the scale of the mean level spacings. Moreover, it is generically be-
lieved that after desymmetrization a generic quantum Hamiltonian possesses
no degenerate eigenvalues.
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Conjecture 1 (Berry, Tabor [1]). If the corresponding classical system is in-
tegrable, the eigenvalues behave like independent random variables and the
distribution of the nearest-neighbor spacings is close to the Poisson distribu-
tion, i.e. there is no level repulsion.

Conjecture 2 (Bohigas, Giannoni, Schmit [2, 3]). If the corresponding classi-
cal system is chaotic, the eigenvalues are distributed like the eigenvalues of
hermitian random matrices [4]. The corresponding ensembles depend only on
the symmetries of the system:

• For chaotic systems without time-reversal invariance the distribution of
the eigenvalues should be close to the distribution of the Gaussian Unitary
Ensemble (GUE) which is characterized by a quadratic level repulsion.

• For chaotic systems with time-reversal invariance and integer spin the
distribution of the eigenvalues should be close to the distribution of the
Gaussian Orthogonal Ensemble (GOE) which is characterized by a linear
level repulsion.

• For chaotic systems with time-reversal invariance and half-integer spin the
distribution of the eigenvalues should be close to the distribution of the
Gaussian Symplectic Ensemble (GSE) which is characterized by a quartic
level repulsion.

These conjectures are very well confirmed by numerical calculations, but sev-
eral exceptions are known. Here are two examples:

Exception 1 The harmonic oscillator is classically integrable, but its spec-
trum is equidistant.

Exception 2 The geodesic motion on surfaces with constant negative curva-
ture provides a prime example for classical chaos. In some cases, however,
the nearest-neighbor distribution of the eigenvalues of the Laplacian on these
surfaces appears to be Poissonian.

“A strange arithmetical structure of chaos” in the case of surfaces of constant
negative curvature that are generated by arithmetic fundamental groups was
discovered by Aurich and Steiner [5], see also Aurich, Bogomolny, and Steiner
[6]. Deviations from the expected GOE-behaviour in the case of a particu-
lar arithmetic surface were numerically observed by Bohigas, Giannoni, and
Schmit [3] and by Aurich and Steiner [7]. Computations coming out in [7, 8]
showed, however, that the level statistics on 30 generic (i.e. non-arithmetic)
surfaces were in nice agreement with the expected random-matrix theory pre-
diction in accordance with conjecture 2. This has led Bogomolny, Georgeot,
Giannoni, and Schmit [9], Bolte, Steil, and Steiner [10], and Sarnak [11] to
introduce the concept of arithmetic quantum chaos.

Conjecture 3 (Arithmetic Quantum Chaos). On surfaces of constant negative
curvature that are generated by arithmetic fundamental groups, the distrib-
ution of the eigenvalues of the quantum Hamiltonian are close to the Poisson
distribution. Due to level clustering small spacings occur comparably often.
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We compute numerically the eigenvalues and eigenfunctions of the Lapla-
cian that describes the quantum mechanics of a point particle moving freely
in the non-integrable three-dimensional hyperbolic space of constant negative
curvature generated by the Picard group. The Picard group is arithmetic and
we find that our results are in accordance with the conjecture of arithmetic
quantum chaos.

For the definition of an arithmetic group we refer the reader to [12].

2 Preliminaries: The modular group

For simplicity we first introduce the topology and geometry of the two-
dimensional surface of constant negative curvature that is generated by the
modular group [13]. It will then be easy to carry over to the three-dimensional
space of constant negative curvature that is generated by the Picard group.

The construction begins with the upper half-plane,

H = {(x, y) ∈ R2; y > 0},
equipped with the hyperbolic metric of constant negative curvature

ds2 =
dx2 + dy2

y2
.

A free particle on the upper half-plane moves along geodesics , which are
straight lines and semicircles perpendicular to the x-axis, respectively, see
figure 1.

x

y

Fig. 1. Geodesics in the upper half-plane of constant negative curvature.

Expressing a point (x, y) ∈ H as a complex number z = x+iy, all isometries
of the hyperbolic metric are given by the group of linear fractional transfor-
mations,
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z �→ γz =
az + b

cz + d
; a, b, c, d ∈ R, ad − bc = 1,

which is isomorphic to the group of matrices

γ =
(

a b
c d

)
∈ SL(2,R),

up to a common sign of the matrix entries,

SL(2,R)/{±1} = PSL(2,R).

In analogy to the concept of a fundamental cell in a regular lattice of
a crystal we can introduce a fundamental domain of a discrete group Γ ⊂
PSL(2,R).

Definition 1. A fundamental domain of the discrete group Γ is an open sub-
set F ⊂ H with the following conditions: The closure of F meets each orbit
Γz = {γz; γ ∈ Γ} at least once, F meets each orbit Γz at most once, and
the boundary of F has Lebesgue measure zero.

If we choose the group Γ to be the modular group,

Γ = PSL(2,Z),

which is generated by a translation and an inversion,
(

1 1
0 1

)
: z �→ z + 1,

(
0 −1
1 0

)
: z �→ −z−1,

the fundamental domain of standard shape is

F = {z = x + iy ∈ H; −1
2

< x <
1
2
, |z| > 1},

see figure 2. The isometric copies of the fundamental domain γF , γ ∈ Γ ,
tessellate the upper half-plane completely without any overlap or gap, see
figure 3.

Identifying the fundamental domain F and parts of its boundary with all
its isometric copies γF , ∀γ ∈ Γ , defines the topology to be the quotient space
Γ\H. The quotient space Γ\H can also be thought of as the fundamental
domain F with its faces glued according to the elements of the group Γ , see
figure 4.

Any function being defined on the upper half-plane which is invariant
under linear fractional transformations,

f(z) = f(γz) ∀γ ∈ Γ,
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x

y

-1/2 1/2

1

Fig. 2. The fundamental domain of the modular group.

Fig. 3. The upper half-plane tessellated with isometric copies of the fundamental
domain.

x-1/2 1/2

Fig. 4. Identifying the faces of the fundamental domain according to the elements
of the modular group.
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can be identified with a function living on the quotient space Γ\H. A function
on the quotient space is tantamount to a function on the fundamental domain
with periodic boundary conditions. Vice versa, any function being defined on
the quotient space can be identified with an automorphic function, f(z) =
f(γz), ∀γ ∈ Γ , living on the upper half-plane.

With the hyperbolic metric the quotient space Γ\H inherits the structure
of an orbifold. An orbifold locally looks like a manifold, with the exception
that it is allowed to have elliptic fixed-points.

The orbifold of the modular group has one parabolic and two elliptic fixed-
points,

z = i∞, z = i, and z =
1
2

+ i
√

3
2

.

The parabolic one fixes a cusp at z = i∞ which is invariant under the parabolic
element (

1 1
0 1

)
.

Hence the orbifold of the modular group is non-compact. The volume element
corresponding to the hyperbolic metric reads

dµ =
dxdy

y2
,

such that the volume of the orbifold Γ\H is finite,

vol(Γ\H) =
π

3
.

Scaling the units such that � = 1 and 2m = 1, the stationary Schrödinger
equation which describes the quantum mechanics of a point particle moving
freely in the orbifold Γ\H becomes

(∆ + λ)f(z) = 0,

where the hyperbolic Laplacian is given by

∆ = y2(
∂2

∂x2
+

∂2

∂y2
)

and λ is the scaled energy. We can relate the the eigenvalue problem defined on
the orbifold Γ\H to the eigenvalue problem defined on the upper half-space,
with the eigenfunctions being subject to the automorphy condition relative to
the discrete group Γ ,

f(γz) = f(z) ∀γ ∈ Γ.
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In order to avoid solutions that grow exponentially in the cusp, we impose
the boundary condition

f(z) = O(yκ) for z → i∞
where κ is some positive constant.

The solutions of this eigenvalue problem can be identified with Maass
waveforms [14]. The identification is worthwhile, since much is known about
Maass waveforms from number theory and harmonic analysis which will sim-
plify their computation, see e.g. [15, 16, 17, 18, 19, 20, 13, 21, 22, 23].

3 The Picard group

In the three-dimensional case one considers the upper half-space,

H = {(x0, x1, y) ∈ R3; y > 0}
equipped with the hyperbolic metric

ds2 =
dx2

0 + dx2
1 + dy2

y2
.

The geodesics of a particle moving freely in the upper half-space are straight
lines and semicircles perpendicular to the x0-x1-plane, respectively, see figure
5.

x0

x1

y

Fig. 5. Geodesics in the upper half-space of constant negative curvature.

Expressing any point (x0, x1, y) ∈ H as a Hamilton quaternion, z = x0 +
ix1 + jy, with the multiplication defined by i2 = −1, j2 = −1, ij + ji = 0, all
motions in the upper half-space are given by linear fractional transformations
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z �→ γz = (az + b)(cz + d)−1; a, b, c, d ∈ C, ad − bc = 1.

The group of these transformations is isomorphic to the group of matrices

γ =
(

a b
c d

)
∈ SL(2,C)

up to a common sign of the matrix entries,

SL(2,C)/{±1} = PSL(2,C).

The motions provided by the elements of PSL(2,C) exhaust all orientation
preserving isometries of the hyperbolic metric on H.

Remark 1. If one wants to avoid using quaternions, the point (x0, x1, y) ∈ H
can be expressed by (x, y) ∈ C × R with x = x0 + ix1 and y > 0. But then
the linear fractional transformation look somewhat more complicated,

(x, y) �→ γ(x, y) =
( (ax + b)(c̄x̄ + d̄) + ac̄y2

|cx + d|2 + |cy|2 ,
y

|cx + d|2 + |cy|2
)
.

In order to keep the notation simple we hence use quaternions.

We now choose the discrete group Γ ⊂ PSL(2,C) generated by the cosets
of three elements,

(
1 1
0 1

)
,

(
1 i
0 1

)
,

(
0 −1
1 0

)
,

which yield two translations and one inversion,

z �→ z + 1, z �→ z + i, z �→ −z−1.

This group Γ is called the Picard group. The three motions generating Γ ,
together with the coset of the element

(
i 0
0 −i

)

that is isomorphic to the symmetry

z = x + jy �→ izi = −x + jy,

can be used to construct the fundamental domain of standard shape

F = {z = x0 + ix1 + jy ∈ H; −1
2

< x0 <
1
2
, 0 < x1 <

1
2
, |z| > 1},

see figure 6. Identifying the faces of the fundamental domain according to the
elements of the group Γ leads to a realization of the quotient space Γ\H, see
figure 7.
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x0

x1

y

Fig. 6. The fundamental domain of the Picard group.

x0

x1

Fig. 7. Identifying the faces of the fundamental domain according to the elements
of the Picard group.

With the hyperbolic metric the quotient space Γ\H inherits the structure
of an orbifold that has one parabolic and four elliptic fixed-points,

z = j∞, z = j, z =
1
2

+ j

√
3
4
, z =

1
2

+ i
1
2

+ j

√
1
2
, z = i

1
2

+ j

√
3
4
.

The parabolic fixed-point corresponds to a cusp at z = j∞ that is invariant
under the parabolic elements

(
1 1
0 1

)
, and

(
1 i
0 1

)
.

The volume element deriving from the hyperbolic metric reads

dµ =
dx0dx1dy

y3
,
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such that the volume of the non-compact orbifold Γ\H is finite [24],

vol(Γ\H) =
ζK(2)
4π2

� 0.305

where

ζK(s) =
1
4

∑
ν∈Z[i]−{0}

(νν̄)−s, �s > 1,

is the Dedekind zeta function.
We are interested in the eigenfunctions of the Laplacian,

∆ = y2
( ∂2

∂x2
0

+
∂2

∂x2
1

+
∂2

∂y2

) − y
∂

∂y
,

which determine the quantum mechanics of a particle moving freely in the
orbifold Γ\H. As in the preceding section we identify the solutions with Maass
waveforms [25].

Since the Maass waveforms are automorphic, and therefore periodic in x0

and x1, it follows that they can be expanded into a Fourier series,

f(z) = u(y) +
∑

β∈Z[i]−{0}
aβyKir(2π|β|y) e2πi�βx, (1)

where

u(y) =

{
b0y

1+ir + b1y
1−ir if r �= 0,

b2y + b3y ln y if r = 0.

Kir(x) is the K-Bessel function whose order is connected with the eigenvalue
λ by

λ = r2 + 1.

If a Maass waveform vanishes in the cusp,

lim
z→j∞

f(z) = 0,

it is called a Maass cusp form. Maass cusp forms are square integrable over
the fundamental domain, 〈f, f〉 < ∞, where

〈f, g〉 =
∫

Γ\H
f̄ g dµ

is the Petersson scalar product.
According to the Roelcke-Selberg spectral resolution of the Laplacian [16,

17], its spectrum contains both a discrete and a continuous part. The discrete
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part is spanned by the constant eigenfunction f0 and a countable number of
Maass cusp forms f1, f2, f3, . . . which we take to be ordered with increasing
eigenvalues, 0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .. The continuous part of the
spectrum λ ≥ 1 is spanned by the Eisenstein series E(x, 1 + ir) which are
known analytically [26, 27]. The Fourier coefficients of the functions ΛK(1 +
ir)E(x, 1 + ir) are given by

b0 = ΛK(1 + ir), b1 = ΛK(1 − ir), aβ = 2
∑

λ,µ∈Z[i]
λµ=β

∣∣λ
µ

∣∣ir,

where

ΛK(s) = 4π−sΓ (s)ζK(s)

has an analytic continuation into the complex plane except for a pole at s = 1.
Normalizing the Maass cusp forms according to

〈fn, fn〉 = 1,

we can expand any square integrable function φ ∈ L2(Γ\H) in terms of Maass
waveforms, [28],

φ(z) =
∑
n≥0

〈fn, φ〉fn(z) +
1

2πi

∫
�s=1

〈E(·, s), φ〉E(z, s) ds.

The eigenvalues and their associated Maass cusp forms are not known
analytically. Thus, one has to approximate them numerically. Previous calcu-
lations of eigenvalues for the Picard group can be found in [29, 30, 31, 32].
By making use of the Hecke operators [29, 33] and the multiplicative relations
among the coefficients, Steil [32] obtained a non-linear system of equations
which allowed him to compute 2545 consecutive eigenvalues. We extend these
computations with the use of Hejhal’s algorithm [34].

4 Hejhal’s algorithm

Hejhal found a linear stable algorithm for computing Maass waveforms to-
gether with their eigenvalues which he used for groups acting on the two-
dimensional hyperbolic plane [34], see also [35, 36]. We make use of this algo-
rithm which is based on the Fourier expansion and the automorphy condition.
We apply it for the Picard group acting on the three-dimensional hyperbolic
space. For the Picard group no small eigenvalues 0 < λ = r2 + 1 < 1 exist
[37]. Therefore, r is real and the term u(y) in the Fourier expansion of Maass
cusp forms vanishes. Due to the exponential decay of the K-Bessel function
for large arguments (12) and the polynomial bound of the coefficients [25],
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aβ = O(|β|), |β| → ∞,

the absolutely convergent Fourier expansion can be truncated,

f(z) =
∑

β∈Z[i]−{0}
|β|≤M

aβyKir(2π|β|y) e2πi�βx +[[ε]], (2)

if we bound y from below. Given ε > 0, r, and y, we determine the smallest
M = M(ε, r, y) such that the inequalities

2πMy ≥ r and Kir(2πMy) ≤ εmax
x

(Kir(x))

hold. Larger y allow smaller M . In all truncated terms,

[[ε]] =
∑

β∈Z[i]−{0}
|β|>M

aβyKir(2π|β|y) e2πi�βx,

the K-Bessel function decays exponentially in |β|, and already the K-Bessel
function of the first truncated summand is smaller than ε times most of the K-
Bessel functions in the sum of (2). Thus, the error [[ε]] does at most marginally
exceed ε. The reason why [[ε]] can exceed ε somewhat is due to the possibility
that the summands in (2) cancel each other, or that the coefficients in the
truncated terms are larger than in (2). By a finite two-dimensional Fourier
transformation the Fourier expansion (2) is solved for its coefficients

aγyKir(2π|γ|y) =
1

(2Q)2
∑

x∈X[i]

f(x + jy) e−2πi�γx +[[ε]], (3)

where X[i] is a two-dimensional equally distributed set of (2Q)2 numbers,

X[i] = {k0 + ik1

2Q
; ki = −Q + 1

2 ,−Q + 3
2 , . . . , Q − 3

2 , Q − 1
2 , i = 0, 1},

with 2Q > M + |γ|.
By automorphy we have

f(z) = f(z∗),

where z∗ is the Γ -pullback of the point z into the fundamental domain F ,

z∗ = γz, γ ∈ Γ, z∗ ∈ F .

Thus, a Maass cusp form can be approximated by

f(x + jy) = f(x∗ + jy∗) =
∑

β∈Z[i]−{0}
|β|≤M0

aβy∗Kir(2π|β|y∗) e2πi�βx∗
+[[ε]], (4)
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where y∗ is always larger or equal than the height y0 of the lowest points of
the fundamental domain F ,

y0 = min
z∈F

(y) =
1√
2
,

allowing us to replace M(ε, r, y) by M0 = M(ε, r, y0).
Choosing y smaller than y0 the Γ -pullback z �→ z∗ of any point into the

fundamental domain F makes at least once use of the inversion z �→ −z−1,
possibly together with the translations z �→ z +1 and z �→ z +i. This is called
implicit automorphy , since it guarantees the invariance f(z) = f(−z−1). The
conditions f(z) = f(z +1) and f(z) = f(z +i) are automatically satisfied due
to the Fourier expansion.

Making use of the implicit automorphy by replacing f(x + jy) in (3) with
the right-hand side of (4) gives

aγyKir(2π|γ|y)

=
1

(2Q)2
∑

x∈X[i]

∑
β∈Z[i]−{0}
|β|≤M0

aβy∗Kir(2π|β|y∗) e2πi�βx∗
e−2πi�γx +[[2ε]], (5)

which is the central identity in the algorithm.
The symmetry in the Picard group and the symmetries of the fundamental

domain imply that the Maass waveforms fall into four symmetry classes [32]
named D, G, C, and H, satisfying

D : f(x + jy) = f(ix + jy) = f(−x̄ + jy),
G : f(x + jy) = f(ix + jy) = −f(−x̄ + jy),
C : f(x + jy) = −f(ix + jy) = f(−x̄ + jy),
H : f(x + jy) = −f(ix + jy) = −f(−x̄ + jy),

respectively, see figure 8, from which the symmetry relations among the coef-
ficients follow,

D : aβ = aiβ = aβ̄ ,

G : aβ = aiβ = −aβ̄ ,

C : aβ = −aiβ = aβ̄ ,

H : aβ = −aiβ = −aβ̄ .

Defining

cs(β, x) =
∑

σ∈Sβ

sσβ e2πi�σx,

where sσβ is given by
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x0

x1

y

D

x0

x1

y

G

x0
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y

C

x0

x1

y

H

Fig. 8. The symmetries D, G, C, and H from top left to bottom right.

aσ = sσβaβ

and

σ ∈ Sβ =

{
{β, iβ,−β,−iβ, β̄, iβ̄,−β̄,−iβ̄} if β̄ �∈ {β, iβ,−β,−iβ},
{β, iβ,−β,−iβ} else,

the Fourier expansion (1) of the Maass waveforms can be written

f(z) = u(y) +
∑

β∈Z̃[i]−{0}
aβyKir(2π|β|y) cs(β, x),

where the tilde operator on a set of numbers is defined such that

X̃ ⊂ X,
⋃

x∈X̃

Sx = X, and
⋂

x∈X̃

Sx = ∅

holds.
Forgetting about the error [[2ε]] the set of equations (5) can be written as

∑
β∈Z̃[i]−{0}
|β|≤M0

Vγβ(r, y)aβ = 0, γ ∈ Z̃[i] − {0}, |γ| ≤ M0, (6)

where the matrix V = (Vγβ) is given by
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Vγβ(r, y) = #{σ ∈ Sγ}yKir(2π|γ|y)δγβ

− 1
(2Q)2

∑
x∈X[i]

y∗Kir(2π|β|y∗) cs(β, x∗) cs(γ,−x).

Since y < y0 can always be chosen such that Kir(2π|γ|y) is not too small, the
diagonal terms in the matrix V do not vanish for large |γ| and the matrix is
well conditioned.

We are now looking for the non-trivial solutions of (6) for 1 ≤ |γ| ≤ M0

that simultaneously give the eigenvalues λ = r2 + 1 and the coefficients aβ .
Trivial solutions are avoided by setting one of the coefficients equal to one,
aα = 1. Here we choose α to be 1, 2+ i, 1, and 1+ i, for the symmetry classes
D, G, C, and H, respectively.

Since the eigenvalues are unknown we discretize the r axis and solve for
each r value on this grid the inhomogeneous system of equations∑

β∈Z̃[i]−{0,α}
|β|≤M0

Vγβ(r, y#1)aβ = −Vγα(r, y#1), 1 ≤ |γ| ≤ M0, (7)

where y#1 < y0 is chosen such that Kir(2π|γ|y#1) is not too small for 1 ≤
|γ| ≤ M0. A good value to try for y#1 is given by 2πM0y

#1 = r.
It is important to check whether

gγ =
∑

β∈Z̃[i]−{0}
|β|≤M0

Vγβ(r, y#2)aβ , 1 ≤ |γ| ≤ M0,

vanishes where y#2 is another y value independent of y#1. Only if all gγ vanish
simultaneously the solution of (7) is independent of y. In this case λ = r2 + 1
is an eigenvalue and the aβ ’s are the coefficients of the Fourier expansion of
the corresponding Maass cusp form.

The probability to find an r value such that all gγ vanish simultaneously is
zero, because the discrete eigenvalues are of measure zero in the real numbers.
Therefore, we make use of the intermediate value theorem where we look for
simultaneous sign changes in gγ . Once we have found them in at least half
of the gγ ’s we have found an interval which contains an eigenvalue with high
probability. By some bisection and interpolation we can see if this interval
really contains an eigenvalue, and by nesting up the interval until its size
tends to zero we obtain the eigenvalue.

In order not to miss eigenvalues which lie close together nor to waste CPU
time with a too fine grid, we use the adaptive r grid introduced in [38].

5 Eigenvalues for the Picard group

We have found 13950 eigenvalues of the Laplacian for the Picard group in the
interval 1 < λ = r2 + 1 ≤ 19601. 4115 of them belong to eigenfunctions of
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the symmetry class D, 2805 to G, 3715 to C, and 3315 to H. The smallest
eigenvalue is λ = r2 + 1 with r = 6.6221193402528 which is in agreement
with the lower bound λ > 2π2

3 [37]. Table 1 shows the first few eigenvalues of
each symmetry class. They agree with those of Steil [32] up to five decimal
places. We next regard the statistics of the eigenvalues. First, we compare the
output of our algorithm with Weyl’s law and higher order corrections drawn
from [39]. This serves as a check whether we have found all eigenvalues. We
then find it necessary to correct one of the terms in [39] numerically. Finally,
we regard the spectral fluctuations and find that the nearest-neighbor spacing
distribution closely resembles that of a Poisson random process as predicted
by [9, 10, 11] and previously observed by [32].

In the first step we consider the level counting function

N(r) = #{ i | ri ≤ r}

and split it into two parts

N(r) = N̄(r) + Nfluc(r).

Here N̄ is a smooth function describing the average increase in the number of
levels and Nfluc describes the fluctuations around the mean such that

lim
R→∞

1
R

∫ R

1

Nfluc(r)dr = 0.

The average increase in the number of levels is given by Weyl’s law [40, 41] and
higher order corrections have been calculated by Matthies [39]. She obtained

N̄(r) = vol(F)
6π2 r3 + a2r log r + a3r + a4 (8)

with the constants

a2 = − 3
2π ,

a3 = 1
π [1316 log 2 + 7

4 log π − log Γ ( 1
4 ) + 2

9 log(2 +
√

3) + 3
2 ],

a4 = − 1
2 .

We compare our results for N(r) with (8) by defining

Nfluc(r) = N(r) − N̄(r). (9)

Nfluc fluctuates around zero or a negative integer whose absolute value gives
the number of missing eigenvalues, see figure 9. Unfortunately, our algorithm
does not find all eigenvalues in one single run. In the first run it finds about
97% of the eigenvalues. Apart from very few exceptions the remaining eigen-
values are found in the third run. To be more specific, we plotted Nfluc de-
creased by 1

2 , because N(r) − N̄(r) is approximately 1
2 whenever λ = r2 + 1
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Table 1. The first few eigenvalues of the Laplacian for the Picard group. Listed is
r. related to the eigenvalues via λ = r2 + 1.

D G C H

8.55525104 6.62211934

11.10856737 10.18079978

12.86991062 12.11527484 12.11527484

14.07966049 12.87936900

15.34827764 14.14833073

15.89184204 14.95244267 14.95244267

17.33640443 16.20759420

17.45131992 17.45131992 16.99496892 16.99496892

17.77664065 17.86305643 17.86305643

19.06739052 18.24391070

19.22290266 18.83298996

19.41119126 19.43054310 19.43054310

20.00754583 20.30030720 20.30030720

20.70798880 20.70798880 20.60686743

20.81526852 21.37966055 21.37966055

21.42887079 21.44245892

22.12230276 21.83248972 21.83248972

22.63055256 22.58475297 22.58475297

22.96230105 22.96230105 22.85429195

23.49617692 23.49768305 23.49768305

23.52784503 23.84275866

23.88978413 23.88978413 23.89515755 23.89515755

24.34601664 24.42133829 24.42133829

24.57501426 25.03278076 25.03278076

24.70045917 25.42905483

25.47067539 25.77588591 25.77588591

25.50724616 26.03903968

25.72392169 25.72392169 26.12361823 26.12361823
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is an eigenvalue. Furthermore, we took the eigenvalue λ = 0 into account.
We remark that we never find more eigenvalues than predicted by (8). A plot
indicating that Nfluc fluctuates around zero is shown in figure 10 where we
plotted the integral

I(R) =
1
R

∫ R

1

Nfluc(r)dr. (10)

So far, everything seems to be consistent. Taking the desymmetrized spectra
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0

12

0 5000 10000 15000

Nfluc

i

Fig. 9. Nfluc(ri) as a function of i fluctuating around zero.

-0.5

0

0.5
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Fig. 10. I as a function of R showing that I
R→∞−−−−→ 0.

into account (8) is modified [39]

N̄(r) = vol(F)
24π2 r3 + b1r

2 + b2r log r + b3r + b4 (11)

with the constants depending on the symmetry class. For the symmetry class
D the constants are given in [39] as

b1 = 1
24 ,

b2 = − 13
8π ,

b3 = 1
4π [− 11

16 log 2 + 19
4 log π − log Γ ( 1

4 )

+ 2
9 log(2 +

√
3) + 1

4 log(3 + 2
√

2) + 13
2 ],

b4 = − 47
72 .
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For G

b1 = − 1
24 ,

b2 = 3
8π ,

b3 = 1
4π [ 3716 log 2 + 3

4 log π − log Γ ( 1
4 )

+ 2
9 log(2 +

√
3) + 1

4 log(3 + 2
√

2) − 3
2 ],

b4 = − 25
72 .

For C

b1 = 1
96 ,

b2 = − 1
8π ,

b3 = 1
4π [ 5

16 log 2 + 3
4 log π − log Γ ( 1

4 )

+ 2
9 log(2 +

√
3) − 1

4 log(3 + 2
√

2) + 1
2 ],

b4 = 125
576 .

And for H

b1 = − 1
96 ,

b2 = − 1
8π ,

b3 = 1
4π [ 2116 log 2 + 3

4 log π − log Γ ( 1
4 )

+ 2
9 log(2 +

√
3) − 1

4 log(3 + 2
√

2) + 1
2 ],

b4 = 163
576 .

Let {ri} be a sequence related to the consecutive eigenvalues λ = r2 +1. If we
plot Nfluc(ri) as a function of i for the desymmetrized spectra we obtain small
deviations which can hardly be seen in figure 11. But if we plot the integral
(10) we see that Nfluc does not really fluctuate around zero. Instead, in figure
12 we see systematic deviations, but the discrepancy is much less than one
eigenvalue for each symmetry class. Since the number of eigenvalues is integer-
valued we do not assume that we have found less or too many eigenvalues.
Therefore, we fit the constants b1, b2, b3, b4 in (11) and obtain new constants
for each of the symmetry classes. Since the integrals I(R) in figure 12 show
a linear behavior, the constants b1 and b2 seem to be correct. We thus only
change the constants b3 and b4 by fitting them numerically. For the symmetry
class D the new constants are

b3 = 0.8639... instead of b3 = 0.8679...,

b4 = −0.288... instead of b4 = −0.653... .

For G

b3 = 0.0285... instead of b3 = 0.0324...,

b4 = −0.184... instead of b4 = −0.347... .
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0 2000 4000
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Fig. 11. Nfluc(ri) as a function of i for each symmetry class. The symmetry classes
are D, G, C, H from top to bottom.
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Fig. 12. I as a function of R showing the systematic deviations from I
R→∞−−−−→ 0.

Each curve belongs to one of the symmetry classes D, G, C, H.

For C

b3 = 0.0150... instead of b3 = 0.0111...,

b4 = −0.062... instead of b4 = 0.217... .

And H

b3 = 0.0702... instead of b3 = 0.0662...,

b4 = 0.034... instead of b4 = 0.283... .

In figure 13 we present the integral (10) with the corrected constants.
Now we are able to regard the spectral fluctuations . We unfold the spec-

trum,

xi = N̄(ri),
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Fig. 13. I as a function of R with the corrected constants. Each curve belongs to
one of the symmetry classes. The curves are quite indistinguishable from 0.

in order to obtain rescaled eigenvalues xi with a unit mean density. Then

si = xi+1 − xi

defines the sequence of nearest-neighbor level spacings which has a mean value
of 1 as i → ∞. We find that the spacing distribution comes close to that of a
Poisson random process,

PPoisson(s) = e−s,

see figures 14 to 17, as opposed to that of a Gaussian orthogonal ensemble of
random matrix theory,

PGOE(s) � π

2
s e−

π
4 s2

.

The integrated distribution,

I(s) =
∫ s

0

P (t) dt,

showing the fraction of spacings up to a given length is also shown in figures
14 to 17. The spacing distributions of the desymmetrized spectra are in ac-
cordance with the conjecture of arithmetic quantum chaos. Also in agreement
with the conjecture is that we have not found any degenerate eigenvalues
within each symmetry class. But taking the eigenvalues of all four symmetry
classes together systematic degeneracies occur due to the following:

Theorem 1 (Steil [32]). If λ = r2 + 1 is an eigenvalue corresponding to an
eigenfunction of the symmetry class G resp. H then there exists an eigenfunc-
tion of the symmetry class D resp. C corresponding to the same eigenvalue.

These degeneracies were first observed by Huntebrinker [30] and later ex-
plained by Steil [32] with the use of the Hecke operators [29, 33]. The Hecke
operators are defined by



204 H. Then

0

1

0 2 4

P

s

Fig. 14. Level spacing distribution for the symmetry class D. The abscissa displays
the spacings s. The dashed curve starting at the origin is the integrated distribution.
For comparison, the full curves show a Poisson distribution.
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Fig. 15. Level spacing distribution for the symmetry class G.
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Fig. 16. Level spacing distribution for the symmetry class C.
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Fig. 17. Level spacing distribution for the symmetry class H.
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Tγ g(z) =
1
|γ|

∑
a,b,d∈Z[i]−{0}

ad=γ
b(mod d)

�d>0, �d≥0.

g
(
(ad)−

1
2 (az + b)(d)−1(ad)

1
2
)
, γ ∈ Z[i] − {0}.

They are self adjoint operators which commute with the Laplacian and among
each other. One can therefore simultaneously diagonalize these operators. The
corresponding Maass cusp forms are then called Hecke eigenfunctions. The
eigenvalue equation of the Hecke operators reads

Tγ gr(z) = tγgr(z), γ ∈ Z[i] − {0},

where each Hecke eigenfunction is either identical to a Maass cusp form with
a given symmetry or to a superposition of Maass cusp forms corresponding to
the same eigenvalue λ = r2 + 1, but to different symmetry classes,

gr(z) =
∑
n∈N

(∆+(r2+1))fn(z)=0

cnfn(z).

The Hecke operators are multiplicative,

Tγ Tβ gr(z) =
∑

d|(γ,β)

T γβ

d2
gr(z),

and the Hecke eigenvalues are connected to the Fourier coefficients,

bγ = b1tγ , γ ∈ Z[i] − {0},

where the Fourier coefficients bγ of the Hecke eigenfunctions are given by

bγ =
∑

n

cnaγ,n

and the index n at the Fourier coefficients of the Maass cusp forms aγ = aγ,n

means that they belong to the Fourier expansion of the n-th Maass cusp form
fn(z).

Lemma 1 (Steil [32]). If gr(z) is a Hecke eigenfunction that does not vanish
identically, then:

(i) Its first Fourier coefficient is never zero, b1 �= 0.
(ii) A Hecke eigenfunction cannot be of symmetry class G or H.
(iii) Hecke eigenfunctions can always be desymmetrized such that they fall

either into the symmetry class D ∪ G or C ∪ H.

Proof (Steil’s theorem). Let fn(z) be a Maass cusp form of the symmetry class
G or H. Due to Steil’s lemma, it cannot be a Hecke eigenfunction. Since one
can diagonalize the Laplacian and the Hecke operators simultaneously, there
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have to exist linearly independent Maass cusp forms fn+k, k = 0, . . . , K
corresponding to the same eigenvalue λ = r2 + 1 such that

K∑
k=0

cn+kfn+k(z) = gr(z)

is a Hecke eigenfunction.
At least one of these Maass cusp forms has to be of the symmetry class D

or C in order that

b1 =
K∑

k=0

cn+ka1,n+k

does not vanish.
Since the Hecke eigenfunctions can be desymmetrized such that they fall

into the symmetry class D∪G resp. C∪H they are a superposition of either
Maass cusp forms of the symmetry classes D and G or of Maass cusp forms
of the symmetry classes C and H. Therefore, if fn(z) is of symmetry class
G one of the fn+k, k = 1, . . . , K is of symmetry class D, and if fn(z) is of
symmetry class H one of the fn+k, k = 1, . . . , K is of symmetry class C.

Based on our numerical results we now conjecture the following:

Conjecture 4. Taking all four symmetry classes together, there are no degen-
erate eigenvalues other than those explained by Steil’s theorem. Furthermore,
the degenerate eigenvalues which are explained by Steil’s theorem occur only
in pairs of two degenerate eigenvalues. They never occur in pairs of three or
more degenerate eigenvalues.

Maass cusp forms of the symmetry classes G and H indeed occur. On the
one hand we have found a number of them numerically. On the other hand,
Weyl’s law also explains their existence. Due to this the number of eigenvalues
whose corresponding Maass cusp forms belong to a specific symmetry class is
in leading order independent of the choice of the symmetry class. Weyl’s law
together with Steil’s theorem lead to the following:

Conjecture 5. The sequence of non-degenerate eigenvalues in the spectrum of
the Laplacian for the Picard group is of density zero.

This means that as λ → ∞
#{non-degenerate eigenvalues ≤ λ}

#{degenerate eigenvalues ≤ λ} → 0.

Table 1 looks as if it would contradict this conjecture. But this is due to
the fact that only the first few eigenvalues are listed. In table 2 we list some
consecutive large eigenvalues where we can see a better agreement with the
conjecture.
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Table 2. Some consecutive large eigenvalues of the Laplacian for the Picard group.
Listed is r, related to the eigenvalues via λ = r2 + 1.

D G C H

139.65419675 139.65419675 139.66399548 139.66399548

139.65434417 139.65434417 139.66785333 139.66785333

139.65783548 139.65783548 139.66922266 139.66922266

139.66104047 139.66104047 139.67870460 139.67870460

139.67694018 139.68234200 139.68234200

139.68162707 139.68162707 139.68424704 139.68424704

139.68657976 139.69369972 139.69369972

139.71803029 139.71803029 139.69413379 139.69413379

139.72166907 139.72166906 139.69657741 139.69657741

139.78322452 139.78322452 139.73723373 139.73723373

139.81928622 139.81928622 139.73828541 139.73828541

139.81985670 139.81985670 139.74467774 139.74467774

139.82826034 139.82826034 139.75178180 139.75178180

139.84250751 139.75260292 139.75260292

139.87781072 139.87781072 139.79620628 139.79620628

139.87805540 139.80138072 139.80138072

139.88211647 139.88211647 139.81243991 139.81243991

139.91782003 139.91782003 139.81312982 139.81312982

139.91893517 139.82871870 139.82871870

139.92397167 139.92397167 139.86401372 139.86401372

139.92721861 139.92721861 139.86461581 139.86461581

139.93117207 139.93117207 139.89407865 139.89407865

139.93149277 139.93149277 139.89914777 139.89914777

139.94067283 139.90090849 139.90090849

139.94396890 139.94396890 139.91635302 139.91635302

139.95074070 139.94071729 139.94071729

139.95124805 139.95124805 139.95080198 139.95080198

139.99098324 139.99098324 139.97043676 139.97043676
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6 Summary

Our principal goal was to test the conjecture of arithmetic quantum chaos
numerically in one example. For this purpose we have chosen a point particle
moving freely in the three-dimensional and negatively curved quotient space
of the Picard group. Identifying the solutions of the stationary Schrödinger
equation with Maass waveforms allowed us to use Hejhal’s algorithm to com-
pute the eigenfunctions and eigenvalues numerically. Having computed 13950
eigenvalues (and eigenfunctions), which exceeds all previous computations in
non-integrable three-dimensional systems, we demonstrated that our numeri-
cal results are in accordance with the conjecture of arithmetic quantum chaos.
Within each symmetry class we do not find any degenerate eigenvalues, but
taking all four symmetry classes together, almost all eigenvalues become de-
generate in the limit of large eigenvalues λ → ∞. This behaviour was explained
by the interplay of the symmetries with the Hecke-operators.
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A The K-Bessel function

The K-Bessel function is defined by

Kir(x) =
∫ ∞

0

e−x cosh t cos(rt) dt, �x > 0, r ∈ C,

see Watson [42], and is real for real arguments x and real or imaginary order
ir. It solves the modified Bessel differential equation

x2u′′(x) + xu′(x) − (x2 − r2)u(x) = 0,

and decays exponentially for large arguments

Kir(x) ∼
√

π

2x
e−x for x → ∞. (12)

A second linearly independent solution of the modified Bessel differential equa-
tion is the I-Bessel function
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Iir(x) = (
x

2
)ir

∞∑
k=0

(x
2 )2k

k!Γ (ir + k + 1)
,

which grows exponentially for large arguments

Iir(x) ∼
√

1
2πx

ex for x → ∞.

The K-Bessel function decreases exponentially when r increases. This can be
compensated by multiplication with the factor e

πr
2 .

In order to compute the K-Bessel function numerically for small or moder-
ate imaginary order we use its continued fraction representation which follows
from the Miller algorithm [43].
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Summary. We present the first two leading terms of the 1/N (genus) expansion of
the free energy for ensembles of normal and complex random matrices. The results
are expressed through the support of eigenvalues (assumed to be a connected domain
in the complex plane). In particular, the subleading (genus-1) term is given by the
regularized determinant of the Laplace operator in the complementary domain with
the Dirichlet boundary conditions. An explicit expression of the genus expansion
through harmonic moments of the domain gives some new representations of the
mathematical objects related to the Dirichlet boundary problem, conformal analysis
and spectral geometry.
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1 Introduction

Ensembles of random matrices have numerous important applications in
physics and mathematics ranging from energy levels of nuclei to number the-
ory. An important information is encoded in the 1/N expansion (N is the size
of the matrix) of different expectation values in the ensemble. Many relevant
references can be found in [1] .

In this paper we discuss 1/N -expansion in statistical ensembles of normal
and complex matrices. A matrix M is called normal if it commutes with its
Hermitian conjugate: [M, M †] = 0, so both matrices can be diagonalized
simultaneously. Eigenvalues of a normal matrix are complex numbers. The
statistical weight

e
1
�

tr W (M)dµ(M)

of the normal matrix ensemble is specified by a potential function W (M)
(which depends on both M and M†). Here � is a parameter, and the measure
dµ of integration over normal matrices is induced from the flat metric on the
space of all complex matrices.

Along the standard procedure of integration over angle variables [2], one
passes to the joint probability distribution of eigenvalues z1, . . . , zN . The par-
tition function is then given by the integral

ZN =
1

(2π3�)N/2N !

∫
|∆N (zi)|2

N∏
j=1

e
1
�

W (zj)d2zj (1)

Here ∆N (zi) =
∏N

i>j(zi − zj) is the Vandermonde determinant and d2z ≡
dx dy for z = x + iy. The N -dependent normalization factor is put here for
further convenience.

The model of normal matrices was introduced in [3]. This model is the
particular β = 1 case of a more general one, referred to as 2D Coulomb gas
with the joint probability distribution |∆N (zi)|2β

∏N
j=1 e

1
�

W (zj)d2zj .
For the potential of the form

W (z) = −zz̄ + V (z) + V (z) (2)

where V (z) is an analytic function in some region of the complex plane (say,
a polynomial), the normal matrix model is equivalent to the ensemble of
all complex matrices with the same potential. It generalizes the Gaussian
Ginibre-Girko ensemble [4]. When passing to the integral over eigenvalues,
the partition function for complex matrices differs from the one for normal
matrices by a normalization factor only [2]. Both models are then reduced to
the 2D Coulomb gas (with β = 1) in the external potential. Note also a formal
similarity with the model of two Hermitian matrices. Its partition function is
given by the same formula (1), with the potential (2), but zi and z̄i are to
be regarded as two independent real integration variables, with d2zi being
understood as dzidz̄i.
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It appears that the potential of the form (2) is most important for ap-
plications [5]. In the main part of the paper, we concentrate on this case, so
one may, in this context, ignore the difference between the normal and com-
plex ensembles, taking the 2D Coulomb gas partition function as a starting
point. Physical applications of this model include the quantum Hall effect,
the Saffman-Taylor viscous fingering and, conjecturally, more general growth
problems which are mathematically described as a random evolution in the
moduli space of complex curves. Recently, the normal matrix model was shown
[6] to be closely related to the matrix quantum mechanics, and, therefore, to
the c = 1 string theory.

In addition to this it appears that the large N limit of the normal or
complex random matrices admits a natural geometric interpretation relevant
to the 2D inverse potential problem, the Dirichlet boundary problem and to
spectral geometry of planar domains. In this paper we concentrate on cal-
culation of the 1/N expansion of the free energy, F ∝ log ZN , and on its
algebro-geometric meaning, leaving physical aspects for future publications.

The large N limit also implies the limit � → 0, so that �N is finite and
fixed. We prefer to work with the equivalent �-expansion, rather than with
the 1/N expansion, thus emphasizing its semiclassical nature. The free energy
of the Hermitian, two-Hermitian, normal and complex matrix ensembles with
the potential (2) has an �-expansion of the form log ZN =

∑
g≥0 �

2g−2Fg,
where g-th term is associated with the contribution of diagrams with Euler
characteristics 2 − 2g, in the perturbative expansion of the free energy. Here
we discuss the first two terms, F0 and F1:

F = �
2 log ZN = F0 + �

2F1 + O(�4) (3)

The leading term, F0, is the contribution of planar diagrams, and F1 is com-
monly referred to as genus 1 correction.

When N becomes large new macroscopic structures emerge. Invoking a
physical analogy, one may say that the gas of eigenvalues segregates into
“phases” with zero and non-zero density separated by a very narrow interface.
The domain D in the complex plane where the density is non-zero is called
the support of eigenvalues (it may consist of several disconnected domains).
The density at any point outside it is exponentially small as N → ∞.

The leading contribution to the free energy, the F0 term in (3), is basically
the Coulomb energy of particles confined in the domain D. For the potential
of the form (2) it is the tau-function of curves introduced in [7]. It encodes
solutions to archetypal problems of complex analysis and potential theory in
planar domains.

Here we review these results and also compute the genus-1 correction to
the free energy. The latter is identified with the free energy of a free bosonic
field in the domain Dc which is complementary to the support of eigenvalues,
i.e., in the domain where the mean density vanishes:

F1 = −1
2

log det(−∆Dc) (4)
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Here det(−∆Dc) is a properly regularized determinant of the Laplace operator
in Dc with Dirichlet boundary conditions. This suggests interesting links to
spectral geometry of planar domains.

The genus expansion in the Hermitian random matrix model beyond the
leading order has been obtained in the seminal paper [8]. In [9], the genus-1
correction was interpreted in terms of bosonic field theory on a hyperelliptic
Riemann surface. The genus 1 correction to free energy of the model of two
Hermitian matrices with polynomial potential was found only recently [10].

2 The planar large N limit

In this section we briefly recall the large N limit technique. This material is
standard since early days of random matrix models (see., e.g., [11]). An ap-
pealing feature of the model of normal or complex matrices is a nice geometric
interpretation and a direct relation to the inverse potential problem in two
dimensions.

As was already mentioned, the parameter � tends to zero simultaneously
with N → ∞ in such a way that t0 = N� is kept finite and fixed. Using the
Coulomb gas analogy, one may say that the leading contribution to the free
energy is equal to the extremal value of the energy

E =
∑
i�=j

log |zi − zj | + 1
�

∑
i

W (zi) (5)

Equilibrium positions of charges are given by the extremum of the plasma
energy: ∂zi

E = ∂z̄i
E = 0.

Consider the 2D Coulomb potential Φ(z) = −�
∑

i log |z − zi|2 created by
the charges. Writing it as

Φ(z) = −
∫

log |z − ζ|2ρ(z) d2z

where
ρ(z) = − 1

4π
∆Φ(z) = �

∑
i

δ(2)(z − zi) (6)

is the microscopic density of eigenvalues (a sum of two-dimensional delta-
functions), we assume that Φ in the limit can be treated as a continuous
function. It is normalized as

∫
∆Φ(z)d2z = −4πt0. Let Φ0 be this function for

the equilibrium configuration of charges, then

∂z(Φ0(z) − W (z)) = ∂z̄(Φ0(z) − W (z)) = 0 (7)

with the understanding that this equation holds only for z belonging to a
domain (or domains) where the density is nonzero. Applying ∂z̄ to the both
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sides, we see that the equilibrium density, ρ0(z), is equal to − 1
4π ∆W (z) in

some domain D (the support of eigenvalues) and zero otherwise:

ρ0(z) =
{

σ z ∈ D
0 z ∈ Dc and Φ0(z) = −

∫
D

log |z − ζ|2σ d2ζ

Here Dc = C \ D is the domain complimentary to the support of eigenvalues
and

σ = − 1
4π

∆W (z, z̄) (8)

In this and in the next section we assume the special form of the potential
(2). Then ρ0 = 1/π in the domain D.

The shape of D is determined by the function V (z). Let us assume, without
loss of generality, that 0 ∈ D and parametrize V (z) by Taylor coefficients at
the origin:

V (z) =
∑
k≥1

tkzk (9)

The parameters tk (coupling constants of the matrix model) are in general
complex numbers. Multiplying (7) by z−k and integrating over the boundary
of D, we conclude that the domain D is such that −πktk’s are moments of its
complement, Dc, with respect to the functions z−k:

tk = − 1
πk

∫
Dc

z−kd2z =
1

2πik

∮
∂D

z−kz̄ dz (10)

Besides, from the normalization condition we know that the area of D is equal
to πt0. To find the shape of the domain from its moments and area is the
subject of the inverse potential problem. These data determine it uniquely, at
least locally.

Here we assume that D is a connected domain. For example, in the po-
tential W = −zz̄ the eigenvalues uniformly fill the disk of radius

√
�N . Small

perturbations of the potential slightly disturb the circular shape.
In what follows, we need some functions associated with the domain D, or

rather with its complement, Dc. The basic one is a univalent conformal map
from the exterior of the unit disk onto the domain Dc. Such a map exists by
virtue of the Riemann mapping theorem. Let U be the unit disk and Uc its
complement, i.e., the exterior of the unit disk. Consider the conformal map
z(w) from Uc onto Dc normalized so that z(∞) = ∞ and r = limw→∞ z(w)/w
is real, then the map is unique. In general, the Laurent expansion of the
function z(w) around infinity is

z(w) = rw +
∑
k≥0

ukw−k (11)

The real number r is called the (external) conformal radius of D. Since the
map is conformal, all zeros and poles of the derivative z′(w) ≡ ∂wz(w) are
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inside the unit circle. We also need the function z̄(w) given by the Laurent
series (11) with complex conjugate coefficients and the Green function of the
Dirichlet boundary problem in Dc. In terms of the conformal map, the latter
is given by the explicit formula

G(z, z′) = log

∣∣∣∣∣
w(z) − w(z′)
w(z)w(z′) − 1

∣∣∣∣∣ (12)

Here w(z) is the conformal map from Dc onto Uc inverse to the z(w).

3 The leading term of the free energy

The leading contribution to the free energy is the value of the Coulomb energy
(5) (multiplied by �

2) for the extremal configuration of charges:

F0 =
∫

D

∫
D

log |z − z′|σ(z)σ(z′)d2z d2z′ +
∫

D

W (z, z̄)σd2z

The integrated version of the extremum condition (7) tells us that Φ0(z) −
W (z) = const for any z ∈ D. The constant can be found from the same
equality at z = 0, and we obtain F0 as an explicit functional of the domain D:

F0 = −
∫

D

∫
D

log
∣∣∣∣1z − 1

z′

∣∣∣∣ σ(z)σ(z′)d2z d2z′ (13)

For the special potential of the form (2), when σ = 1, the free energy is to be
regarded as a function of t0 and the coupling constants tk.

Properties of F0 immediately follow from known correlation functions of
the model in the planar large N limit. See [5, 7] for normal and complex
matrices and [12] for similar results in the context of the Hermitian 2-matrix
model. Some of these correlation functions previously appeared in studies
of thermal fluctuations in classical confined Coulomb plasma [13]. Integrable
structures associated with F0 were studied in [14, 7, 15, 16]. Here is the list
of main properties of F0 for the most important case σ = 1/π.

• 1-st order derivatives:

∂F0

∂tk
=

1
π

∫
D

zk d2z , k ≥ 1,

∂F0

∂t0
=

1
π

∫
D

log |z|2 d2z

(14)

can be combined in the generating formula

D(z)F0 =
1
π

∫
D

log |z−1 − ζ−1|2d2ζ , z ∈ Dc , (15)
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where

D(z) =
∂

∂t0
+

∑
k≥1

1
k

(
z−k ∂

∂tk
+ z̄−k ∂

∂t̄k

)
(16)

Since the derivatives of F0 with respect to the moments tk are moments
of the complimentary domain, this function formally solves the 2D inverse
potential problem.

• 2-nd order derivatives: for z, z′ ∈ Dc we have

D(z)D(z′)F0 = 2G(z, z′) − log
∣∣∣∣1z − 1

z′

∣∣∣∣
2

(17)

where G(z, z′) is the Green function of the Dirichlet boundary problem
in Dc (12). Note that the logarithmic singularity of the Green function at
z = z′ cancels by the second term in the right hand side. In a particular
case when both z, z′ tend to infinity, we get a simple formula for the
conformal radius:

∂2
t0F0 = 2 log r (18)

• 3-d order derivatives. The generating formula reads [15]:

D(a)D(b)D(c)F0 = − 1
2π

∮
∂D

∂nG(a, ξ)∂nG(b, ξ)∂nG(c, ξ)|dξ| (19)

An important corollary of this formula and eq. (17) is the complete sym-
metry of the expression D(a)G(b, c) with respect to all permutations of
the points a, b, c. Another corollary of (19) is the following residue formula
valid for j, k, l ≥ 0 [16]:

∂3F0

∂tj∂tk∂tl
=

1
2πi

∮
|w|=1

hj(w)hk(w)hl(w)
z′(w)z̄′(w−1)

dw

w
(20)

Here hj(w) are polynomials in w of degree j:

hj(w) = w
d

dw

[
(zj(w))+

]
for j ≥ 1 and h0(w) = 1 ,

where (...)+ is the positive degree part of the Laurent series. The notation
z̄′(w−1) means the derivative dz̄(u)/du taken at the point u = w−1. This
formula is especially useful when z′(w) is a rational function, then the
integral is reduced to a finite sum of residues. We use this below.

• Dispersionless Hirota equations. The function F0 obeys an infinite number
of non-linear differential equations which are combined into the integrable
hierarchy of dispersionless Hirota’s equations. See [7, 15] for details.

• WDVV equations. Suppose V (z) is a polynomial of m-th degree, i.e., tk = 0
for all k > m. On this subspace of parameters, F0 obeys the system of Wit-
ten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations
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FiF
−1
j Fk = FkF−1

j Fi for all 0 ≤ i, j, k ≤ m − 1 (21)

where Fi is the m by m matrix with matrix elements (Fi)jk = ∂3F0
∂ti∂tj∂tk

.
See [16] for details.

To conclude: F0 is a “master function” which generates objects of com-
plex analysis in planar simply-connected domains. The full free energy of the
matrix ensemble, F , may be regarded as its “quantization”.

4 The genus 1 correction to the free energy

4.1 The result for F1

We now describe the result for the genus-1 correction F1. We start with the
special potential (2). Then F1 is expressed entirely in terms of the metric on
the Uc induced from the standard flat metric on the z-plane by the conformal
map: dz dz̄ = e2φ(w)dw dw̄. Here

φ(w) = log |z′(w)| (22)

and z(w) is the conformal map Uc → Dc (11). The derivation of this formula
and its extension to a general potential is outlined in Section 5.

We found that

F1 = − 1
24π

∮
|w|=1

(φ∂nφ + 2φ) |dw| (23)

Here ∂n is the normal derivative, with the normal vector pointing outside
the unit circle. The derivation of this formula is outlined, for a more general
model, in Section 5.

Since φ(w) is harmonic in Uc, we may rewrite the r.h.s. of (23) as

F1 =
1

24π

∫
|w|>1

|∇φ|2d2w − 1
12π

∮
|w|=1

φ |dw|

Here we recognize the formula for the regularized determinant of the Laplace
operator ∆Dc = 4∂z∂z̄ in Dc with Dirichlet conditions on the boundary. The
first term is the bulk contribution first found by Polyakov [17] (for a metric
induced by a conformal map it reduces to a boundary integral), while the
second term, computed in [18], is a net boundary term (see also Section 1 of
[19]):

F1 = − 1
2

log det (−∆Dc) (24)

In the particular case W (z) = −zz̄ we get F1 = − 1
12 log t0 that coincides with

the result of [20] obtained by a direct calculation.
The appearance of elements of quantum field theory in a curved space

is not accidental. A field-theoretical derivation of this result will be given
elsewhere.
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4.2 Rational case

Before explaining the origin of the explicit formula for F1 we write it in yet
another suggestive form. Consider a domain such that z′(w) is a rational
function:

z′(w) = r

m−1∏
i=0

w − ai

w − bi

All the points ai and bi must be inside the unit circle, otherwise the map
z(w) is not conformal. On the unit circle we have |dw| = dw

iw and φ(w) =
1
2 (log z′(w) + log z̄′(w−1)), where the first and the second term (the Schwarz
reflection) are analytic outside and inside it, respectively. (Recall that our
notation z̄′(w−1) means dz̄(u)/du at the point u = w−1.) Plugging this into
(23), we get:

F1 = − 1
24πi

∮
|w|=1

log z′(w)
[
1
2
∂w log z′(w) +

1
w

]
dw−

− 1
24πi

∮
|w|=1

log z̄′(w−1)
dw

w
− 1

48πi

∮
|w|=1

log z̄′(w−1)
z′′(w)
z′(w)

dw

The integrals can be calculated by taking residues either outside or inside the
unit circle. The poles are at ∞, at 0, and at the points ai and bi. The result
is

F1 = − 1
24

⎛
⎝log r4 +

∑
z′(ai)=0

log z̄′(a−1
i ) −

∑
z′(bi)=∞

log z̄′(b−1
i )

⎞
⎠ (25)

If the potential V (z) is polynomial, V (z) =
∑m

k=1 tkzk, i.e., tk = 0 as
k > m for some m > 0, then the series for the conformal map z(w) truncates:
z(w) = rw +

∑m−1
l=0 ulw

−l and

z′(w) = r

m−1∏
i=0

(1 − aiw
−1)

is a polynomial in w−1 (all poles bi of z′(w) merge at the origin). Then the
last sum in (25) becomes m log r and the formula (25) gives

F1 = − 1
24

log

⎛
⎝r4

∏
z′(aj)=0

z̄′(a−1
j )

r

⎞
⎠ = − 1

24
log

⎛
⎝r4

m−1∏
i, j=0

(1 − āiaj)

⎞
⎠ (26)

This formula is essentially identical to the genus-1 correction to the free en-
ergy of the Hermitian 2-matrix model with a polynomial potential recently
computed by Eynard [10].
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4.3 Determinant representation of F1 for polynomial potentials

For polynomial potentials the genus-1 correction enjoys an interesting deter-
minant representation.

Set

Dm := det
(

∂3F0

∂t0∂tj∂tk

)
0≤j,k≤m−1

Using the residue formula (20) we compute:

Dm =
1

(2πi)m

∮
|w0|=1

dw0

w0
. . .

∮
|wm−1|=1

dwm−1

wm−1

det [hj(wj)hk(wj)]∏m−1
l=0 z′(wl)z̄′(w−1

l )
(27)

Clearly, the determinant in the numerator can be substituted by 1
m det2(hj(wk))

and det [hj(wk)] = (m − 1)! r
1
2 m(m−1)∆m(wi), where ∆m(wi) is the Vander-

monde determinant. Each integral in (27) is given by the sum of residues at
the points ai inside the unit circle (the residues at wi = 0 vanish). Computing
the residues and summing over all permutations of the points ai, we get:

Dm = (−1)
1
2 m(m−1)((m − 1)!)2 rm(m−3)

∏
j am−1

j∏
i, j(1 − aj āi)

(28)

As is seen from (10), the last non-zero coefficient of V (z) equals tm = ūm−1
mrm−1 .

(We regard it as a fixed parameter.) Therefore,
∏m

i=1 ai = (−1)m m(m−
1)rm−2t̄m, and we represent F1 (26) in the form

F1 =
1
24

log Dm − 1
12

(m2−3m+3) log r − 1
24

(m−1) log t̄m + const (29)

where const is a numerical constant. Recalling (18), we see that F1, for models
with polynomial potentials of degree m, is expressed through derivatives of
F0:

F1 =
1
24

log det
m×m

(
∂3F0

∂t0∂tj∂tk

)
− 1

24
(m2−3m+3)

∂2F0

∂t20
− 1

24
(m−1) log t̄m+const

(30)
where j, k run from 0 to m − 1.

Similar determinant formulas are known for genus-1 corrections to free
energy in topological field theories [21].

5 F1 from loop equation

The standard (and powerful) method to obtain 1/N -expansions in matrix
models is to use invariance of the partition function under changes of ma-
trix integration variables. In the 2D Coulomb gas formalism, this reduces to
invariance of the partition function (1) under diffeomorphisms
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zi −→ zi + ε(zi, z̄i) , z̄i −→ zi + ε̄(zi, z̄i)

The invariance of the partition function in the first order in ε results in the
identity ∑

i

∫
∂zi

(
ε(zi, z̄i) eE

) ∏
j

d2zj = 0 (31)

for any function ε(z, z̄). One may read it as Ward identity obeyed by cor-
relation functions of the model. For historical reasons, it is called the loop
equation. Since correlation functions are variational derivatives of the free en-
ergy with respect to the potential, the loop equation is an implicit functional
relation for the free energy.

5.1 Loop equation in general normal matrix model

A closed loop equation does not emerge for the special potential (2). It can
be written only for the ensemble of normal matrices with a general potential
W in (1). Let it be of the form

W (z) = −zz̄ + V (z) + V (z) + U(z)

where U is only assumed to have a regular Taylor expansion around the origin
starting from cubic terms.

Choosing ε(zi, z̄i) = (z − zi)−1 and plugging it into (31) with E given in
(5), one is able to rewrite (31) as a relation between correlation functions of
the field

Φ(z) = −� tr log
[
(z − M)(z̄ − M†)

]
= −�

∑
i

log |z − zi|2

or ∂Φ(z) = −�tr(z − M)−1 (here and below ∂ ≡ ∂z). Note that ∂Φ(z) is
trace of the resolvent of the matrix M and ∆Φ(z) = −4πρ(z), where ρ is
the density of eigenvalues. After some simple rearrangings, the loop equation
following from (31) acquires the form

1
2π

∫
∂W (ζ) 〈∆Φ(ζ)〉

z − ζ
d2ζ =

〈
(∂Φ(z))2

〉
+ �

〈
∂2Φ(z)

〉
(32)

(For any symmetric function f({zi}), the correlation function
〈
f
〉

is defined
as the integral

∫
f({zi})|∆N (zi)|2

∏
j e

1
�

W (zj)d2zj with a normalization factor
such that

〈
1
〉

= 1.) This relation is exact for any finite N . Supplemented by
the relation 〈

∂Φ(z)
〉

= − t0
z

+ ∂zD(z)F (33)

(also exact) which directly follows from the definitions of the free energy and
the field Φ, the loop equation allows one to find the �-expansion of the free
energy.
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5.2 Expanding the loop equation

The �-expansion of the free energy for the general normal matrix model is
more complicated than the one discussed in the previous sections. It contains
all powers of �, not only even:

�
2 log ZN = F0 + �F1/2 + �

2F1 + O(�3) (34)

so it hardly has a direct topological interpretation. Accordingly, �-expansions
of mean values and other correlation functions are expansions in � rather than
�

2. In particular,

〈Φ(z)〉 = Φ0(z) + �Φ1/2(z) + �
2Φ1(z) + O(�3) (35)

We proceed by expanding the loop equation in powers of �. In the leading
order, the second term in the r.h.s. vanishes, and z̄-derivative of the both sides
gives:

(∂W (z) − ∂Φ0(z))∆Φ0(z) = 0 (36)

This just means that for z ∈ D the extremum condition (7) is satisfied and
∆Φ0(z) = 0 otherwise. Inside D, the leading term of the mean density, ρ0(z),
is given by ρ0(z) = σ(z), where σ(z) is defined in (8). (Note that the function
σ is defined by this formula everywhere in the complex plane, and does not
depend on the shape of D, while ρ0 coincides with σ in D and equals 0 in Dc.)
For potentials of the form (2), σ(z) = 1/π.

Being developed into a series in �, the loop equation gives an iterative
procedure to find the coefficients Φi(z). We need the following results on the
correlation functions for the general normal matrix ensemble (see [5]):

〈
∂Φ(z)

〉
=

∫
D

σ(ζ)d2ζ

ζ − z
+ O(�) (37)

〈
Φ(z1)Φ(z2)

〉
conn

= 2�
2
(
G(z1, z2) − G(z1,∞)

− G(∞, z2) − log
|z1 − z2|

r

)
+ O(�3) (38)

where the connected correlation function is defined as
〈
fg

〉
conn

=
〈
fg

〉 −〈
f
〉〈

g
〉
. Note that the function (38) has no singularity at coinciding points

z1, z2 ∈ Dc. Merging the points, we get:

〈
(∂Φ(z))2

〉
conn

=
�

2

6
{w; z} + O(�3) (39)

where

{w; z} =
w′′′(z)
w′(z)

− 3
2

(
w′′(z)
w′(z)

)2

is the Schwarzian derivative of the conformal map w(z).
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After these preparations, further steps are straightforward. Terms of order
� and �

2 of the loop equation give:

1
2π

∫
L(z, ζ)∆Φ1/2(ζ) d2ζ = −∂2Φ0(z)

1
2π

∫
L(z, ζ)∆Φ1(ζ) d2ζ = −

[(
∂Φ1/2(z)

)2

+ ∂2Φ1/2(z)
]
− 1

6
{w; z}

(40)

where the kernel of the integral operator in the l.h.s. is

L(z, ζ) =
∂W (ζ) − ∂Φ0(z)

ζ − z
(41)

It should be noted that the �-expansion of the loop equation may break
down for z ∈ D. This is mainly because the correlator

〈
Φ(z)Φ(z′)

〉
, when the

two points are close to each other and belong to the support of eigenvalues,
is not given by eq. (38). At the same time, for our purpose we need this
correlator just on very small distances, when the two points merge. Naively, for
z, z′ ∈ D the correlator diverges as z′ → z. This means that its short-distance
behaviour is in fact of a different order in � and must be calculated separately.
Fortunately, this problem can be avoided by restricting the equations to Dc,
where no divergency emerges on any scale and one may think that the short-
distance behaviour of correlation functions is still given by eq. (38). (However,
we understand that this argument is not rigorous and need to be justified by
an actual calculation of correlation functions at small scales.) Hereafter, z in
(40) is assumed to be outside the support of eigenvalues, i.e., the equations
should be solved for z ∈ Dc. In this region the functions Φk(z) are harmonic.

From (33) we see that

∂zD(z)F1/2 = ∂zΦ1/2(z) , ∂zD(z)F1 = ∂zΦ1(z) (42)

The strategy is to find Φk’s from (40) and then “to integrate” them to get
Fk’s, i.e., to find a functional Fk such that it obeys (42). A general method
to find the “derivative” D(z) of any proper functional of the domain Dc is
proposed in [15].

An important remark is in order. Suppose we restrict ourselves to the
class of models with potentials of the form (2) (i.e., with σ(z) = 1/π), like in
previous sections. Applying ∂zD(z) to the functional (23), that is F1 in this
case, we obtain a wrong answer for ∂zΦ1(z), which does not obey the loop
equation (40)! This seemingly contradicts eqs. (42) and so explains why one
has to deal with the arbitrary potential. The matter is simply that there are
functionals such that they vanish for potentials with σ(z) = 1/π but their
“derivatives”, ∂zD(z), do not. They do contribute to Φ1 and restore the right
answer.
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5.3 Free energy of the general model

Skipping further details, we present the results for the general model of normal
matrices.

The answer for F0 is familiar [5]. It is given by (13). The first correction,
F1/2, is

F1/2 = −
∫

D

σ(z) log
√

πσ(z) d2z (43)

To write down the full answer for F1 in a compact form, we need to intro-
duce, along with the φ(w) (22), another function,

χ(z) = log
√

πσ(z) (44)

and the function χH(z) defined in the domain Dc. It is a harmonic function
in Dc with the boundary value χ(z). The function χH is the solution to the
Dirichlet boundary problem: χH(z) = − 1

2π

∫
∂D

∂nG(z, ξ)χ(ξ)|dξ|. The explicit
formula for F1 reads:

F1 =
1

24π

[∫
|w|>1

|∇(φ + χ)|2 d2w − 2
∮
|w|=1

(φ + χ) |dw| −
∫
C

|∇χ|2 d2w

]
+

+
1
8π

[∫
D

|∇χ|2d2z −
∮

∂D

χ∂nχH |dz| − 1
2

∫
D

∆χd2z

]

(45)
where χ in the first three integrals is treated as a function of w through
χ = χ(z(w)).

The r.h.s. of this formula is naturally decomposed into two parts hav-
ing completely different nature, the “quantum” and “classical” parts: F1 =
F

(q)
1 + F

(cl)
1 . The (most interesting) quantum part can be again represented

through the regularized determinant of the Laplace operator in Dc with Dirich-
let boundary conditions. However, now the Laplacian should be taken in con-
formal metric with the conformal factor e2χ(z). Equivalently, on the exterior of
the unit circle the Laplacian should be taken in the metric with the conformal
factor e2φ(w)+2χ(z(w)); we see that φ and χ do enter as the sum φ + χ in the
first line. More precisely, the formula for regularized determinants of Laplace
operators in domains with boundary known in the literature (eq. (4.42) in
[18]) allows us to identify

F
(q)
1 =

1
2

log
det

(−e−2χ∆C

)
det (−e−2χ∆Dc)

(46)

The classical part comes from “classical” (though of order �) corrections to the
shape of the support of eigenvalues, which always exist unless σ(z) is a con-
stant (see below). It is essentially given by F

(cl)
1 = lim�→0

(
1

2�2

〈
(trχ(M))2

〉
conn

)
.
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Different terms of the �-expansion gain a clear interpretation in terms of
the collective field theory of the normal matrix model, in the spirit of [22]. In
this context, it is natural to start with the general Coulomb gas model with
arbitrary β. The generalized loop equation

1
2π

∫
∂W (ζ) 〈∆Φ(ζ)〉

z − ζ
d2ζ = β

〈
(∂Φ(z))2

〉
+ (2 − β)�

〈
∂2Φ(z)

〉
(47)

can be understood as the conformal Ward identity for the collective theory.
This allows one to find the effective action in the form

S = S0 + S1

S0 = β

∫ ∫
ρ(z) log |z − ζ|ρ(ζ) d2zd2ζ +

∫
W (z)ρ(z) d2z

S1 = −
(
1 − β

2

)
�

∫
ρ(z) log ρ(z) d2z

(48)

The second term, S1, is a combination of the short range part −β
2 ρ log ρ

and the entropy ρ log ρ. (See [23, 24], where similar actions for unitary and
Hermitian matrix ensembles were discussed.)

This action suggests to rearrange the �-expansion of the free energy (34)
and write it in the “topological” form F =

∑
g≥0 �

2gFg, where each term has
its own expansion

Fg = F (0)
g +

∑
n≥1

�
n
βF (n)

g (49)

Here �β ≡ (2−β)� is regarded as an independent parameter. The equilibrium
density of charges, ρ0, is determined by δS/δρ = 0 which leads to the Liouville-
like equation

−�β

8π
∆ log ρ0(z) + βρ0(z) = σ(z) (50)

in the bulk. For β �= 2 the first term generates corrections to the shape of
the support of eigenvalues. The classical free energy is F0 = F

(0)
0 + �βF

(1)
0 +

�
2
βF

(2)
0 + O(�3

β). In particular we see that F1/2 given in (43) is in fact F
(1)
0

while the “classical” part F
(cl)
1 of (45) is F

(2)
0 . The “quantum” part is then

F
(q)
1 = F

(0)
1 .

The collective field theory approach to the normal and complex matrix
ensembles will be presented elsewhere.
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1 Introduction

We discuss two types of symmetry structures.
On the large N limit of a system of independent Gaussian random ma-

trices there is a Lie algebra action, which is the free analogue of the volume-
preserving vector fields for a Gaussian measure [7]. The second symmetry is
the coalgebra of the free difference-quotient and its remarkable duality feature
[6]. It provides the natural framework to analyze an operator with respect to
an algebra of operators playing the role of scalars, when these scalars and the
operator are in the most noncommutative situation. Note that in combina-
torics, for classical (commutative) one-variable polynomials the corresponding
coalgebra structure was studied by G.C. Rota, apparently without realizing
the selfduality.
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We also included background comments on free probability and the con-
nection of random matrices to the von Neumann algebras of free groups (see
[5], [8] and references given there). Based on the free difference-quotient coal-
gebra and on examples ([1], [2]) we emphasize the role of generalized resolvents
in the study of random matrices in the free probability approach.

We have resisted the temptation to include in these notes the U(n, 1) action
on the full Fock space, which is paired with the Lie superalgebra action of
gl(n|1) and which appeared in our first free probability paper ([3]), but has
not been sufficiently clarified.

No operator algebra knowledge is presumed in this informal presentation,
nor in the background material [5] and [8].

Acknowledgements: Most of the work on these notes was done while
the author held an International Blaise Pascal Research Chair from the State
and Ile de France Region, managed by the Fondation de l’École Normale
Supérieure and visiting the Institut de Mathématiques de Jussieu. He was
also supported in part by NSF Grant DMS-0079945.

2 Free Probability

Free probability theory is noncommutative probability theory plus free inde-
pendence.

The basic object in noncommutative probability theory is an algebra A
over the complex numbers C, with unit 1 ∈ A and a linear map ϕ : A → C,
so that ϕ(1) = 1. The elements a ∈ A will be called noncommutative random
variables and ϕ(a) is the expectation of a (This is like the observables of
quantum physics).

If α = (ai)i∈I ⊂ A is a family of noncommutative random variables, their
joint distribution will be described by the collection of noncommutative mo-
ments ϕ(ai1 . . . aip). A better way to organize the information contained in
these numbers is to consider the polynomials in noncommutative indetermi-
nate indexed by I, C〈Xi|i ∈ I〉 and the linear maps Ψα : C〈Xi|i ∈ I〉 → C

defined by
Ψα(P (Xi|i ∈ I)) = ϕ(P (ai|i ∈ I)) .

In the case of a single random variable a ∈ A, if its moments ϕ(an) are
equal to the moments of a probability measure µ on R, we will also call µ the
distribution of α.

What distinguishes free probability theory, is the definition of indepen-
dence. A family (Ai)i∈I ⊂ A, 1 ∈ Ai of subalgebras in A is freely indepen-
dent if

ϕ(a1 . . . an) = 0

whenever ϕ(aj) = 0, 1 ≤ j ≤ n and aj ∈ Aij , 1 ≤ j ≤ n, ij �= ij+1 .

Note that in the above definition, it is only required that consecutive aj ’s
be in different Aij ’s (for instance it is possible that i1 = i3 as long as this
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index �= i2). The free independence requirement reminds of the conditions
defining a nontrivial reduced word in a free product of groups (from which
the condition was derived).

Sets of noncommutative random variables (ωi)i∈I , ωi ∈ A are freely in-
dependent if the algebras Ai generated by {1} ∪ ωi are freely independent.
Like in the case of classical independence, knowledge of the joint distribution
for the variables in each ωi, together with the free independence of the ωi’s
completely determines the joint distribution of all variables in ω = ∪i∈Iωi .

Starting from this input, a free probability, parallel to a quite large part
of the basic classical probability theory, expressible in terms of expectations
of numerical random variables, has emerged.

A salient feature of this parallelism is the correspondence of basic laws.
The free analogues of the Gauss, Poisson and Cauchy laws are, respectively,
the Wigner semicircle law, the Pastur–Marchenko distribution and the same
Cauchy law (a fixed point). This means for instance, that in the central limit
theorem for freely independent variables, the limit distribution is the semicir-
cle law.

An inventory of the free parallel includes much more.
Addition and multiplication of free random variables yield nonlinear con-

volution operations. Free convolutions, both additive and multiplicative, can
be computed using the linearizing R and S transformations (which perform
the function of the logarithm of the Fourier transform and respectively of the
Mellin transform). With this machinery, freely infinitely divisible laws and
free stable laws have been classified. These distributions yield noncommuta-
tive processes with free increments (additive or multiplicative) the Markovian
properties of which have been studied.

A more recent entry is free entropy. For an n-tuple of noncommutative
variables this provides the analogue of the Shannon entropy of continuous
variables (differential entropy). For one variable, the classical quantity

−
∫

R

p(t) log p(t)dt

(p(t) the density of the distribution) is replaced in the free context by

c +
∫ ∫

log |s − t|p(s)p(t)dsdt

which up to a constant c is the negative of the logarithmic energy of the
distribution. The general n-variable case is a long story, which cannot be
compressed in a few lines (see the survey [8]).

There is also a combinatorial side to free probability discovered by R. Spe-
icher: it can be seen as replacing in the calculus of cumulants the lattice of all
partitions of {1, . . . , n} by the lattice of non-crossing partitions of {1, . . . , n}.
Non-crossing means there are no a < b < c < d so that {a, c} and {b, d} are
contained in two different sets of the partition. The non-crossing partitions
correspond to planar diagrams in physics.
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Where does free independence occur? In general, it is the independence
relation for quantities with the highest degree of noncommutativity and there
are three basic free probability contexts

- convolution operators on free products of groups
- creation and annihilation operators on the full Fock space
- the large N limit of random matrices

The first two models are actually not so different, since the Boltzmann full
Fock space has a basis indexed by a free semigroup, i.e. we are dealing with a
free product of semigroups.

From the perspective of quantum statistics embodied by the 3 Fock spaces
(bosonic, fermionic and full) free probability may be viewed as mathematics
corresponding to the full Boltzmann statistic. It is often said that the full
Fock space is somewhat “unphysical”, there is however no reason to consider
it as “unmathematical”.

To conclude this section, I would like to mention a few contributors to this
area (references to their work and further names are in my St. Flour notes
[5] and in the survey article [8]: P. Biane, R. Speicher, D. Shlyakhtenko, K.
Dykema, A. Nica, U. Haagerup, L.Ge, F. Radulescu, H. Bercovici, A. Guion-
net, T. Cabanal-Duvillard, M. Anshelevich. Also, via random matrices there
have been connections to physics models (papers by I.M. Singer, M. Douglas,
D. Gross, R. Gopakumar, P. Zinn-Justin, S.G. Rajeev and others).

3 Operator Algebras

Our noncommutative probability framework (M, τ) will have some extra fea-
tures. M ⊂ B(H) will be a selfadjoint algebra of bounded operators on a
Hilbert space, i. e. I ∈ M, T ∈ M ⇒ T ∗ ∈ M and if T1, T2 ∈ M, λ ∈ C, then
T1+T2 ∈ M, T1T2 ∈ M, λT1 ∈ M . The expectation functional τ : M → C will
be a trace-state, which in our case means there is a unit vector h ∈ H, ||h|| = 1,
so that τ(T ) = (Th, h) and the trace condition τ(T1T2) = τ(T2T1) is satisfied
if T1, T2 ∈ M .

M is a von Neumann algebra if we additionally require M to be weakly
closed, i.e. for any net (Ti)i∈I ∈ M and T ∈ B(H), so that if (Tih, k) converges
to (Th, k) for all h, k ∈ H, then T ∈ M . If T = T ∗ ∈ M and M is a von
Neumann algebra, then f(T ) ∈ M if f : R → R is a Borel function.

Example 1. Let G be a group, l2(G) the Hilbert space with orthonormal
basis (eg)g∈G and λ the left regular representation of G on l2(G) given by
λ(g)eh = egh. The linear span of λ(G) is a selfadjoint algebra of operators on
l2(G) and its weak closure will be denoted by L(G). On L(G) there is the von
Neumann trace-state

τ(
∑
g∈G

cgλ(g)) = ce = (
∑
g∈G

cgλ(g)ee, ee) .
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Example 2. Let (T1(N), . . . , Tn(N)) be an n-tuple of selfadjoint
N × N matrices with joint distribution the probability measure
µN ∈ Prob(Msa(N))n, where Msa(N) denotes the selfadjoint N×N matrices.
Provided the limits make sense (and some boundedness is assumed) there is
(M, τ) generated by Tj = T ∗

j , i ≤ j ≤ n so that

lim
N→∞

N−1ETr(Ti1(N) . . . Tip(N)) = τ(Ti1 . . . Tip)

for all i ≤ i1, . . . , ip ≤ n, p ∈ N (here E is the expectation).
In essence this is an instance of the Gelfand–Naimark–Segal construction,

which roughly amounts to the following. The noncommutative polynomials
C〈X1, . . . , Xn〉 can be endowed with an involution so that

(cXi1 . . . Xip)∗ = cXip . . . Xi1

and one defines an inner product

(P,Q) = lim
N→∞

N−1ETr(P (T1(N), . . . , Tn(N))Q∗(T1(N), . . . , Tn(N))) .

Let H be the Hilbert space obtained from C〈X1, . . . , Xn〉. The left action
of the ring C〈X1, . . . , Xn〉 on itself turns C〈X1, . . . , Xn〉 into an algebra of
operators on H, the weak closure of which will be M . The Xj ’s give rise to
the operators Tj and τ(·) = (·1, 1).

4 Two Derivatives

Let (M, τ) be a von Neumann algebra with trace-state τ and Tj = T ∗
j , 1 ≤

j ≤ n, a n-tuple of elements generating M . Throughout the rest of this paper
we will assume T1, . . . , Tn do not satisfy any algebraic relation, i.e. there is no
P ∈ C〈X1, . . . , Xn〉, P �= 0 so that P (T1, . . . , Tn) = 0.

To define the derivatives, it will be convenient to deal with a slightly more
general situation. We replace C〈T1, . . . , Tn〉 by B〈X〉, the polynomials in X
with “noncommutative coefficients in B”, i.e. the monomials are b0Xb1X . . . bn

and the only relation between the coefficients B and X is X = 1X = X1 .
Note that if B is the algebra generated by 1, T1, . . . , Tj−1, Tj+1, . . . , Tn and
X = Tj then C〈T1, . . . , Tn〉 = B〈X〉.

The free difference-quotient

∂X:B : B〈X〉 → B〈X〉 ⊗ B〈X〉

is defined by

∂X:Bb0Xb1X . . . bn =
∑

1≤j≤n

b0X . . . bj−1 ⊗ bjX . . . bn .
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This means: for every X in b0Xb1X . . . bn there is a term in the formula where
that X has been replaced by ⊗.

To state the characteristic property of ∂X:B , let us return to B〈X〉 ⊂
M . If K ∈ M , let mK : B〈X〉 ⊗ B〈X〉 → M be the linear map so that
mK(P1 ⊗ P2) = P1KP2. If P ∈ B〈X〉, we have

d
dε

P (X + εK)|ε=0 = mK(∂X:BP )

thus ∂X:BP can be viewed as the differential at X of the map M → M which
takes m ∈ M to P (m) ∈ M .

The other derivative we shall consider is the cyclic derivative of Rota–
Sagan–Stein:

δX:B : B〈X〉 → B〈X〉
which is given by

δX:Bb0Xb1X . . . bn =
∑

1≤j≤n

bjX . . . bnb0X . . . bj−1 .

It can also be described as being the free difference-quotient ∂X:B followed by
multiplication after the two factors in the tensor product have been permuted.

The characteristic property of δX:B is that

d
dε

τ(P (X + εK))|ε=0 = τ((δX:BP )K)

where P ∈ B〈X〉,K ∈ M . This means δX:B is the gradient of the map

M � m → τ(P (m)) ∈ C .

In case B = C〈T1, . . . , Tj−1, Tj+1, . . . , Tn〉 and X = Tj , we denote ∂X:B

by ∂j and δX:B respectively by δj and we refer to them as the partial free-
difference quotient and respectively the partial cyclic derivative w.r.t. Tj .

In case B = C, B〈X〉 = C[X] (commutative polynomials) and ∂X:C can
be identified with the classical difference quotient

P → P (X) − P (Y )
X − Y

after identifying C[X]⊗C[X] with C[X,Y ]. Also δX:C identifies with the usual
derivative P → P ′.

5 Infinitesimal Automorphisms of M

An automorphism of M is a linear bijection α : M → M so that α(x∗) =
α(x)∗, α(xy) = α(x)α(y), α(1) = 1, τ ◦ α = τ . Loosely speaking, the in-
finitesimal version of these will be derivations DK which are densely defined
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and which, under suitable circumstances will exponentiate to one-parameter
groups of automorphisms. Here K = (K1, . . . , Kn) ∈ (Msa)n, M is generated
by T1, . . . , Tn and DK is defined on C〈T1, . . . , Tn〉 by

DKP =
∑

1≤j≤n

mKj
∂jP

(or equivalently)

=
d
dε

P (T1 + εK1, . . . , Tn + εKn)|ε=0 .

The key condition on DK is to preserve the trace-state

τ(DKP ) = 0

which is

0 =
d
dε

τ(P (T1 + εK1, . . . , Tn + εKn))|ε=0 =
∑

1≤j≤n

τ((δjP )Kj) = 0 .

This means
K ∈ (δC〈T1, . . . , Tn〉)⊥

where δ denotes the cyclic gradient

δP = (δ1P, . . . , δnP )

and the orthogonal ⊥ is with respect to the scalar product

((X1, . . . , Xn), (Y1, . . . , Yn)) =
∑

1≤j≤n

τ(XjYj)

on (Msa)n.
The requirement on DK to be the generator of a one-parameter group of

automorphisms involves analytic vectors. This appears to be related to the
Kj ’s being “sufficiently analytic” functions of the Tj ’s. A sufficient condi-
tion is

Kj ∈ C〈T1, . . . , Tn〉, 1 ≤ j ≤ n .

The derivations DK are best understood in the framework of the Lie
algebra of noncommutative vector fields

Vect C〈T1, . . . , Tn〉 = (C〈T1, . . . , Tn〉sa)n

with the bracket
[P,Q] = (DP Qj − DQPj)1≤j≤n

(the complexification of which means dropping the selfadjointness requirement
on the components). The τ -preserving noncommutative vector fields form a
Lie subalgebra
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Vect C〈T1, . . . , Tn|τ〉 = Vect C〈T1, . . . , Tn〉 ∩ (δC〈T1, . . . , Tn〉sa)⊥ .

In general, the orthogonal of the cyclic gradients may not contain a dense set
of polynomial elements. Therefore, we will say that (T1, . . . , Tn) is regular
(or equivalently that Vect C〈T1, . . . , Tn|τ〉 is infinitesimally rich) if

δC〈T1, . . . , Tn〉sa + Vect C〈T1, . . . , Tn|τ〉

is dense in Vect C〈T1, . . . , Tn〉 w.r.t. the Hilbert space norm corre-
sponding to ((Xj)1≤j≤n, (Yj)1≤j≤n) =

∑
1≤j≤n τ(XjYj) .

Since T1, . . . , Tn generate M , the map

Aut(M) � α → (α(T1), . . . , α(Tn)) ∈ (Msa)n

is a bijection of Aut(M) onto the automorphic orbit of (T1, . . . , Tn) and reg-
ularity means that the cyclic gradients (which are normal to the orbit) and
Vect C〈T1, . . . , Tn|τ〉 (which are tangent to the orbit) span a dense set, in par-
ticular that Vect C〈T1, . . . , Tn|τ〉 be dense in the tangent space to the orbit
at (T1, . . . , Tn). Of course, since the orbit is not really a manifold, this is only
a rough picture.

6 Symmetries of the Large N Limit of the n-tuple of
Gaussian Random Matrices

It seems that the best conceptual description of the large N limit of a n-tuple
of N ×N hermitian random matrices is in the form outlined in Example 2 of
Section 2, i.e. a von Neumann algebra with trace-state (M, τ) and a generating
n-tuple (T1, . . . , Tn) of selfadjoint elements. (The unstructured collection of
noncommutative moments is a rather non-illuminating presentation of the
same information).

Let Tj(N), 1 ≤ j ≤ n, be independent hermitian random matrices with
real and imaginary parts of the entries i.i.d. (0, 1/N) Gaussian (the entries
not bound by the hermiticity requirement). We shall refer to this n-tuple
as the n-tuple of Gaussian random matrices.

Fact. a) The large N limit of the Gaussian n-tuple of random matri-
ces Tj(N), 1 ≤ j ≤ n can be realized by the operators Sj = lj + l∗j (1 ≤
j ≤ n) where ljξ = ej ⊗ ξ are left creation operators on the full Fock
space

T (Cn) = C1 ⊕
⊕
k≥1

(Cn)⊗k

(ej , 1 ≤ j ≤ n being the canonical basis of C
n) and τ(T ) = (T1, 1).

b) The von Neumann algebra generated by S1, . . . , SN is isomor-
phic to L(Fn) where Fn is the free group on generators g1, . . . , gn. the
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isomorphism can be given by putting λ(gj) in correspondence with
f(Sj) where f : R → {z ∈ C | |z| = 1} is a Borel function, injective
on [−2, 2], so that f∗µ = Haar measure, where µ is the semicircular
measure with density 1

π

√
4 − t2χ[−2,2].

Note that the vacuum expectation (·1, 1) is a pure state on the algebra of
all operators on T C

n, however, it is a trace-state on the algebra of S1, . . . , Sn.
The commutant of this algebra is generated by the operators Dj = rj + r∗j ,
where rjξ = ξ ⊗ ej are the right creation operators. In free probability the-
ory S1, . . . , Sn is called a semicircular system and it is the free analogue of a
system of n i.i.d. centered Gaussian random variables

The construction of infinitesimal automorphisms of the von Neumann al-
gebra L(Fn) using cyclic gradients w.r.t the semicircular generator S1, . . . , Sn

enjoys very good properties and can be given in explicit form.

Fact. a) We have

Vect C〈S1, . . . , Sn|τ〉 + δC〈T1, . . . , Tn〉sa = Vect C〈S1, . . . , Sn〉 .

In particular Vect C〈S1, . . . , Sn|τ〉 is infinitesimally rich and defines
derivations which exponentiate to one-parameter groups of auto-
morphisms.

b) The n-tuples of elements

FI = (δi0,jPk0−1(Si0)Pk1(Si1) . . . Pkp
(Sip

) − δipjP0(Si0) . . . Pkp−1(Sip
))1≤j≤n

where I runs over systems of indices

I = (i0, . . . , i0︸ ︷︷ ︸
k0times

, . . . , ip, . . . , ip︸ ︷︷ ︸
kptimes

) kr > 0 (0 ≤ r ≤ p),
∑

0≤r≤p

kr ≥ 2, ir 	= ir+1

span the complexification of Vect C〈S1, . . . , Sn|τ〉. Here the Pj’s are
the Chebyshev polynomials which are the orthogonal polynomials
for the semicircular measure with density 1

π

√
4 − t2χ[−2,2].

7 The von Neumann Algebras of Free Groups

The connection with the large N limit of Gaussian random matrices has been
the key to several other important applications of free probability to the study
of the L(Fn). This section contains some brief speculations about the interest
in these von Neumann algebras.

Infinite-dimensional von Neumann algebras (M, τ) with scalar center
Z(M) = CI, are called II1-factors. The orthogonal projection operators
P = P ∗ = P 2 ∈ M determine a wonderful infinite-dimensional geometry
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of linear subspaces, with dimensions τ(P ) ∈ [0, 1] discovered by John von
Neumann.

The most fundamental II1-factor is the so-called hyperfinite or injective
II1 factor (it is also the smallest). By a deep theorem of A. Connes all L(G),
where G is a countable amenable group with infinite conjugacy classes, are
isomorphic to the hyperfinite II1-factor. The free group factors, L(Fn) are not
isomorphic to the hyperfinite II1-factor and for several reasons, which have
emerged from free probability, they seem to represent, after the hyperfinite,
the next important class of II1-factors.

One source of interest in the L(Fn) is the following conjecture about large
N limits of random multimatrix models.

“(Not too un-)Reasonable Guess”: the von Neumann algebras aris-
ing from large N limits of random multimatrix models given by
densities

cN exp(−NTrP (A1, . . . , AN ))dA1 . . .dAn

on hermitian matrices are in the L(Fn) family.

8 Duality for the Coalgebra of the Free
Difference-Quotient

We go back to the general situation of B〈X〉 ⊂ (M, τ) considered in section 4.
The free difference-quotient satisfies the coassociativity equation:

(∂X:B ⊗ id) ◦ ∂X:B = (id ⊗ ∂X:B) ◦ ∂X:B

This makes (B〈X〉, ∂X:B) a coalgebra and moreover ∂X:B is a derivation
of B〈X〉 into the B〈X〉-bimodule B〈X〉 ⊗ B〈X〉. This can be written

∂ ◦ µ = (id ⊗ µ) ◦ (∂ ⊗ id) + (µ ⊗ id) ◦ (id ⊗ ∂) (�)

In our functional analysis context, under good conditions one can pass to a
closure of the unbounded operator ∂X:B and this closure will be defined also
for inverses of elements of B〈X〉 or matrix elements in Mn(B〈X〉). Having all
these inverses at hand will make things much nicer, as will soon be visible.
First let us emphasize a remarkable feature of the structure.

Selfduality: if (A,µ, ∂) is an algebra (A,µ) and ∂ is a comultipli-
cation which is also a derivation, then the same also holds for the
dual (A•, ∂•, µ•) (where A• denotes the dual vector space etc.)

This is quite easy to see, taking the dual of the derivation relation (�), we
get:

µ• ◦ ∂• = (∂• ⊗ id) ◦ (id ⊗ µ•) + (id ⊗ ∂•) ◦ (µ• ⊗ id)

which coresponds to replacing (µ, ∂) by (∂•, µ•).
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The significance of duality becomes clearer in the functional analysis con-
text when A contains matrix elements of matricial B-resolvents

((bij)1≤j≤n − (Xδij)1≤j≤n)−1

What happens is that, roughly speaking, under some invertibility
conditions, the corepresentations, i.e. β ∈ Mn(A) satisfying

(idMn ⊗ ∂X:B)β = β ⊗Mn β

turn out to be the matricial B-resolvents. Very roughly, the dual object
should then be obtained via a map

A• � ϕ →
⊕

β corepresentation

(idMn ⊗ ϕ)(β) ∈
⊕

β

Mdimβ .

Simplest Example of Duality: Let µ be a compactly supported prob-
ability measure on R, M = L∞(R, dµ), τ = µ and A ⊂ M , the algebra of
rational functions with poles outside supp µ. In this 1-dimensional situation,
it suffices to restrict the consideration of matricial resolvents to 1×1 matrices.

The map into the dual object of L1(R, dµ) ⊂ A• is then given by the
Cauchy transform

L1(R,dµ) � f → C(f)

where C(f)(z) =
∫

f(t)(z−t)−1dt is defined on C\supp µ. The multiplication
# in the dual (when defined) is such that

C(f1#f2)(z) = C(f1)(z)C(f2)(z)

and the comultiplication derivation corresponds to the difference-quotient

C(f)(z1) − C(f)(z2)
z1 − z2

Thus the dual object will be an algebra of analytic functions on (C ∪ {∞}) \
supp µ vanishing at ∞, endowed with the usual multiplication and the comul-
tiplication defined by the difference quotient. Note that on this road there are
delicate analytic aspects, with the flavor of analytic capacity theory.

For the general version of this duality, involving matricial B-resolvents,
see [9].

9 Matricial B - Resolvents

The initial application of the coalgebra of ∂X:B in free probability has been to
analytic subordination related to free Markovianity. One of the simplest exam-
ples (B = C) is provided by a pair of hermitian random matrices T (N), D(N)
where D(N) is diagonal deterministic and T (N) has a distribution which is
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rotation invariant. Assuming T (N) and T (N) + D(N) have limit distribu-
tion of eigenvalues µ and ν probability measures on R, let Gµ(z), Gν(z) be
their Cauchy transforms. We then have analytic subordination Gµ ◦ u = Gν ,
where u is an analytic function mapping the upper half-plane to itself and
∞ to ∞. This has analytic consequences on the smoothness of ν given µ. We
had obtained some results in this direction using free convolution, which were
then shown by Biane using also some combinatorics, to be the consequence
of a subordination result for resolvents and which, then in turn, we gener-
alized and simplified showing that certain conditional expectations become
homomorphisms for the dual multiplication of a difference-quotient (see the
references in [6]).

Actually the matricial B-resolvents appear as a key ingredient in analyzing
a selfadjoint operator w.r.t. totally noncommuting “operator-scalars”. Also,
the free probability machinery has a generalization to the B-valued context.
We would like to conclude this discussion by mentioning some important ran-
dom matrix work related to free probability where the use of these resolvents
has been essential.

Fact (Haagerup - Thorbjoernsen, [1]). If T1(N), . . . , Tn(N) is the n-tuple
of i.i.d. Gaussian random matrices, then almost surely

lim
N→∞

||P (T1(N), . . . , Tn(N))|| = ||P (S1, . . . , Sn)||

where P is a noncommutative polynomial and S1, . . . , Sn is the semi-
circular n-tuple.

This result appears as a sweeping generalization of the largest eigenvalue
results for one Gaussian matrix.

The other instance is provided by D.Shlyakhtenko’s work [2] on the
limit distribution of eigenvalues of so-called generalized Gaussian
random band matrices

T (N) = (gmnK(
m

N
,

n

N
))1≤m,n≤N

here (gmn)1≤m,n≤N is an i.i.d. Gaussian hermitian random matrix and
K : [0, 1]2 → C is a continuous hermitian kernel. In this case, B is a com-
mutative algebra arising as the limit of diagonal matrices.

In both cases the final result no longer involves the generalized resolvents,
but these are essential on the way to that result.
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1 Universal and Random Graphs

In this section we will show the existence of a denumerable, non-directed
graph which is universal in the category of all countable, non-directed graphs
and homogeneous (with respect to its finite subgraphs). Moreover, we will see
that such a graph is determined unique up to isomorphism. This definition
was done by R. Rado. We will give the criteria of universality using incidence
matrix. Then we consider the random graphs or probability measures on the
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set of graphs. We generalize the theorem by P. Erdös and A. Rényi that the
random graph is universal graph with probability 1.

We will describe a non-directed countable graph by a pair Γ = (Γ, Γ (1)),
where Γ is the (countable) set of vertices, and Γ (1) ⊆ Γ × Γ the set of edges.
Any subset S ⊆ Γ determines a subgraph (S, Γ (1)|S×S) of Γ , which we will
again denote by S.

Given two graphs Γi, i = 1, 2. A mapping ι : Γ1 → Γ2 is called a mono-
(iso)morphism, if it is one-to-one (bijective, resp.) and preserves the structure
of the graph Γ1:

(x, y) ∈ Γ
(1)
1 if and only if (ιx, ιy) ∈ Γ

(1)
2 .

In other words, Γ1 is isomorphic to the subgraph ι(Γ1) of Γ2. Every isomor-
phism of Γ1 onto itself is called automorphism.

Definition 1. A (countable, non-directed) graph Γ is said to be

(1) universal, if to any finite (non-directed) graph F there exists a mono-
morphism ι : F → Γ . In other words, any finite non-directed graph is
isomorphic to a subgraph of Γ .

(2) homogeneous, if to any finite subgraphs F1, F2 of Γ , and isomorphism
ι : F1 → F2, there exists an automorphism ι′ : Γ → Γ which extends ι.

1.1 Construction of the universal graph

In the sequel, we will show that universality and homogeneity is equivalent to
the following extension property:

Definition 2. A graph Γ is said to have the extension property, if the fol-
lowing holds: Given any finite graph F , and a one-point extension F ′ of F .
If there is a mono-morphism ι : F → Γ , then ι can be extended to an mono-
morphism ι′ : F ′ → Γ , i.e. the following diagram commutes:

F
ι (mono-morphism)−−−−−−−−−−−−−→ Γ

id

⏐⏐� id

⏐⏐�
F ′ ι′ (mono-morphism)−−−−−−−−−−−−−→ Γ

.

In other words, the graph Γ satisfies the extension property if and only if
to any finite subgraph F of Γ , and any (exterior) one-point extension F ′ =
F ∪ {a} of F , there exists a point α ∈ Γ such that for x ∈ F

(α, x) ∈ Γ (1) if and only if (a, x) ∈ F ′(1).

The extension property allows us to extend locally defined isomorphisms
to global isomorphisms via a so-called back and forth argument:
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Lemma 1. Suppose Γ , Γ̃ are countable, non-directed graphs which have the
extension property, and F ⊆ Γ finite. Then any mono-morphism ι : F → Γ̃
can be extended to an isomorphism ι′ : Γ → Γ̃ .

Proof. Write Γ = {x1, x2, . . .} and Γ̃ = {y1, y2, . . .}. Denote F1 = F , G1 =
ι(F1), and ι1 = ι : F1 → G1. Define G2 = G1 ∪ {y1}. By the extension
property, ι−1

1 : G1 → F1 extends to a mono-morphism ι−1
2 : G2 → F2 onto a

subset F2 ⊇ F1. Now define F3 = F2 ∪{x1}. Again there is a mono-morphism
ι3 : F3 → G3 onto a subset G3 ⊇ G2. Take G4 = G3 ∪{y2}. Continuing in the
same manner as above, we can construct inductively subgraphs

F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · · ⊆ Γ

with
Fn ⊇ {xk : 1 ≤ k ≤ n − 1

2
},

subgraphs
G1 ⊆ G2 ⊆ · · · ⊆ Gn ⊆ · · · ⊆ Γ̃

satisfying
Gn ⊇ {yk : 1 ≤ k ≤ n

2
},

and isomorphisms ιn : Fn → Gn,

ι = ι1 ⊆ ι2 ⊆ · · · ⊆ ιn ⊆ · · ·

The mapping ι∞ =
⋃∞

n=1 ιn maps
⋃∞

n=1 Fn = Γ isomorphically onto⋃∞
n=1 Gn = Γ̃ . ��

Theorem 1. A countable, non-directed graph is universal and homogeneous
if and only if it has the extension property. Two such graphs are isomorphic.

Proof. Any universal and homogeneous graph Γ has the extension property:
By universality there is an embedding κ : F2 → M . Define i : κ(F1) → ι(M1),
i = ι ◦ κ−1. Now, choose an automorphism J : M → M which extends i. The
mapping J ◦ κ : F2 → M is an extension of ι.

Conversely, if Γ has the extension property, then it is obviously universal.
Moreover, if ι : F → F ′ is an isomorphism between finite subgraphs of Γ ,
then Lemma 1 (setting Γ = Γ̃ ) shows that ι can be extended to a global
automorphism ι′ : Γ → Γ . Hence Γ is homogeneous.

Suppose Γ̃ is another countable graph which satisfies the extension prop-
erty. To show that Γ and Γ̃ are isomorphic, choose any a ∈ Γ , ã ∈ Γ̃ , and
apply Lemma 1 to the mono-morphism ι : {a} → Γ̃ , which maps a to ã. ��
Remark 1. A non-directed countable graph Γ which has the extension property
is universal in the category of all countable non-directed graphs, i.e. every
countable, non-directed graph Γ ′ can be embedded into Γ .
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Consider a countable, non-directed graph (Γ, Γ (1)), Γ = {x1, x2, x2, . . .}.
We define its incidence matrix mΓ = (εij)∞i,j=1 ∈ {0, 1}N×N by

εij =

{
1 if (xi, xj) ∈ Γ (1)

0 otherwise
. (1)

Of course the definition of mΓ depends on the order of the xi.

Definition 3. An incidence matrix (εij)∞i,j=1 is said to be universal, if for
every n ∈ N

{(ε1k, ε2k, . . . , εnk) : k > n} = {0, 1}n. (2)

In other words, every finite binary word (ε1, ε2, . . . , εn) occurs infinitely often:

(ε1k, ε2k, . . . , εnk) = (ε1, ε2, . . . , εn) for infinitely many k > n. (3)

The set of all universal matrices is denoted by U .

Universal matrices are connected with universal graphs as follows:

Theorem 2. A countable non-directed graph Γ is universal and homogeneous,
if its incidence matrix mΓ is universal.

Proof. Write Γ = {x1, x2, x3, . . .}, and let mΓ be its incidence matrix defined
by 1. By Theorem 1, we have to show that Γ satisfies the extension property
if and only if mΓ is universal. But this is obvious, since Definition 2 is only a
reformulation of the extension property. ��

To show the existence of a universal and homogeneous graph, we con-
struct a universal incidence matrix (εij)∞i,j=1 as follows: Choose an enumer-
ation {w(1), w(2), w(3), . . .} of all finite words with alphabet {0, 1}, such that
every finite word occurs infinitely often. Extend these finite words w(i) arbi-
trarily to infinite words w̃(i) ∈ {0, 1}N. Now define εij , i < j, as

(ε1,n+1, ε2,n+1, . . . , εn,n+1) = πnw̃(n), n ∈ N

where πn is the projection onto the first n coordinates. Further define εii = 0,
and εij = εji for i > j. This already defines an incidence matrix, such that
(3) is satisfied.

We thus have proved

Theorem 3. There exists a countable, non-directed graph which is univer-
sal and homogeneous. By Theorem 1 this graph is determined uniquely up to
isomorphism.

Since such a universal and homogeneous graph is unique (up to isometry),
we simply speak of the universal graph ΓU .
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Suppose x, y ∈ ΓU are such that (x, y) /∈ Γ
(1)
U . By the extension property,

there is a point z ∈ ΓU such that both (x, z), (z, y) ∈ Γ
(1)
U . Thus the graph

metric
d(x, y) = min # edges in γ,

where the min is taken over all paths which join x and y, can only attain the
values

d(x, y) =

⎧⎪⎨
⎪⎩

0 if x = y

1 for (x, y) ∈ Γ (1)

2 otherwise
.

1.2 Action of the group S∞ and the set of universal matrices

We denote by M ⊆ {0, 1}N×N the set of all incidence matrices, equipped with
the topology that inherits from the product topology on {0, 1}N×N, and by U
the subset of all universal incidence matrices. The space M is compact and
metrizable, and U is a closed subset of M.

Let denote by S∞ the group of all permutations on the naturals N.
Equipped with the topology of point-wise convergence, and choosing a proper
metric, for example the usual metric for point-wise convergence

d(g1, g2) =
∑

1/2n |g1(n) − g2(n)|
1 + |g1(n) − g2(n)| ,

S∞ is a complete separable metric space (=polish space), which is not locally
compact. Moreover, this topology makes S∞ to a non-locally compact, polish
group. All finite permutations form a dense subgroup S∞ of S∞.

For any g ∈ S∞ and infinite matrix (aij)∞i,j=1 we define

Tg(aij) = g (aij) g−1 = (ag(i),g−1(j))∞i,j=1. (4)

Clearly Tg leaves the set M of incidence matrices invariant. Via g �→ Tg, the
group S∞ (or S∞) acts on M. Note that for any finite permutation g ∈ S∞,
Tg : M → M is a homeomorphism, whereas for any infinite permutation it is
only a Borel-automorphism.

Consider a graph Γ with incidence matrix mΓ : Another (countable, non-
directed) graph Γ̃ is isomorphic to Γ if and only if

mΓ̃ = gmΓ g−1

for some g ∈ S∞, or equivalently if the orbits S∞mΓ and S∞mΓ̃ coincide.
In this sense we may regard the group AutΓ of all automorphisms of Γ as a
(closed) subgroup of S∞.

PROBLEM
How does the group Aut(ΓU ) of automorphisms of the universal graph ΓU

look like?
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It is known that this group is simple (see [2]) Very interesting question
whether this (uncountable) group has unitary representations which do not
extend to the whole group S∞

As we saw U is S∞-invariant subset of M. Moreover, since any two uni-
versal graphs are isomorphic, S∞ acts transitively on the set U of universal
matrices, i.e. if m1,m2 ∈ U , then there is a g ∈ S∞ such that

m2 = g m1 g−1.

By the universality condition, it is clear that for any universal matrix m, its
orbit S∞m is dense in M.

Theorem 4. The set U of all universal incidence matrices is a dense Gδ-
subset of M.

Proof. For any finite binary word w = (ε1, ε2, . . . , εn), the set Mw =
{(εij)∞i,j=1 ∈ M : (3) holds } equals

⋂
m>n

⋃
k≥m

{(εij)∞i,j=1 ∈ M : (ε1k, ε2k, . . . , εnk) = (ε1, ε2, . . . , εn)}

is a Gδ set in M. Therefore, as the intersection of countably many Mw, the
set U is also Gδ.

For any universal incidence matrix m, the orbit S∞M is dense in M. Since
U is S∞-invariant, this completes the proof of the theorem. ��

1.3 Random graphs

Now we will define the probability measures on the set of all countable graphs
and in particular give a probabilistic proof of the existence of the universal
graph ΓU . That fact that the simplest such probability measures (independent
entries) gives with probability one the universal graph is due to P. Erdös and
A. Rényi ([4] see also [2]).

This proof will also imply the existence S∞-invariant measures which are
concentrated on the set U of universal incidence matrices.

We first give an intuitive description. Starting with a single point (one-
point graph), we successively define random graphs Γn, n = 1, 2, 3, . . . in the
following manner: To a given n-point graph Γn = {x1, x2, . . . , xn} we add
a n + 1-th point xn+1 and independently set edges in Γn+1 = Γn ∪ {xn+1}
between the new point xn and the old points x ∈ Γn according to

Prob[(xn+1, xm) ∈ Γn+1] = p

Prob[(xn+1, xm) /∈ Γn+1] = 1 − p,

where 0 < p < 1 is a fixed number. Then, with probability one, the so obtained
graph is the universal graph ΓU :
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Theorem 5 (P. Erdos, A. Renyi). Suppose {ξij : i < j} is an array of
independent identically distributed random variables with

P [ξij = 1] = p,

P [ξij = 0] = 1 − p,

where 0 < p < 1. Set ξii = 0 and ξij = ξji for i > j. Then, with probability
one, (ξij)∞i,j=1 is a universal incidence matrix.

Proof. We only have to show that, with probability one, every binary word
(ε1, ε2, . . . , εn) ∈ {0, 1}n occurs infinitely often:

P [(ξ11, ξ2k, . . . , ξnk) = (ε1, ε2, . . . , εn) for infinitely many k > n] = 1.

But this is evident since all the ξij , i < j, are independent, and since for k > n

0 < P [(ξ1k, ξ2k, . . . , ξnk) = (ε1, ε2, . . . , εn)] < 1,

which follows from 0 < p < 1. ��
Remark 2. The measures which were defined are invariant and ergodic with
respect to the NW -shift σNW : M → M defined by

σNW (ai,j)∞i,j=1 = (ai+1,j+1)∞i,j=1. (5)

There are lot of measures (besides those above) which are invariant and
ergodic with respect to the group S∞ which acts on the set of symmetric
0 − 1 matrices and concentrated on the subset of the universal matrices (see
[13]). So we have a strong version of so called Kolmogorov’s effect: there are
uncountable many invariant ergodic measures for the transitive action of non-
locally compact group S∞ .

Moreover we can say that the set of the probability measures on the space
of symmetric 0−1 matrices which have as support the set of universal matrices
is everywhere dense Gδ-set in the weak topology of the space of measures.

In another words for the generic probability measure on the set of count-
able graphs a universal graph has probability 1.

2 The Urysohn Metric Space and Random Metric Spaces

In his last works [10], Paul S. Urysohn (1898–1924) gave a concrete construc-
tion of a universal separable metric space which is now known as “Urysohn
Space”. Different to other universal separable metric spaces (for example
C([0, 1]) with the sup-norm, as was proven by Banach and Mazur), the
Urysohn space is more special, since it is homogeneous in the sense of De-
finition 4 and the space C([0, 1]) is not homogeneous. Moreover it turns out
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that, up to isometric equivalence, there is only one universal and homogeneous
space – Urysohn space U.

In this section we give an explicit construction of the Urysohn space U
which is in the spirit of our construction of the universal graph in Section 1,
i.e. it is based on the property that isometries from finite metric spaces F
into U can be extended to arbitrary one-point extensions of F (see also [12]).
Beside universality, this extension property also implies homogeneity and the
uniqueness of the Urysohn space. Another analogue to the case (Gurarij spaces
(see [8]), or the Poulsen Simplex (see [7]) will be considered elsewhere. For
different constructions of the Urysohn space, see [6] or [10].

Definition 4. A polish space (U, d) is said to be

(1) universal, if to any finite metric space (F, dF ) there exists an isometry
ι : (F, dF ) → (U, d).

(2) homogeneous , if to any finite subsets F1, F2 of U , and bijective isometry
ι : F1 → F2, there exists an automorphism (=bijective isometry) ι′ : U →
U which extends ι.

(3) a Urysohn space, if it is universal and homogeneous.

Note that any separable metric space (M,d) can be embedded isometrically
into a separable Banach space (B, ‖ . ‖): For example, choose any point x0 ∈ M
and consider the mapping

ι : M → Cb(M), x �→ ι(x) = d(x, . ) − d(x0, . ),

where Cb(M) is the space of all bounded continuous functions on M , equipped
with the sup-norm ‖ . ‖∞. The triangular inequality

|d(x, z) − d(y, z)| ≤ d(x, y), x, y, z ∈ K,

implies that ‖ι(x)− ι(y)‖∞ = d(x, y), and setting z = y in the formula above
shows that ‖ι(x) − ι(y)‖∞ = d(x, y). Thus ι is an isometric embedding of
M into Cb(M). Set B = closed linear span of ιM , ‖ . ‖ = ‖ . ‖∞. This is a
Banach space and by the separability of M , B is also separable.

This shows that any universal (separable) Banach space (for example
C[0, 1] with the sup-norm, see [3] or other textbooks on topology) is also
a universal separable metric space. But every known model of a universal
Banach space is not homogeneous in the sense of Definition 4.

2.1 Extending Isometries

In the sequel we will show that the Urysohn property can be characterized by
certain extension properties of isometries. This enables us to see that Urysohn
spaces are uniquely determined up to isomorphism.
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Definition 5. Let (M1, d1), (M2, d2) be metric spaces and ε > 0. A mapping
ι : M1 → M2 is said to be an ε-isometry, if

‖d1(x, y) − d2(x, y)‖ ≤ ε, x, y ∈ M1.

Definition 6. Suppose ε ≥ 0. A metric space (M,d) is said to have the
ε-extension property, if the following holds: Given any finite metric space
(F, dF ), and a one-point extension (F ′, dF ′) of (F, dF ). If there is an isometric
mapping ι : F → M , then ι can be extended to an ε-isometry ι′ : F ′ → M ,
i.e. the following diagram commutes:

F
ι (isometry)−−−−−−−−−→ M

id

⏐⏐� id

⏐⏐�
F ′ ι′ (ε−isometry)−−−−−−−−−−−→ M

.

If ε = 0, we simply speak of the extension property.

In other words, (M,d) satisfies the ε-extension property if and only if to
any finite subspace F ⊆ M , and any (exterior) one-point metric extension
(F ′ = F ∪ {a}, dF ′) of F , there exists a point aε ∈ M such that

|d(aε, x) − dF ′(a, x)| ≤ ε, x ∈ F.

The extension property allows us to extend locally defined isometries to
global isometries via a so-called back and forth argument:

Lemma 2. Suppose (M,d), (M̃, d̃) are polish spaces which have the extension
property, F ⊆ M finite. Then any isometric mapping ι : F → M̃ can be
extended to a bijective isometry ι′ : M → M̃ .

Proof. Choose countable dense subsets {x1, x2, . . .} ⊆ M and {y1, y2, . . .} ⊆
M̃ .

Denote F1 = F , G1 = ι(F1), and ι1 = ι : F1 → G1. Define G2 = G1∪{y1}.
By the extension property, ι−1

1 : G1 → F1 extends to an isometry ι−1
2 :

G2 → F2 onto a subset F2 ⊇ F1. Now define F3 = F2 ∪ {x1}. Again there
is an isometry ι3 : F3 → G3 onto a subset G3 ⊇ G2. Take G4 = G3 ∪ {y2}.
Continuing in the same manner as above, we can construct inductively subsets

F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · · ⊆ M

with
Fn ⊇ {xk : 1 ≤ k ≤ n − 1

2
},

subsets
G1 ⊆ G2 ⊆ · · · ⊆ Gn ⊆ · · · ⊆ M̃

satisfying
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Gn ⊇ {yk : 1 ≤ k ≤ n

2
},

and isometric bijections ιn : Fn → Gn,

ι = ι1 ⊆ ι2 ⊆ · · · ⊆ ιn ⊆ · · ·
The mapping ι∞ =

⋃∞
n=1 ιn maps F∞ =

⋃∞
n=1 Fn isometrically onto G∞ =⋃∞

n=1 Gn. Since F∞ and G∞ are dense, and since the metrics on M and M̃

are complete we may extend ι∞ to an bijective isometry ι′ : M → M̃ . ��
Theorem 6. A polish space is a Urysohn space if and only if it has the ex-
tension property. Two Urysohn spaces are isometrically isomorphic.

Proof. A Urysohn space (M,d) has the finite extension property: By univer-
sality there is an isometry κ : F2 → M . Define i : κ(F1) → ι(M1), i = ι ◦ κ−1.
Now, choose an automorphism J : M → M which extends i. The mapping
J ◦ κ : F2 → M is an extension of ι.

On the other hand, if (M,d) has the extension property, then (M,d) is
obviously universal. Moreover, if ι : F1 → F2 is an isometry between finite
subspaces of M , then Lemma 2 (setting M = M̃) shows the existence of an
automorphism ι′ : M → M which extends ι.

The uniqueness of two Urysohn spaces (M,d),(M̃, d̃) is now obvious:
Choose any two points x1 ∈ M , x2 ∈ M̃ and consider the isometry ι : x1 	→ x2.
Since both spaces posses the extension property, Lemma 2 allows us to extend
ι to an isomorphism ι′ : M → M̃ . ��
Remark 3. The existence of a polish space which is Urysohn is shown in Sec-
tion 2.2. Since such a space is unique up to isometry, we will simply speak of
the Urysohn space (U, d).

Note that if a polish space (M,d) satisfies the extension property, then
it is also universal in the category of polish spaces, i.e. every polish space
(P, d) can be embedded isometrically into M : Choose a countable dense subset
{x1, x2, . . .} ⊆ M ′, and denote Fn = {x1, . . . , xn}. There exist exists isometric
mappings ιn : Fn → M ,

ι1 ⊆ ι2 ⊆ · · · ⊆ ιn ⊆ · · ·
The mapping ι∞ =

⋃∞
n=1 ιn maps F∞ =

⋃∞
n=1 Fn isometrically into M . Since

F∞ is dense in P , and since the metric on M is are complete, we may extend
ι∞ to an isometry ι : P → M .

Lemma 3. Suppose a complete metric space (M,d) satisfies the ε-extension
property for all ε > 0. Then (M,d) has the extension property for compact
metric spaces: Given any compact metric space (C, dC), and any one-point
(or polish) extension (C ′, dC′) of (C, dC). If there is an isometric mapping
ι : C → M , then ι can be extended to an isometry ι′ : C ′ → M , i.e. the
following diagram commutes:
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C
ι (isometry)−−−−−−−−−→ M

id

⏐⏐� id

⏐⏐�
C ′ ι′ (ε−isometry)−−−−−−−−−−−→ M

Proof. First of all, note that for arbitrary ε > 0 the ε-extension property holds
also for compact metric spaces: Given any compact metric space (C, dC), one-
point extension (C ′ = C ∪ {a}, dC′), and isometry ι : C → M . Because C is
compact, we may choose a finite set F ⊆ C such that

min
y∈F

d(ιx, ιy) ≤ ε/2, x ∈ C.

By the assumption on M , there exists an ε/2-extension of the restriction of ι
to F , which maps a to xa ∈ M , say. Now the function

ι′ : C ∪ {a} → M,

{
ι′ = ι on C

a �→ xa

is an ε-extension of ι : C → M , as one easily can verify.
To show the extension property, we have to find a point α ∈ M such that

d(α, ι(x)) = dC′(a, x), x ∈ C. (6)

Choose εn, such that
∑∞

n=0 εn < ∞. We will define inductively a sequence of
points xn ∈ M , n = 0, 1, 2, . . ., such that

|d(xn, ι(x)) − dC′(a, x)| ≤ εn, x ∈ C, (7)

and such that the sequence (xn) is Cauchy in M . Then, since M is complete,
there exists a limit α which certainly satisfies (6).

Since M satisfies the ε-extension property for ε = ε0, we can find a point
x0 ∈ M which satisfies (7) with n = 0. Define the other xn, n ≥ 1, by applying
the following induction step:

Given a point xn which satisfies (7). Define an (exterior) one-point exten-
sion (C ∪ {xn, b}, d′) of (C ∪ {x0}, d) by:

d′(x, y) = d(x, y) x, y ∈ C ∪ {xn}
d′(x, b) = dC′(x, a) x ∈ C

d′(xn, b) = εn

In fact, by (7), d′ satisfies the triangular inequality (if in addition εn ≤
infx∈C dC′(x, a), which we certainly may assume) as one can easily verify.
Since M satisfies the ε-extension property for ε = εn+1, we can find a point
xn+1 ∈ M such that

|d(xn+1, ι(x)) − dC′(a, x)| ≤ εn+1, x ∈ C,
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and
d(xn, xn+1) ≤ d′(xn, b) + εn+1 = εn + εn+1.

By construction, 7 is satisfied, and since
∑

εn < ∞, the latter inequality
shows that (xn) is a Cauchy sequence, which completes the proof. ��

As an immediate consequence of Lemma 3, any polish space (M,d) which
satisfies the extension property (for finite metric spaces ) also satisfies the
extension property for compact metric spaces. Repeating the proof of Lemma
2 verbatim we may conclude:

Lemma 4. Suppose (M,d), (M̃, d̃) are polish spaces which have the extension
property, C ⊆ M compact. Then any isometric mapping ι : C → M̃ can be
extended to a bijective isometry ι′ : M → M̃ .

In particular, this shows that the Urysohn space is homogeneous with
respect to its compact subspaces. Hence the Urysohn space U is a “good”
universal object in the category of all compact metric spaces: every compact
metric space (C, dC) can be embedded isometrically into U , and this embed-
ding is unique up to isometry, i.e. if ι1 : C → U , ι2 : C → U are two such
isometries, then there exists an automorphism J : U → U such that

ι1 = J ◦ ι2.

Lemma 4 is not true assuming C to be closed, even countable (see [1], [5]).
The following Theorem which will be important for our construction of

the Urysohn space (See subsection 2.2):

Theorem 7. A polish space is Urysohn if and only if it satisfies the ε-
extension property for every ε > 0.

Proof. Combine Lemma 3 and Theorem 6. ��

2.2 Construction, Universal Matrices

Before show the existence of a Urysohn space, we need some preparations.
Suppose (M,d) is an infinite polish space. Choose a countable dense subset

D = {x1, x2, x3, . . .} and define a matrix r = (rij)∞i,j=1 by

ri,j = d(xi, xj). (8)

Any matrix obtained in such a way is called a (infinite) distance matrix. The
set of all infinite distance matrices is denoted by R. We will consider R as
topological space equipped with the topology that inherits from the product
topology on R

N×N. R is a closed convex cone in R
N×N, in particular it is a

polish space.
Similarly we say that a finite matrix (ri,j)n

i,j=1 is a (finite) distance ma-
trix, if there exists a finite metric space ({x1, x2, . . . , xn}, d) such that (8)



Universality and Randomness for the Graphs and Metric Spaces 257

holds. The set of all n-dimensional distance matrices, equipped with the
product topology, is denoted by Rn. If we define a (continuous) projection
πn : Rn+1 → Rn by

πn(rij)n+1
i,j=1 = (rij)n

i,j=1,

then we can regard R as the inverse limit of the cones Rn:

R
+ π1← R2

π2← · · · πn−1← Rn
πn← Rn+1

πn+1← · · ·
Given a n-dimensional distance matrix rn = (rij)n

i,j=1, which corresponds
to F = ({x1, . . . , xn}, d). A vector b = (b1, . . . , bn) is called admissible, if the
matrix

rb
n =

⎛
⎜⎜⎜⎜⎜⎝

r11 r12 · · · r1n b1

r21 r22 · · · r2n b2

...
...

. . .
...

...
rn1 rn2 · · · rnn bn

b1 b2 · · · bn 0

⎞
⎟⎟⎟⎟⎟⎠

is also a distance matrix. In other words, b is admissible if there exists a
one-point extension (F ∪ {x}, d′) of (F, d), such that

d′(x, xi) = bi, i = 1, . . . , n.

The set of all admissible vectors is then denoted by Adm(rn). It determines
all one-point extensions of (F, d) up to isomorphism. Note that

Adm(rn) = {(bi)n
i=1 ∈ R

n : bi − bj ≤ rij ≤ bi + bj}, (9)

hence Adm(rn) is a closed convex cone ⊆ R
n.

Lemma 5. Suppose M = ({x1, x2, x3, . . .}, d) is countable metric space, and
consider the subspaces Fn = ({x1, . . . , xn}, d), with rn = (d(xi, xj))n

i,j=1 as
their corresponding distance matrices. Then

R
+ π1← Adm(r2)

π2← · · · πn−1← Adm(rn) πn← Adm(rn+1)
πn+1← · · · ,

where πn : R
n+1 → R

n is the projection onto the first n coordinates.

Proof. It is clear that πn+1 Adm(rn+1) ⊆ Adm(rn). To prove the opposite
inclusion, it suffices to show that to any two vectors a, b ∈ Adm(rn) we can
construct a two-point extension M = (Fn ∪ {ya, yb}, d) of Fn with d(xi, ya) =
ai and d(xi, yb) = bi, i = 1, . . . , n. The only distance left to choose is α =
d(ya, yb). The validity of the triangular inequality for d is equivalent to

|ai − bi| ≤ α ≤ ai + bi, 1 ≤ i ≤ n,

which is only possible if

max
1≤i≤n

|ai − bi| ≤ min
1≤i≤n

ai + bi.
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But the latter inequality is true since both vectors a and b are admissible:
There exists a one-point extension (Fn ∪ {za}, da) of Fn with

da(za, xi) = ai, 1 ≤ i ≤ n,

and a one-point extension (Fn ∪ {zb}, db) of Fn with

db(zb, xi) = bi, 1 ≤ i ≤ n.

Now, using the triangular inequality for both metrics, we have

ai − bi = da(za, xi) − db(zb, xi) ≤ da(za, xj) + d(xi, xj) − db(zb, xi) ≤
≤ da(za, xj) + db(zb, xj) = aj + bj .

Since i and j where arbitrary, this implies the desired inequality. ��
Remark. The above lemma shows that the cones Adm(rn) are consistent

under projections. They are also consistent under permutations: If g is any
permutation on the set {1, 2, . . . n} then we have

g Adm(rn) = Adm(grng−1),

where for vectors x = (x1, x2, . . . , xn), its permutation gx is defined by gx =
(xg(1), xg(2), . . . , xg(n)).

Definition 7. A distance matrix r = (rij)∞i,j=1 is said to be universal, if for
every n ∈ N

closure {(r1k, r2k, . . . , rnk) : k = n, n + 1, . . .} = Adm((rij)n
i,j=1). (10)

It is called weakly universal, if S∞r is dense in R. The set of all universal
matrices is denoted by M.

Universal matrices are connected with Urysohn spaces:

Theorem 8. Suppose (M,d) is a polish space, (xn)∞n=1 a dense sequence. The
matrix r = (d(xi, xj))∞i,j=1 is universal if and only if M is Urysohn.

Proof. Suppose M is an Urysohn space. Fix n ∈ N, rn = (d(xi, xj))n
i,j=1

and choose an admissible vector (a1, a2, . . . , an) ∈ Adm(rn). By the extension
property, there is an x ∈ M such that

d(x, xi) = ai, i = 1, 2, . . . , n.

Since the xk are dense in M , the property (10) is evident.
Conversely, suppose the distance matrix (d(xi, xj)) is universal. Choose

a finite subset F = {y1, y2, . . . , yn} ⊆ M , and an admissible vector
(a1, a2, . . . , an) ∈ Adm(rn), where rn = (d(yi, yj))n

i,j=1. Fix ε > 0. Since the
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xk are dense, and since (10) holds, there are points xk1 , . . . , xkn
and x = xkn+1

such that
|xki

− yi| < ε/2, i = 1, 2, . . . , n

and
|d(x, xki

) − ai| < ε/2, i = 1, 2, . . . , n.

Therefore |d(x, yi) − ai| < ε, i = 1, . . . , n, which proves the ε-extension prop-
erty of M . Since ε > 0 was chosen arbitrarily, we can conclude by Lemma 3
that M has the extension property, hence it is a universal and homogeneous
space. ��

It is not difficult to show that the distance matrix r = (d(xi, xj))∞i,j=1

is weakly universal, if and only if (M,d) is weakly universal in the follow-
ing sense: To any finite metric space (F, dF ), and any ε > 0, there exists
an ε-isometry ι which maps F into M . Thus every universal matrix is also
weakly universal. The converse is not true: there exists weakly universal ma-
trices (spaces), which are not universal matrices (spaces, resp.). For example
consider a sequence of metric spaces

(F1, d1), (F2, d2), (F3, d3), . . . ,

such that their corresponding distance matrices

r1, r2, r3, . . .

enumerate all rational distance matrices of all dimensions. Now consider the
disjoint sum (M,d) of the spaces (Fi, di), i.e. M =

⋃
i Fi and

d(x, y) =

{
di(x, y) for x, y ∈ Fi
diam(Fi)+diam(Fj)

2 for x ∈ Fi, y ∈ Fj

,

where diam(Fi) = maxx,y∈Fi
di(x, y). The space (M,d) is complete, since it

consists of isolated points only, separable, by construction weakly universal
but not every finite metric space can be embedded into M .

Before we can start with the construction of the Urysohn space, we need
another auxiliary lemma, which proof we leave to the reader.

Lemma 6. Suppose An,Am are convex cones in R
n, R

m respectively (n > m),
such that πAn = Am, where π : R

n → R
m is the projection onto the first m

coordinates. If (ai)∞i=1 is a sequence dense in Am, then we can find vectors
(a′

i)
∞
i=1 dense in An such that

πa′
i = ai, i ∈ N.

Now we are able to construct a Urysohn space, or equivalently a universal
matrix : To do so, we define a metric d on the set of naturals N as follows.
Choose a sequence (a(1)

n )∞n=2 dense in R+ and define
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d(1, n) = a(1)
n , i = 2, 3, . . .

Note that d already defines a metric on the two-point set {1, 2}. Set r1 = (0),
and let r2 be the distance matrix which corresponds to the two-point space
({1, 2}, d). Since the projection π : R

2 → R, (x1, x2) → x1 maps Adm(r2)
onto Adm(r1) = R+, Lemma 6 shows that there is a sequence of numbers
(a(2)

n )∞n=3 such that

Adm(r2) = closure {
(

a
(1)
n

a
(2)
n

)
: n ≥ 3}.

Define
d(2, n) = a(2)

n , n = 3, 4, . . .

This defines already a metric on the three-point set {1, 2, 3}. Now let r3 be the
distance matrix corresponding to ({1, 2, 3}, d). Again, we can find a sequence
of non-negative numbers (a(3)

n )∞n=4 such that

Adm(r3) = closure {

⎛
⎜⎝

a
(1)
n

a
(2)
n

a
(3)
n

⎞
⎟⎠ : i ≥ 4}.

Define
d(3, n) = a(2)

n , n ≥ 4.

Continuing in this manner, we obtain a metric d on N such that by construc-
tion the matrix (d(i, j))∞i,j=1 is universal. Therefore the completion of (N, d)
is a Urysohn space. We have proved the main theorem of this section:

Theorem 9 (Urysohn). There exists a polish space (U, d) which is univer-
sal and homogeneous. By Theorem 6 this space is determined uniquely up to
isomorphism.

Remark. For α > 0, restricting ourselves to bounded distance matrices
r ∈ [0, α]N×N, one similarly can construct a homogeneous polish space Uα of
diameter α which is universal in the following sense: Every polish space of
diameter ≤ α can be embedded isometrically into Uα. Such a space is also
unique up to isometric equivalence.

2.3 Some Properties of the Urysohn space

We now consider topological properties of the Urysohn space.

Theorem 10. Any continuous map f : C → U from a compact metric space
(C, dC) into the Urysohn space (U, d) is contractible (=homotopic to the con-
stant map).
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Proof. Consider the image f(C) as a subspace of U. This is a compact metric
space and we therefore can find a isometric embedding ι : f(C) → B into
a separable Banach space (B, ‖ . ‖) (as was shown at the beginning of this
section). By the extension property, the isometry ι−1 : ι(f(C)) → C can be
extended to an isometry J : B → U:

(C, dC)
f−−−−→ (U, d)

g=ι◦f

⏐⏐� id

⏐⏐�
(B, ‖ . ‖) J−−−−→ (U, d)

Since the mapping g : C → B is contractible, f is also contractible. ��
Theorem 11. The Urysohn space (U, d) is path-wise connected. Moreover all
homotopy groups πn (and therefore all homology groups) are trivial.

Proof. That U is path-wise connected is an immediate consequence of the
extension property: The mapping which maps two different numbers a, b ∈ R

to two different points x, y ∈ U is an isometry, provided we have chosen the
proper norm on R, and can therefore be extended to an isometric embedding
of the whole interval [a, b] into U.

By Theorem 10, any continuous mapping f : Sn → U from the n-
dimensional sphere into U is contractible, hence all homotopy groups of U
are trivial. ��

PROBLEM
Is Urysohn space U contractible or not?
Consider the group Aut(U) of isometries of the Urysohn space, equipped

with the topology of point-wise convergence. In [11], the author shows that
Aut(U) is a universal topological group with a countable base, i.e. every Haus-
dorff topological group with a countable base is isomorphic to a subgroup of
Aut(U). Apart from that, not very much is known about this group.

PROBLEM
To describe algebraic or topological properties of the Isometry Group

Aut(U) of the Urysohn space U.
We continue with miscellaneous considerations about the Urysohn space.

Theorem 12. Consider the product U2 = U × U equipped with the maximum
metric d∞((x, y), (x′, y′)) = max{d(x, x′), d(y, y′)}. The product U2 is separa-
ble and universal, but not isometrically isomorphic to U

Proof. We show that (U2, d∞) does not satisfy the extension property: Choose
a subspace F1 = {x1, x2, x3} ⊆ U with distance matrix

rF1 =

⎛
⎝ 0 1 1/4

1 0 1
1/4 1 0

⎞
⎠ .
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and a subspace F2 = {y1, y2, y3} ⊆ U with distance matrix

rF2 =

⎛
⎝ 0 1/4 1

1/4 0 1
1 1 0

⎞
⎠ .

Let F ⊆ U2 be the subspace which consists of the points (xi, yi), i = 1, 2, 3.
All edges of this triangle have length one, i.e. the distance matrix of F is

rF =

⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠ .

The vector (1/2, 1/2, 1) ∈ Adm(rF ), but, by equation (9), any vector
(b1, b2, b3) ∈ Adm(rFj

), j = 1, 2, with bj ≤ 1/2 must have b3 < 1. Thus
there is no point (a, b) ∈ U2 such that

(d((a, b), (xi, yi)))3i=1 = (1/2, 1/2, 1).

��
Remark 4. The same argument as in the proof of Theorem 12 also works
out for the product U × [0, 1]2 (equipped with the maximum metric). Hence
U × [0, 1]2 and therefore U × [0, 1] (also equipped with the maximum metric)
is not isometrically isomorphic to U.

For any α > 0, (U, αd) also has the extension property and is therefore iso-
metrically isomorphic to (U, d): Suppose ι : C → U is an isometric embedding
of a compact space (C, dC) into (U, αd), and suppose (C ′, d′C) is a one-point
extension of (C, dC). By

αd(ιx, ιy) = dC(x, y), x, y ∈ C

the same ι embeds (C, α−1dC) isometrically into (U, d). We thus can find an
isometry ι′ : (C ′, α−1dC′) → (U, d) which extends ι. By the same argument as
before, ι′ is also an isometric embedding of (C ′, dC′) into (U, αd).

2.4 The set U of universal matrices

As for incidence matrices in Section 1, the group S∞ of permutations on N

acts via formula (4) also on the cone of all distance matrices. Unlike to the
case of graphs may not regard Aut(U) as a subgroup of S∞.

Theorem 13. The set U of all universal distance matrices is S∞-invariant,
i.e. gMg−1 = M for every g ∈ S∞. Moreover, it is a dense Gδ-subset of R.
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Proof. ¿From the remark which follows Lemma 5 it is obvious that a dis-
tance matrix r = (rij)∞i,j=1 is universal if and only if for every finite subset
{k1, k2, . . . , kn} ⊆ N,

Adm((rkikj
)n
i,j=1) = closure {(rk1k, rk2k, . . . , rknk) : k = n, n + 1, . . .}.

Thus M is S∞-invariant.
By the above construction, there is at least one universal matrix r ∈ R.

Its orbit S∞r dense in R, and consists of universal matrices only. Hence U is
dense in R. For fixed n,m ∈ N and α > 0, the function

εn,m,α : r = (rij) �→ sup
a∈Adm(πnr),‖a‖≤α

min
n<k≤m

‖a − (rik)n
i=1‖,

where ‖ · ‖ is the maximum norm on R
n, is a continuous map R → R. By

definition,

U =
⋂

k∈N

⋂
n∈N

⋂
α∈N

⋃
m>n

[εn,m,α <
1
k

]

is therefore a Gδ-set. ��
We will now give a probabilistic proof of the existence of the Urysohn

space in the spirit of Erdös Theorem 5. This procedure will also give an idea
of a random metric space. To emphasize the principle idea we only give an
intuitive but not formally rigorous presentation:

Starting with a single point we successively construct a random sequence
(Mn, dn) of n-point metric spaces (or n-dimensional distance matrices rn) ,

(M0, d0) ⊆ (M1, d1) ⊆ (M2, d2) ⊆ . . . ⊆ (Mn, dn) ⊆ . . . ,

as follows: to a given n-point metric space Mn (with distance matrix rn ∈ Rn)
we randomly add a n+1-th point choosing the distances between the new and
the previous points (= admissible vector ∈ Adm(rn)) according to a certain
(conditional) probability distribution µrn

(this is a probability measure on
Adm(rn)).

To ensure that, with probability one, the so obtained space is Urysohn
(or equivalently, its distance matrix is universal), we choose the distributions
µr as follows: On the one-dimensional admissible cone R

+ we take any fixed
measure µ∅ which supports the whole half-line (i.e. to any open subset B of
R

+, µ∅(B) > 0). Now we continue inductively via the following procedure:
Suppose we had constructed all the measures µrn

for all one-dimensional
distance matrices rn ∈ Rn such that its support suppµrn

is always the whole
admissible cone Adm(rn). For any n + 1-dimensional distance matrix rn+1 ∈
Rn+1, recall that

Adm(πnrn+1)
πn← Adm(rn+1),

where the projection is onto. Now in Adm(rn+1) we take any measure µrn+1

such that πnµrn+1 = µrn
and
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suppµrn+1 = Adm(rn+1)

Such a measure does exist, but we won’t give the detailed construction here.
On the cone R1 we put a probability measure µ1, µ1 = µ∅. Using the

measures µr, we define probability measures µn on Rn via

µn( . |πn−1r) = µπn−1r(π̃n−1 . ),

where π̃n−1(rij)n
i,j=1 = (r1,n, r2,n, . . . , rn−1,n). Note that π̃n−1 maps each ma-

trix r ∈ Rn into the the admissible cone Adm(πn−1r), hence this definition
makes sense.

The so constructed family µn is consistent under projection,

πmµn = µm, m ≤ n,

hence it defines a probability measure µ on R. By construction the probability
that the random distance matrix is universal equals one, thus

µ(U) = 1.

Remark 5. To assure that, with probability one, the random distance matrix
is universal, it is certainly not necessary that the conditional distributions are
consistent under projections, i.e.

µπmr = πmµr, r ∈ Rn,m ≤ n,

as assumed in the discussion above (see [12]). Anyway, note that the measure
µ in the above construction is generically not S∞-invariant.

At the end of this section we gather

• (cf. Theorem 9) There exists polish space (U, d) which is Urysohn, i.e. uni-
versal and homogeneous. This space is unique up to isometric equivalence.

• (cf. Theorem 11) The Urysohn space (U, d) is path-wise connected. All ho-
motopy groups πn of (U, d), and therefore all homology groups, are trivial.

• Open question: Is (U, d) contractible?
• Open question: Find familiar spaces to which (U, d) is homeomorphic.
• (cf. Theorem 8) A space is Urysohn if and only if its distance matrix of

any (= some) everywhere dense countable subset is universal.
• (cf. Theorem 13) The set of all universal matrices is dense Gδ subset of R,

which is invariant under finite permutations.

2.5 Random Metric Space

Here we will give a sketch of the construction of the random metric space. For
this we will define a probability measure on the space of distance matrices
which is concentrated on the subset of universal matrices. This construction
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is analogue to the same construction of the random graph but more complicate
because it is not possible to use independence of entries (triangle inequality is
the obstruction to that). Choose some measure γ on the half line R+ which
has full support (e.g. Gaussian measure on the half line) and let entries

r1,2, . . . r1,n, . . .

are i.i.d with distribution γ. We will define the conditional distribution of the
element of distance matrix rm,n, (n > m) under the condition that all the
elements with indices (i, k) are fixed where 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n

Then the conditional distribution of the element rm.n is uniform distribu-
tion on the interval [a, b] where

a = max
i=1,...m−1

|ri,m − ri,n|; b = min
i=1...m−1

|ri,m + ri,n|

Lemma 2.10 shows that a ≤ b so interval [a, b] is not empty and we can
by induction to define the distributions of all entries of the distance matrix.
Remark that distribution of the element rm,n actually depends on the distri-
bution of ri,m and ri,n for i = 1, . . . m − 1 only. As result we had define a
probability measure µγ on the space of distance matrices with parameter –
measure γ on the half-line.

Theorem 14. For any absolutely continuous measure γ on the half line R
with positive density the set of universal distance matrices has measure 1 with
respect to the measure µγ . In another word. Let r is a random distance matrix
with distribution muγ in the space of all distance matrices; then a metric space
which is completion of the set of naturals N under the distance matrix r is
the Urysohn space with probability 1.

The proof uses the law of large numbers in the special situation but we
will not prove the theorem here. As in the case of graphs we emphasize that
the last fact is valid for very reach set of measures on the space of distance
matrices, – we gave only one simple example which is in a sense similar to the
example with independent entries for the graphs. Namely, as in paragraph 1
for the case of graph, the set of probability measures on the space of distance
matrices for which subset of universal matrices has a full measure is again
everywhere dense Gδ subset of the space of all probability measures with
weak topology.
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Introduction
e volta nostra poppa nel mattino,
de’ remi facemmo ali al folle volo
—— Dante, Inf. XXVI 124-125

Several recent results reveal a surprising connection between modular forms
and noncommutative geometry.
The first occurrence came from the classification of noncommutative three
spheres, [C–DuboisViolette-I] [C–DuboisViolette-II]. Hard computations with
the noncommutative analog of the Jacobian involving the ninth power of the
Dedekind eta function were necessary in order to analyze the relation between
such spheres and noncommutative nilmanifolds. Another occurrence can be
seen in the computation of the explicit cyclic cohomology Chern character
of a spectral triple on SUq(2) [C–02]. Another surprise came recently from
a remarkable action of the Hopf algebra of transverse geometry of foliations
of codimension one on the space of lattices modulo Hecke correspondences,
described in the framework of noncommutative geometry, using a modular
Hecke algebra obtained as the cross product of modular forms by the action
of Hecke correspondences [C–Moscovici-I] [C–Moscovici-II]. This action de-
termines a differentiable structure on this noncommutative space, related to
the Rankin–Cohen brackets of modular forms, and shows their compatibility
with Hecke operators. Another instance where properties of modular forms
can be recast in the context of noncommutative geometry can be found in
the theory of modular symbols and Mellin transforms of cusp forms of weight
two, which can be recovered from the geometry of the moduli space of Morita
equivalence classes of noncommutative tori viewed as boundary of the modular
curve [Manin–M].
The theory of modular Hecke algebras, the spectral realization of zeros of L-
functions, and the arithmetic properties of KMS states in quantum statistical
mechanics combine into a unique general picture based on the noncommu-
tative geometry of the space of commensurability classes of Q-lattices. This
theme will be explored in depth in our forthcoming book [C–M-1]. In this
paper we concentrate on the arithmetic properties of the spaces of commen-
surability classes of 1 and 2-dimensional Q-lattices up to scaling.
An n-dimensional Q-lattice consists of an ordinary lattice Λ in R

n and a
homomorphism

φ : Q
n/Z

n → QΛ/Λ.

Two such Q-lattices are commensurable if and only if the corresponding lat-
tices are commensurable and the maps agree modulo the sum of the lattices.
The description of the spaces of commensurability classes of Q-lattices via
noncommutative geometry yields two quantum systems related by a duality.
The first system is of quantum statistical mechanical nature, with the algebra
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of coordinates parameterizing commensurability classes of Q-lattices modulo
scaling and with a time evolution with eigenvalues given by the index of pairs
of commensurable Q-lattices. There is a symmetry group acting on the sys-
tem, in general by endomorphisms. It is this symmetry that is spontaneously
broken at low temperatures, where the system exhibits distinct phases pa-
rameterized by arithmetic data. We completely analyze the phase transition
with spontaneous symmetry breaking in the two-dimensional case, where a
new phenomenon appears, namely that there is a second critical temperature,
beyond which no equilibrium state survives.
In the “dual system”, which corresponds just to commensurability of Q-
lattices, the scaling group is acting. In physics language, what emerges is
that the zeros of zeta appear as an absorption spectrum of the scaling action
in the L2 space of the space of commensurability classes of Q-lattices as in
[C–99]. While the zeros of zeta and L-functions appear at the critical temper-
ature, the analysis of the low temperature equilibrium states concentrates on
the subspace

GLn(Q)\GLn(A)

of invertible Q-lattices, which as is well known plays a central role in the
theory of automorphic forms.
While, at first sight, at least in the 1-dimensional case, it would seem easy
to classify commensurability classes of Q-lattices, we shall see that ordinary
geometric tools fail because of the ergodic nature of the equivalence relation.
Such quotients are fundamentally of “quantum nature”, in that, even though
they are sets in the ordinary sense, it is impossible to distinguish points by
any finite (or countable) collection of invariants. Noncommutative geometry
is specifically designed to handle such quantum spaces by encoding them by
algebras of non-commuting coordinates and extending the techniques of ordi-
nary geometry using the tools of functional analysis, noncommutative algebra,
and quantum physics.
Direct attempts to define function spaces for such quotients lead to invariants
that are of a cohomological nature. For instance, let the fundamental group
Γ of a Riemann surface act on the boundary P

1(R) of its universal cover
identified with the Poincaré disk. The space

L∞(Γ\P
1(R)) := L∞(P1(R))Γ

is in natural correspondence with global sections of the sheaf of (real parts
of) holomorphic functions on the Riemann surface, as boundary values. More
generally, the cyclic cohomology of the noncommutative algebra of coordinates
on such quotients is obtained by applying derived functors to these naive
functorial definition of function spaces.
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In the case of 1-dimensional Q-lattices, the states at zero temperature are
related to the Kronecker–Weber construction of the maximal abelian exten-
sion Q

ab. In fact, in this case the quantum statistical mechanical system is
the one constructed in [Bost–C], which has underlying geometric space X1

parameterizing commensurability classes of 1-dimensional Q-lattices modulo
scaling by R

∗
+. The corresponding algebra of coordinates is a Hecke algebra

for an almost normal pair of solvable groups. The regular representation is of
type III1 and determines the time evolution of the system, which has the set
of log(p), p a prime number, as set of basic frequencies. The system has an
action of the idèle class group modulo the connected component of identity
as a group of symmetries. This induces a Galois action on the ground states
of the system at zero temperature. When raising the temperature the system
has a phase transition, with a unique equilibrium state above the critical tem-
perature. The Riemann zeta function appears as the partition function of the
system, as in [Julia].
Each equivalence class of Q-lattices determines an irreducible covariant rep-
resentation, where the Hamiltonian is implemented by minus the log of the
covolume. For a general class, this is not bounded below. It is so, however, in
the case of equivalence classes of invertible Q-lattices, i.e. where the labelling
of torsion points is one to one. These classes then define positive energy repre-
sentations and corresponding KMS states for all temperatures below critical.
In the 2-dimensional case, as the temperature lowers, the system settles down
on these invertible Q-lattices, so that the zero temperature space is commu-
tative and is given by the Shimura variety

GL2(Q)\GL2(A)/C
∗.

The action of the symmetry group, which in this case is nonabelian and iso-
morphic to Q

∗\GL2(Af ), is more subtle due to the presence of inner auto-
morphisms and the necessary use of the formalism of superselection sectors.
Moreover, its effect on the zero temperature states is not obtained directly
but is induced by the action at non-zero temperature, which involves the full
noncommutative system. The quotient GL2(Q)\(M2(Af ) × GL2(R))/C

∗ and
the space of 2–dimensional Q-lattices modulo commensurability and scaling
are the same, hence the corresponding algebras are Morita equivalent. How-
ever, it is preferable to work with the second description, since, by taking the
classical quotient by the action of the subgroup SL2(Z), it reduces the group
part in the cross product to the classical Hecke algebra.
The GL2 system has an arithmetic structure provided by a rational subal-
gebra, given by a natural condition on the coefficients of the q-series. We
show that it is a Hecke algebra of modular functions, closely related to the
modular Hecke algebra of [C–Moscovici-I], [C–Moscovici-II]. The symmetry
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group acts on the values of ground states on this rational subalgebra as the
automorphism group of the modular field.
Evaluation of a generic ground state ϕ of the system on the rational subalgebra
generates an embedded copy of the modular field in C and there exists a unique
isomorphism of the symmetry group of the system with the Galois group of
the embedded modular field, which intertwines the Galois action on the image
with the symmetries of the system,

θ(σ) ◦ ϕ = ϕ ◦ σ.

The relation between this GL2 system and class field theory is being investi-
gated in ongoing work [C–M–Ramachandran].
The arithmetic structure is inherited by the dual of the GL2 system and en-
riches the structure of the noncommutative space of commensurability classes
of 2-dimensional Q-lattices to that of a “noncommutative arithmetic variety”.
The dual of the GL1 system, under the duality obtained by taking the cross
product by the time evolution, corresponds to the space of commensurability
classes of 1-dimensional Q-lattices, not considered up to scaling. This cor-
responds geometrically to the total space L of a principal R

∗
+ bundle over

the base X1, and determines a natural scaling action of R
∗
+. The space L is

described by the quotient
L = GL1(Q)\A

·,

where A
· denotes the set of adèles with nonzero archimedean component. The

corresponding algebra of coordinates is Morita equivalent to C(X1) �σt
R.

Any approach to a spectral realization of the zeros of zeta through the quan-
tization of a classical dynamical system faces the problem of obtaining the
leading term in the Riemann counting function for the number of zeros of
imaginary part less than E as a volume in phase space. The solution [C–99] of
this issue is achieved in a remarkably simple way, by the scaling action of R

∗
+

on the phase space of the real line R, and will be dealt with in our forthcoming
book [C–M-1].
In particular, this shows that the space L requires a further compactification
at the archimedean place, obtained by replacing the quotient L = GL1(Q)\A

·

by L = GL1(Q)\A i.e. dropping the non vanishing of the archimedean com-
ponent. This compactification has an analog for the GL2 case, given by the
noncommutative boundary of modular curves considered in [Manin–M], which
corresponds to replacing GL2(R) by M2(R) at the archimedean place, and is
related to class field theory for real quadratic fields through Manin’s real
multiplication program [Manin].
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The space L appears as the configuration space for a quantum field theory,
where the degrees of freedom are parameterized by prime numbers, including
infinity. When only finitely many degrees of freedom are considered, and in
particular only the place at infinity, the semiclassical approximation exhibits
the main terms in the asymptotic formula for the number of zeros of the
Riemann zeta function.
The zeros of zeta appear as an absorption spectrum, namely as lacunae in
a continuous spectrum, where the width of the absorption lines depends on
the presence of a cutoff. The full idèles class group appears as symmetries of
the system and L-functions with Grössencharakter replace the Riemann zeta
function in nontrivial sectors.
From the point of view of quantum field theory, the field configurations are
given by adèles, whose space A is then divided by the action of the gauge
group GL1(Q). As mentioned above, the quotient space is essentially the same
as the space L of commensurability classes of 1-dimensional Q-lattices. The
log(p) appear as periods of the orbits of the scaling action. The Lefschetz
formula for the scaling action recovers the Riemann–Weil explicit formula
as a semi-classical approximation. The exact quantum calculation for finitely
many degrees of freedom confirms this result. The difficulty in extending this
calculation to the global case lies in the quantum field theoretic problem of
passing to infinitely many degrees of freedom. These aspects will be discussed
in [C–M-1].
The dual system L can be interpreted physically as a “universal scaling sys-
tem”, since it exhibits the continuous renormalization group flow and its re-
lation with the discrete scaling by powers of primes. For the primes two and
three, this discrete scaling manifests itself in acoustic systems, as is well known
in western classical music, where the two scalings correspond, respectively, to
passing to the octave (frequency ratio of 2) and transposition (the perfect fifth
is the frequency ratio 3/2), with the approximate value log(3)/ log(2) ∼ 19/12
responsible for the difference between the “circulating temperament” of the
Well Tempered Clavier and the “equal temperament” of XIX century mu-
sic. It is precisely the irrationality of log(3)/ log(2) which is responsible for
the noncommutative nature of the quotient corresponding to the three places
{2, 3,∞}.
The main features of the dual systems in the GL1 case are summarized in the
following table:
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Quantum statistical mechanics Quantum field theory

Commensurability classes Commensurability classes
of Q-lattices modulo scaling of Q-lattices

A = C∗(Q/Z) � N
× A �σt

R

Time evolution σt Energy scaling U(λ), λ ∈ R
∗
+

{log p} as frequencies {log p} as periods of orbits

Arithmetic rescaling µn Renormalization group flow µ∂µ

Symmetry group Ẑ
∗ Idèles class group

as Galois action on T = 0 states as gauge group

System at zero temperature GLn(Q)\GLn(A)

System at critical temperature Spectral realization
(Riemann’s ζ as partition function) (Zeros of ζ as absorption spectrum)

Type III1 Type II∞

There is a similar duality (and table) in the GL2 case, where part of the
picture remains to be clarified. The relation with the modular Hecke algebra
of [C–Moscovici-I], [C–Moscovici-II] is more natural in the dual system where
modular forms with non-zero weight are naturally present.
The fact that the KMS state at critical temperature can be expressed as a
noncommutative residue (Dixmier trace) shows that the system at critical
temperature should be analyzed with tools from quantum field theory and
renormalization. The key role of the continuous renormalization group flow
as a symmetry of the dual system L and its similarity with a Galois group at
the archimedean place brings us to Chapter II of this work which deals with
the relation between renormalization and motivic Galois theory and whose
content will now be briefly described.
The mathematical theory of renormalization in QFT developed in
[C–Kreimer-I] [C–Kreimer-II] shows in geometric terms that the procedure of
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perturbative renormalization can be described as the Birkhoff decomposition

γ(z) = γ−(z)−1 γ+(z) (1)

on the projective line of complexified dimensions z of the loop γ(z) ∈ G given
by the unrenormalized theory. The γ−(z) side of the Birkhoff decomposition
yields the counterterms and the γ+(z) side evaluated at the critical dimen-
sion gives the renormalized value of the theory. The group G is the group of
“diffeographisms” of the physical theory based on the Hopf algebra of Feyn-
man graphs. It contains the renormalization group as a natural 1-parameter
subgroup.
Moreover, two types of considerations motivated in [C–01] the expectation of
relating concretely the renormalization group to a Galois group. On the one
hand, it was shown in [C–00] that the classification of approximately finite fac-
tors provides a nontrivial Brauer theory for central simple algebras over C, and
an archimedean analog of the module of central simple algebras over nonar-
chimedean fields. The relation of Brauer theory to the Galois group is via the
construction of central simple algebras as cross products of a field by a group
of automorphisms. This was realized for type II1 in [C–DuboisViolette-II], as
the cross product of the field of elliptic functions by an automorphism given
by translation on the elliptic curve. The results on the GL2 system suggest
the possibility of an analogous construction for type III1 factors using the
modular field. On the other hand, the coupling constants g of the fundamen-
tal interactions (electromagnetic, weak and strong) are not really constants
but depend on the energy scale µ and are therefore functions g(µ). Thus, high
energy physics implicitly extends the “field of constants”, passing from the
field of scalars C to a field of functions containing all the g(µ). On this field,
the renormalization group provides the corresponding theory of ambiguity.
These considerations suggest the idea that the renormalization group should
be related to a still mysterious Galois theory at the archimedean place. We
will return to discuss issues related to Galois theory and arithmetic geometry
at the archimedean place in [C–M-1].
In the treatment of renormalization that we present in this paper, we realize
concretely a Galois interpretation of the renormalization group, in the con-
text of motivic Galois theory. In fact, we show that perturbative renormaliza-
tion, in the dimensional regularization (Dim-Reg) and minimal substraction
scheme, is governed by a universal “motivic Galois group” U , which is inde-
pendent of the physical theory and acts on the set of dimensionless coupling
constants of physical theories, through a map to the corresponding group G
of diffeographisms, which in turn maps to formal diffeomorphisms, as shown
in [C–Kreimer-II]. The natural appearance of the “motivic Galois group”
in the context of renormalization confirms a suggestion made by Cartier in
[Cartier], that in the Connes–Kreimer theory of perturbative renormalization
one should find a hidden “cosmic Galois group” closely related in structure
to the Grothendieck–Teichmüller group.
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The starting point for the relation of perturbative renormalization to motivic
Galois theory is a form of the ’t Hooft relations, given by the scattering formula

γ−(z) = lim
t→∞ e−t( β

z +Z0) etZ0 (2)

proved in [C–Kreimer-II], which expresses the counterterms in the Birkhoff
decomposition (1) through the residues of graphs.
When this formula is expressed more explicitly in terms of the time ordered
exponential of physicists (also known as expansional in mathematical ter-
minology), the resulting expansional can be recognized as the solution of a
differential system. This step of passing from Birkhoff decomposition of loops
to a class of differential equations suggests the presence of an underlying
Riemann–Hilbert correspondence. This, in general, establishes an equivalence
between a category of differential systems with singularities and certain rep-
resentation theoretic data. In our setting, the appropriate class of differential
systems is identified via a geometric reformulation of the main properties of
the loops γµ(z) of the unrenormalized theories.
We consider as base space a punctured disk ∆∗, which is the space of com-
plexified dimensions around the dimension D of space-time, and a principal
Gm-bundle B over ∆∗, whose fibers account for the arbitrariness in the nor-
malization of integration in complexified dimension z ∈ ∆∗. The Gm-action
corresponds to the rescaling � ∂/∂�. For G the group of diffeographisms of
a given theory, we then consider G-valued flat connection on B, which are
equisingular. The equisingularity condition translates in geometric terms the
physical fact that the counterterms are independent of the additional choice
of a unit of mass µ. An equisingular flat G-valued connection on B is Gm-
invariant, singular on the fiber over zero, and such that the equivalence class
of the singularity of the pullback of the connection by a section of the principal
Gm-bundle only depends on the value of the section at the origin.
The classification of equivalence classes of such differential systems can then
be obtained in the form of a Riemann–Hilbert correspondence, by considering
the category of flat equisingular vector bundles. These can be organized into
a neutral Tannakian category with a natural fiber functor to the category
of vector spaces. The Tannakian category obtained this way is equivalent to
the category of finite dimensional representations of the affine group scheme
U∗ = U � Gm, which is uniquely determined by this property and universal
with respect to the set of physical theories.
We construct a specific “universal singular frame” on principal U -bundles over
B. When using in this frame the dimensional regularization technique of QFT,
all divergences disappear and one obtains a finite theory, which only depends
upon the choice of a local trivialization for the principal Gm-bundle B. The
coefficients of the universal singular frame, written out in the expansional
form, are the same rational numbers that appear as coefficients in the local
index formula of Connes–Moscovici [C–Moscovici-0].
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In particular, representations U∗ → G∗ = G�Gm classify flat equisingular G-
valued differential systems for G the diffeographisms group of a given physical
theory, while U∗ is universal and independent of the physical theory. More
explicitly, U∗ is the semi-direct product by its grading of the graded pro-
unipotent Lie group U whose Lie algebra is the free graded Lie algebra

F(1, 2, 3, · · · )•
generated by elements e−n of degree n, n > 0. The way it maps to the dif-
feographism group G is by mapping the generator e−n to the n-th graded piece
of the β-function, viewed as an element in Lie(G). In particular, it follows that
the renormalization group (whose infinitesimal generator is the element β) can
be lifted canonically to a 1-parameter subgroup of the universal group U∗.
Closely related group schemes appear in motivic Galois theory and U∗ is
for instance abstractly (but non-canonically) isomorphic to the motivic Ga-
lois group GMT

(O) ([Deligne-Goncharov], [Goncharov]) of the scheme S4 =
Spec(O) of 4-cyclotomic integers, O = Z[i][12 ]. This suggests an intriguing
relation between renormalization and mixed Tate motives.
These facts altogether indicate that the divergences of Quantum Field The-
ory, far from just being an unwanted nuisance, are a clear sign of the presence
of totally unexpected symmetries of geometric origin. This shows, in particu-
lar, that one should understand how the universal singular frame “renormal-
izes” the geometry of space-time using Dim-Reg and the minimal subtraction
scheme.

The structure of this work is organized as follows.

• The first Chapter is dedicated to the quantum statistical mechanical sys-
tem of Q-lattices, in the cases of dimension one and two, and its behavior
at zero temperature.

• The second Chapter is dedicated to the theory of renormalization of
[C–Kreimer-I], [C–Kreimer-II], the Riemann-Hilbert problem and the re-
lation with motivic Galois theory, according to the results announced in
[C–M].
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Quantum Statistical Mechanics of Q-Lattices

1 Introduction

In this chapter we shall start by giving a geometric interpretation in terms of
the space of commensurability classes of 1-dimensional Q-lattices of the quan-
tum statistical dynamical system (BC [5]). This system exhibits the relation
between the phenomenon of spontaneous symmetry breaking and number the-
ory. Its dual system obtained by taking the cross product by the time evolution
is basic in the spectral interpretation of zeros of zeta.
Since Q-lattices and commensurability continue to make sense in dimension n,
we shall obtain an analogous system in higher dimension and in particular we
derive a complete picture of the system in dimension n = 2. This shows two
distinct phase transitions with arithmetic spontaneous symmetry breaking.
In the initial model of BC ([5]) the partition function is the Riemann zeta
function. Equilibrium states are characterized by the KMS-condition. While
at large temperature there is only one equilibrium state, when the temperature
gets smaller than the critical temperature, the equilibrium states are no longer
unique but fall in distinct phases parameterized by number theoretic data. The
pure phases are parameterized by the various embeddings of the cyclotomic
field Q

ab in C.
The physical observables of the BC system form a C∗-algebra endowed with
a natural time evolution σt. This algebra is interpreted here as the algebra
of noncommuting coordinates on the space of commensurability classes of
1-dimensional Q-lattices up to scaling by R

∗
+.

What is remarkable about the ground states of this system is that, when
evaluated on the rational observables of the system, they only affect values
that are algebraic numbers. These span the maximal abelian extension of Q.
Moreover, the class field theory isomorphism intertwines the two actions of the
idèles class group, as symmetry group of the system, and of the Galois group,
as permutations of the expectation values of the rational observables. That
the latter action preserves positivity is a rare property of states. We abstract
this property as a definition of “fabulous3 states”, in the more general context
of arbitrary number fields and review recent developments in the direction of
extending this result to other number fields.
We present a new approach, based on the construction of an analog of the BC
system in the GL2 case. Its relation to the complex multiplication case of the
Hilbert 12th problem will be discussed specifically in ongoing work of the two
authors with N. Ramachandran [13].
The C∗-algebra of observables in the GL2-system describes the non-commuta-
tive space of commensurability classes of Q-lattices in C up to scaling by C

∗.
3 This terminology is inspired from John Conway’s talk on “fabulous” groups.
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A Q-lattice in C is a pair (Λ, φ) where Λ ⊂ C is a lattice while

φ : Q
2/Z

2 −→ QΛ/Λ

is a homomorphism of abelian groups (not necessarily invertible). Two Q-
lattices (Λj , φj) are commensurable iff the lattices Λj are commensurable (i.e.
QΛ1 = QΛ2) and the maps φj are equal modulo Λ1 + Λ2. The time evolution
corresponds to the ratio of covolumes of pairs of commensurable Q-lattices.
The group

S = Q
∗\GL2(Af )

quotient of the finite adèlic group of GL2 by the multiplicative group Q
∗ acts as

symmetries of the system, and the action is implemented by endomorphisms,
as in the theory of superselection sectors of Doplicher-Haag-Roberts ([16]).
It is this symmetry which is spontaneously broken below the critical temper-
ature T = 1

2 . The partition function of the GL2 system is ζ(β)ζ(β − 1), for
β = 1/T , and the system exhibits three distinct phases, with two phase tran-
sitions at T = 1

2 and at T = 1. At low temperatures (T < 1
2 ) the pure phases

are parameterized by the set

GL2(Q)\GL2(A)/C
∗

of classes of invertible Q-lattices (up to scaling). The equilibrium states of
the “crystalline phase” merge as T → 1/2 from below, as the system passes
to a “liquid phase”, while at higher temperatures (T ≥ 1) there are no KMS
states.
The subalgebra of rational observables turns out to be intimately related to
the modular Hecke algebra introduced in (Connes-Moscovici [10]) where its
surprising relation with transverse geometry of foliations is analyzed. We show
that the KMS states at zero temperature when evaluated on the rational ob-
servables generate a specialization of the modular function field F . Moreover,
as in the BC system the state intertwines the two actions of the group S, as
symmetry group of the system, and as permutations of the expectation values
of the rational observables by the Galois group of the modular field, identified
with S by Shimura’s theorem ([51]).
We shall first explain the general framework of quantum statistical mechanics,
in terms of C∗-algebras and KMS states. Noncommutative algebras concretely
represented in Hilbert space inherit a canonical time evolution, which allows
for phenomena of phase transition and spontaneous symmetry breaking for
KMS states at different temperatures.
There are a number of important nuances between the abelian BC case and
the higher dimensional non-abelian cases. For instance, in the abelian case,
the subfield of C generated by the image of the rational subalgebra under
an extremal KMS∞ state does not depend on the choice of the state and the
intertwining between the symmetry and the Galois actions is also independent
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of the state. This no longer holds in the non-abelian case, because of the
presence of inner automorphisms of the symmetry group S.
Moreover, in the GL2 case, the action of S on the extremal KMS∞ states is
not transitive, and the corresponding invariant of the orbit of a state ϕ under
S is the subfield Fϕ ⊂ C, which is the specialization of the modular field given
by evaluation at the point in the upper half plane parameterizing the ground
state ϕ.
Another important nuance is that the algebra A is no longer unital while
AQ is a subalgebra of the algebra of unbounded multipliers of A. Just as
an ordinary function need not be bounded to be integrable, so states can be
evaluated on unbounded multipliers. In our case, the rational subalgebra AQ

is not self-adjoint.
Finally the action of the symmetry group on the ground states is obtained
via the action on states at positive temperature. Given a ground state, one
warms it up below the critical temperature and acts on it by endomorphisms.
When taking the limit to zero temperature of the resulting state, one obtains
the corresponding transformed ground state. In our framework, the correct
notion of ground states is given by a stronger form of the KMS∞ condition,
where we also require that these are weak limits of KMSβ states for β → ∞.
We then consider the “dual” system of the GL2-system, which describes the
space of commensurability classes of 2-dimensional Q-lattices (not up to scal-
ing). The corresponding algebra is closely related to the modular Hecke al-
gebra of [10]. As in the 1-dimensional case, where the corresponding space is
compactified by removing the non-zero condition for the archimedean compo-
nent of the adèle, the compactification of the two-dimensional system amounts
to replacing the archimedean component GL2(R) with matrices M2(R). This
corresponds to the noncommutative compactification of modular curves con-
sidered in [37]. In terms of Q-lattices this corresponds to degenerations to
pseudo-lattices, as in [34].
It is desirable to have a concrete physical (experimental) system realizing the
BC symmetry breaking phenomenon (as suggested in [43]). In fact, we shall
show that the explicit presentation of the BC algebra not only exhibits a
strong analogy with phase states, as in the theory of optical coherence, but it
also involves an action on them of a discrete scaling group, acting by integral
multiplication of frequencies.

Acknowledgements. We are very grateful to Niranjan Ramachandran for
many extremely useful conversations on class field theory and KMS states,
that motivated the GL2 system described here, whose relation to the theory
of complex multiplication is being investigated in [13]. We thank Marcelo
Laca for giving us an extensive update on the further developments on [5].
We benefited from visits of the first author to MPI and of the second author
to IHES and we thank both institutions for their hospitality. The second
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2 Quantum Statistical Mechanics

In classical statistical mechanics a state is a probability measure µ on the
phase space that assigns to each observable f an expectation value, in the
form of an average ∫

f dµ. (1)

In particular for a Hamiltonian system, the Gibbs canonical ensemble is a
measure defined in terms of the Hamiltonian and the symplectic structure on
the phase space. It depends on a parameter β, which is an inverse temperature,
β = 1/kT with k the Boltzmann constant. The Gibbs measure is given by

dµG =
1
Z

e−βHdµLiouville, (2)

normalized by Z =
∫

e−βHdµLiouville.
When passing to infinitely many degrees of freedom, where the interesting phe-
nomena of phase transitions and symmetry breaking happen, the definition of
the Gibbs states becomes more involved (cf. [45]). In the quantum mechanical
framework, the analog of the Gibbs condition is given by the KMS condition
at inverse temperature β ([17]). This is simpler in formulation than its classi-
cal counterpart, as it relies only on the involutive algebra A of observables and
its time evolution σt ∈ Aut(A), and does not involve any additional structure
like the symplectic structure or the approximation by regions of finite volume.
In fact, quantum mechanically, the observables form a C∗-algebra A, the
Hamiltonian is the infinitesimal generator of the (pointwise norm continu-
ous) one parameter group of automorphisms σt ∈ Aut(A), and the analog
of a probability measure, assigning to every observable a certain average, is
given by a state.

Definition 2.1 A state on a C∗-algebra A is a linear form on A such that

ϕ(1) = 1 , ϕ(a∗a) � 0 ∀ a ∈ A . (3)

When the C∗-algebra A is non unital the condition ϕ(1) = 1 is replaced by
||ϕ|| = 1 where

||ϕ|| := supx∈A,||x||≤1|ϕ(x)| . (4)

Such states are restrictions of states on the unital C∗-algebra Ã obtained by
adjoining a unit.
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The evaluation ϕ(a) gives the expectation value of the observable a in the
statistical state ϕ. The Gibbs relation between a thermal state at inverse
temperature β = 1

kT and the time evolution

σt ∈ Aut(A) (5)

is encoded by the KMS condition ([17]) which reads

∀ a, b ∈ A , ∃F bounded holomorphic in the strip {z | Im z ∈ [0, β]} (6)

F (t) = ϕ(a σt(b)) F (t + iβ) = ϕ(σt(b)a) ∀t ∈ R.

In the case of a system with finitely many quantum degrees of freedom, the
algebra of observables is the algebra of operators in a Hilbert space H and
the time evolution is given by σt(a) = eitH a e−itH , where H is a positive
self-adjoint operator such that exp(−βH) is trace class for any β > 0. For
such a system, the analog of (2) is

ϕ(a) =
1
Z

Tr
(
a e−βH

) ∀a ∈ A, (7)

with the normalization factor Z = Tr(exp(−βH)). It is easy to see that (7)
satisfies the KMS condition (6) at inverse temperature β.

Im z = β

Im z = 0
F(t) = ϕ(aσt(b))

F(t + iβ) = ϕ(σt(b)a)

0

iβ

Fig. 1. The KMS condition.

In the nonunital case, the KMS condition is defined in the same way by (6). Let
M(A) be the multiplier algebra of A and let B ⊂ M(A) be the C∗-subalgebra
of elements x ∈ M(A) such that t �→ σt(x) is norm continuous.
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Proposition 2.2 Any state ϕ on A admits a canonical extension to a state
still noted ϕ on the multiplier algebra M(A) of A. The canonical extension of
a KMS state still satisfies the KMS condition on B.

Proof. For the first statement we refer to [42]. The proof of the second state-
ment illustrates a general density argument, where the continuity of t �→ σt(x)
is used to control the uniform continuity in the closed strip, in order to apply
the Montel theorem of normal families. Indeed, by weak density of A in M(A),
one obtains a sequence of holomorphic functions, but one only controls their
uniform continuity on smooth elements of B. �

As we shall see, it will also be useful to extend whenever possible the integra-
tion provided by a state to unbounded multipliers of A.
In the unital case, for any given value of β, the set Σβ of KMSβ states on
A forms a convex compact Choquet simplex (possibly empty and in general
infinite dimensional). In the nonunital case, given a σt-invariant subalgebra
C of B, the set Σβ(C) of KMSβ states on C should be viewed as a compact-
ification of the set of KMSβ states on A. The restriction from C to A maps
Σβ(C) to KMSβ positive linear forms on A of norm less than or equal to one
(quasi-states).
The typical pattern for a system with a single phase transition is that this
simplex consists of a single point for β � βc i.e. when the temperature is larger
than the critical temperature Tc, and is non-trivial (of some higher dimension
in general) when the temperature lowers. Systems can exhibit a more complex
pattern of multiple phase transitions, where no KMS state exists above a
certain temperature. The GL2 system, which is the main object of study in
this paper, will actually exhibit this more elaborate behavior.
We refer to the books ([6], [16]) for the general discussion of KMS states
and phase transitions. The main technical point is that for finite β a β-KMS
state is extremal iff the corresponding GNS representation is factorial. The
decomposition into extremal β-KMS states is then the primary decomposition
for a given β-KMS state.
At 0 temperature (β = ∞) the interesting notion is that of weak limit of
β-KMS states for β → ∞. It is true that such states satisfy a weak form of
the KMS condition. This can be formulated by saying that, for all a, b ∈ A,
the function

F (t) = ϕ(a σt(b))

extends to a bounded holomorphic function in the upper half plane H. This
implies that, in the Hilbert space of the GNS representation of ϕ (i.e. the
completion of A in the inner product ϕ(a∗b)), the generator H of the one-
parameter group σt is a positive operator (positive energy condition). How-
ever, this condition is too weak in general to be interesting, as one sees by
taking the trivial evolution (σt = id , ∀t ∈ R). In this case any state fulfills
it, while weak limits of β-KMS states are automatically tracial states. Thus,
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we shall define Σβ=∞ as the set of weak limit points of the sets Σβ of β-KMS
states for β → ∞.
The framework for spontaneous symmetry breaking ([16]) involves a (com-
pact) group of automorphisms G ⊂ Aut(A) of A commuting with the time
evolution,

σt αg = αg σt ∀ g ∈ G , t ∈ R . (8)

The group G is the symmetry group of the system, and the choice of an
equilibrium state ϕ may break it to a smaller subgroup given by the isotropy
group of ϕ

Gϕ = {g ∈ G , gϕ = ϕ}. (9)

The group G acts on Σβ for any β, hence on its extreme points E(Σβ) = Eβ .
The unitary group U of the fixed point algebra of σt acts by inner automor-
phisms of the dynamical system (A, σt): for u ∈ U ,

(Adu) (x) := uxu∗ , ∀x ∈ A .

These inner automorphisms of (A, σt) act trivially on KMSβ states, as one
checks using the KMS condition. This gives us the freedom to wipe out the
group Int(A, σt) of inner symmetries and to define an action modulo inner of
a group G on the system (A, σt) as a map

α : G → Aut(A, σt)

fulfilling the condition

α(g1g2)α(g2)−1 α(g1)−1 ∈ Int(A, σt) , ∀gj ∈ G .

Such an action gives an action of the group G on the set Σβ of KMSβ states
since the ambiguity coming from Int(A, σt) disappears in the action on Σβ . In
fact there is one more generalization of the above obvious notion of symmetries
that we shall crucially need later – it involves actions by endomorphisms.
This type of symmetry plays a key role in the theory of superselection sectors
developed by Doplicher-Haag-Roberts (cf.[16], Chapter IV).

Definition 2.3 An endomorphism ρ of the dynamical system (A, σt) is a ∗-
homomorphism ρ : A → A commuting with σt.

It follows then that ρ(1) = e is an idempotent fixed by σt. Given a KMSβ

state ϕ the equality

ρ∗(ϕ) := Z−1 ϕ ◦ ρ , Z = φ(e)

gives a KMSβ state, provided that ϕ(e) �= 0. Exactly as above for unitaries,
consider an isometry

u ∈ A , u∗ u = 1
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which is an eigenvector for σt, i.e. that fulfills, for some λ ∈ R
∗
+ (λ ≥ 1), the

condition
σt(u) = λit u , ∀t ∈ R .

Then u defines an inner endomorphism Adu of the dynamical system (A, σt)
by the equality

(Adu) (x) := uxu∗ , ∀x ∈ A ,

and one obtains the following.

Proposition 2.4 The inner endomorphisms of the dynamical system (A, σt)
act trivially on the set of KMSβ states,

(Adu)∗(ϕ) = ϕ , ∀ϕ ∈ Σβ .

Proof. The KMSβ condition shows that ϕ(uu∗) = λ−β > 0 so that (Adu)∗(ϕ)
is well defined. The same KMSβ condition applied to the pair (x u∗, u) shows
that (Adu)∗(ϕ) = ϕ. �

At 0 temperature (β = ∞) it is no longer true that the endomorphisms act
directly on the set Σ∞ of KMS∞ states, but one can use their action on
KMSβ-states together with the “warming up” operation. This is defined as
the map

Wβ(ϕ)(x) = Z−1 Trace(π(x) e−β H) , ∀x ∈ A , (10)

where H is the positive energy Hamiltonian, implementing the time evo-
lution in the representation π associated to the KMS∞ state ϕ and Z =
Trace( e−β H). Typically, Wβ gives a bijection

Wβ : Σ∞ → Σβ ,

for β larger than critical. Using the bijection Wβ , one can transfer the action
back to zero temperature states.
Another property of KMS states that we shall need later is the following func-
toriality. Namely, besides the obvious functoriality under pullback, discussed
above, KMS states push forward under equivariant surjections, modulo nor-
malization.

Proposition 2.5 Let (A, σt) be a C∗-dynamical system (A separable) and
J a norm closed two sided ideal of A globally invariant under σt. Let un be
a quasi central approximate unit for J . For any KMSβ-state ϕ on (A, σt)
the following sequence converges and defines a KMSβ positive linear form on
(A/J, σt),

ψ(x) = lim
n→∞ϕ((1 − un)x) , ∀x ∈ A .

Proof. Let A′′ be the double dual of A and p ∈ A′′ the central open projection
corresponding to the ideal J (cf. [42]). By construction the un converge weakly
to p (cf. [42] 3.12.14) so the convergence follows as well as the positivity of ψ.
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By construction ψ vanishes on J . To get the KMSβ condition one applies (6)
with a = (1 − un)x, b = y where y is a smooth element in A. Then one gets
a bounded uniformly continuous sequence Fn(z) of holomorphic functions in
the strip {z | Im z ∈ [0, β]} with

Fn(t) = ϕ((1 − un)x σt(y)) Fn(t + iβ) = ϕ(σt(y)(1 − un)x) ∀t ∈ R.

Using the Montel theorem on normal families and the quasi-central property
of un one gets the KMSβ condition for ψ. �

3 Q
ab and KMS states

We shall now describe an explicit system (cf. [4], [5]) that will make contact
between the general framework above and arithmetic. The algebra A of this
system is defined over the rationals,

A = AQ ⊗Q C , (1)

where AQ is a Q-algebra and is of countable (infinite) dimension as a vector
space over Q. The algebra A has a C∗-completion A and a natural time
evolution σt.
To any vacuum state ϕ ∈ E∞ for (A, σt) we attach the Q-vector space of
complex numbers,

Vϕ := {ϕ(a) ; a ∈ AQ} (2)

that is of countable dimension over Q. It turns out that Vϕ is included in
algebraic numbers, so that one can act on these numbers by the Galois group

Gal (Q/Q) . (3)

The symmetry group G is the inverse limit with the profinite topology

G = Ẑ
∗ = lim←−

n

GL1(Z/nZ). (4)

This can also be described as the quotient of the idèle class group of Q by the
connected component of the identity,

G = GL1(Q)\GL1(A)/R
∗
+ = CQ/DQ . (5)

Here A = AQ denotes the adèles of Q, namely A = Af ×R, with Af = Ẑ⊗Q.
The following amazing fact holds:

For any ϕ ∈ E∞ and any γ ∈ Gal(Q/Q), the composition (6)

γ ◦ ϕ defined on AQ does extend to a state on A.
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What is “unreasonable” in this property defining “fabulous” states is that,
though elements

γ ∈ Gal(Q/Q) (7)

extend to automorphisms of C, these are extremely discontinuous and not
even Lebesgue measurable (except for z �→ z̄), and certainly do not preserve
positivity.
It follows from (6) that the composition ϕ �→ γ ◦ϕ defines uniquely an action
of Gal(Q/Q) on E∞ and the equation

γ ◦ ϕ = ϕ ◦ g (8)

gives a relation between Galois automorphisms and elements of G, i.e. idèle
classes (5), which is in fact the class field theory isomorphism CQ/DQ

∼=
Gal(Qab/Q).

Let us now concretely describe our system, consisting of the algebra A (defined
over Q) and of the time evolution σt.
The main conceptual steps involved in the construction of this algebra are:

• The construction, due to Hecke, of convolution algebras associated to dou-
ble cosets on algebraic groups over the rational numbers;

• The existence of a canonical time evolution on a von Neumann algebra.

More concretely, while Hecke was considering the case of GL2, where Hecke
operators appear in the convolution algebra associated to the almost normal
subgroup GL2(Z) ⊂ GL2(Q), the BC system arises from the Hecke algebra
associated to the corresponding pair of parabolic subgroups.
Indeed, let P be the algebraic group “ax + b”, i.e. the functor which to any
abelian ring R assigns the group PR of 2 by 2 matrices over R of the form

PR =
{[

1 b
0 a

]
; a, b ∈ R , a invertible

}
. (9)

By construction P+
Z

⊂ P+
Q

is an inclusion Γ0 ⊂ Γ of countable groups, where
P+

R denotes the restriction to a > 0. This inclusion fulfills the following com-
mensurability condition:

The orbits of the left action of Γ0 on Γ/Γ0 are all finite. (10)

For obvious reasons the same holds for orbits of Γ0 acting on the right on
Γ0\Γ .
The Hecke algebra AQ = HQ(Γ, Γ0) is by definition the convolution algebra
of functions of finite support

f : Γ0\Γ → Q , (11)

which fulfill the Γ0-invariance condition
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f(γγ0) = f(γ) ∀ γ ∈ Γ , γ0 ∈ Γ0 (12)

so that f is really defined on Γ0\Γ/Γ0. The convolution product is then given
by

(f1 ∗ f2)(γ) =
∑
Γ0\Γ

f1(γγ−1
1 )f2(γ1) . (13)

The time evolution appears from the analysis of the regular representation
of the pair (Γ, Γ0). It is trivial when Γ0 is normal, or in the original case of
Hecke, but it becomes interesting in the parabolic case, due to the lack of
unimodularity of the parabolic group, as will become clear in the following.
The regular representation

(π(f)ξ)(γ) =
∑
Γ0\Γ

f(γγ−1
1 )ξ(γ1) (14)

in the Hilbert space
H = �2(Γ0\Γ ) (15)

extends to the complexification

AC = AQ ⊗Q C (16)

of the above algebra, which inherits from this representation the involution
a �→ a∗, uniquely defined so that π(a∗) = π(a)∗ (the Hilbert space adjoint),
namely

f∗(γ) := f(γ−1) ∀ γ ∈ Γ0\Γ/Γ0. (17)

It happens that the time evolution (cf. [54]) of the von Neumann algebra gen-
erated by A in the regular representation restricts to the dense subalgebra A.
This implies that there is a uniquely determined time evolution σt ∈ Aut(A),
such that the state ϕ1 given by

ϕ1(f) = 〈π(f)εe, εe〉 (18)

is a KMS1 state i.e. a KMS state at inverse temperature β = 1. Here εe is the
cyclic and separating vector for the regular representation given by the left
coset {Γ0} ∈ Γ0\Γ .
Explicitly, one gets the following formula for the time evolution:

σt(f)(γ) =
(

L(γ)
R(γ)

)−it

f(γ) ∀γ ∈ Γ0\Γ/Γ0 , (19)

where the integer valued functions L and R on the double coset space are
given respectively by

L(γ) = Cardinality of left Γ0 orbit of γ in Γ/Γ0 , R(γ) = L(γ−1) . (20)

Besides the conceptual description given above, the algebra AQ also has a
useful explicit presentation in terms of generators and relations (cf. [5] §4,
Prop.18). We recall it here, in the slightly simplified version of [21], Prop.24.
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Proposition 3.1 The algebra AQ is generated by elements µn, n ∈ N
× and

e(r), for r ∈ Q/Z, satisfying the relations

• µ∗
nµn = 1, for all n ∈ N

×,
• µkµn = µkn, for all k, n ∈ N

×,
• e(0) = 1, e(r)∗ = e(−r), and e(r)e(s) = e(r + s), for all r, s ∈ Q/Z,
• For all n ∈ N

× and all r ∈ Q/Z,

µn e(r)µ∗
n =

1
n

∑
ns=r

e(s). (21)

In this form the time evolution preserves pointwise the subalgebra RQ =
Q[Q/Z] generated by the e(r) and acts on the µn’s as

σt(µn) = nit µn.

The Hecke algebra considered above admits an automorphism α, α2 = 1 whose
fixed point algebra is the Hecke algebra of the pair PZ ⊂ PQ. The latter admits
an equivalent description4, from the pair

(PR, PAf
),

where R is the maximal compact subring of the ring of finite adèles

Af =
∏
res

Qp . (22)

This adèlic description displays, as a natural symmetry group, the quotient
G of the idèle class group of Q by the connected component of identity (5).

Let Q be an algebraic closure of Q and Q
ab ⊂ Q be the maximal abelian

extension of Q. Let r �→ ζr be a (non-canonical) isomorphism of Q/Z with the
multiplicative group of roots of unity inside Q

ab.
We can now state the basic result that gives content to the relation between
phase transition and arithmetic (BC [5]):

Theorem 3.2 1. For 0 < β � 1 there exists a unique KMSβ state ϕβ for
the above system. Its restriction to RQ = Q[Q/Z] ⊂ A is given by

ϕβ (e(a/b)) = b−β
∏

p prime, p|b

(
1 − pβ−1

1 − p−1

)
. (23)

4 This procedure holds more generally (cf. [47] [48]) for arbitrary almost normal
inclusions (Γ0, Γ ).
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2. For β > 1 the extreme KMSβ states are parameterized by embeddings
ρ : Q

ab → C and

ϕβ,ρ (e(a/b)) = Z(β)−1
∞∑

n=1

n−βρ
(
ζn
a/b

)
, (24)

where the partition function Z(β) = ζ(β) is the Riemann zeta function.
3. For β = ∞, the Galois group Gal(Q/Q) acts by composition on E∞. The

action factors through the abelianization Gal(Qab/Q), and the class field
theory isomorphism θ : G → Gal(Qab/Q) intertwines the actions,

α ◦ ϕ = ϕ ◦ θ−1(α) , α ∈ Gal(Qab/Q) .

4 Further Developments

The main theorem of class field theory provides a classification of finite abelian
extensions of a local or global field K in terms of subgroups of a locally com-
pact abelian group canonically associated to the field. This is the multiplica-
tive group K∗ = GL1(K) in the local nonarchimedean case, while in the global
case it is the quotient CK/DK of the idèle class group CK by the connected
component of the identity. The construction of the group CK is at the origin
of the theory of idèles and adèles.
Hilbert’s 12th problem can be formulated as the question of providing an
explicit set of generators of the maximal abelian extension Kab of a num-
ber field K, inside an algebraic closure K̄, and of the action of the Galois
group Gal(Kab/K). The typical example where this is achieved, which mo-
tivated Hilbert’s formulation of the explicit class field theory problem, is the
Kronecker–Weber case: the construction of the maximal abelian extension of
Q. In this case the torsion points of C

∗ (roots of unity) generate Q
ab ⊂ C.

Remarkably, the only other case for number fields where this program has
been carried out completely is that of imaginary quadratic fields, where the
construction relies on the theory of elliptic curves with complex multiplication
(cf. e.g. [53]). Generalizations to other number fields involve other remarkable
problems in number theory like the Stark conjectures. Recent work of Manin
[34] [35] suggests a close relation between the real quadratic case and non-
commutative geometry.
To better appreciate the technical difficulties underlying any attempt to ad-
dress the Hilbert 12th problem of explicit class field theory via the BC ap-
proach, in view of the problem of fabulous states that we shall formulate in
§5, we first summarize briefly the state of the art (to this moment and to
our knowledge) in the study of C∗-dynamical systems with phase transitions
associated to number fields.
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Some progress from the original BC paper followed in various directions, and
some extensions of the BC construction to other global fields (number fields
and function fields) were obtained. Harari and Leichtnam [19] produced a
C∗-dynamical system with phase transition for function fields and algebraic
number fields. A localization is used in order to deal with lack of unique
factorization into primes. In the number field case, one replaces the ring O
of integers of K by the principal ring OS obtained by inverting a suitable
finite set of prime ideals. The construction is based on the inclusion OS � 1 ⊂
K � K∗

+, where K∗
+ is the subgroup of K∗ generated by the generators of

prime ideals of OS . The symmetry group G of (5) is replaced by the group

G = Ô∗
S = GL1(ÔS),

with ÔS the profinite completion of the ring OS . There is a group homomor-
phism s : G → CK/DK , but it is in general neither injective nor surjective,
hence, even in the case of imaginary quadratic fields, the construction does
not capture the action of the Galois group Gal(Kab/K), except in the very
special class number one case.
P. Cohen gave in [8] a construction of a C∗-dynamical system associated to
a number field K, which has spontaneous symmetry breaking and recovers
the full Dedekind zeta function as partition function. The main point of her
approach is to involve the semigroup of all ideals rather than just the princi-
pal ideals used in other approaches as the replacement of the semi-group of
positive integers involved in BC. Still, the group of symmetries is G = Ô∗ and
not the desired CK/DK .
Typically, the extensions of the number field K obtained via these construc-
tions are given by roots of unity, hence they do not recover the maximal
abelian extension.
The Hecke algebra of the inclusion O�1 ⊂ K �K∗ for an arbitrary algebraic
number field K was considered by Arledge, Laca, and Raeburn in [1], where
they discuss its structure and representations, but not the problem of KMS
states.
Further results on this Hecke algebra have been announced by Laca and van
Frankenhuysen [27]: they obtain some general results on the structure and
representations for all number fields, while they analyze the structure of KMS
states only for the class number one case. In this case, their announced result
is that there are enough ground states to support a transitive free action
of Gal(Kab/K) (up to a copy of {±1} for each real embedding). However,
it appears that the construction does not give embeddings of Kab as actual
values of the ground states on the Hecke algebra over K, hence it does not
seem suitable to treat the class field theory problem of providing explicit
generators of Kab.
The structure of the Hecke algebra of the inclusion O � O∗ ⊂ K � K∗ was
further clarified by Laca and Larsen in [23], using a decomposition of the Hecke
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algebra of a semidirect product as the cross product of the Hecke algebra of
an intermediate (smaller) inclusion by an action of a semigroup.
The original BC algebra was also studied in much greater details in several
following papers. It was proved by Brenken in [7] and by Laca and Raeburn
in [25] that the BC algebra can be written as a semigroup cross product.
Brenken also discusses the case of Hecke algebras from number fields of the
type considered in [25, 1].
Laca then re-derived the original BC result from the point of view of semi-
group cross products in [21]. This allows for significant simplifications of the
argument in the case of β > 1, by looking at the conditional expectations and
the KMS condition at the level of the “predual” (semigroup) dynamical sys-
tem. A further simplification of the original phase transition theorem of BC
was given by Neshveyev in [40], via a direct argument for ergodicity, which
implies uniqueness of the KMS states for 0 ≤ β ≤ 1.
The BC algebra can also be realized as a full corner in the cross product of
the finite adèles by the multiplicative rationals, as was shown by Laca in [22],
by dilating the semigroup action to a minimal full group action. Laca and
Raeburn used the dilation results of [22] to calculate explicitly the primitive
(and maximal) ideal spaces of the BC algebra as well as of the cross product
of the full adèles by the action of the multiplicative rationals.
Using the cross product description of the BC algebra, Leichtnam and Nistor
computed Hochschild, cyclic, and periodic cyclic homology groups of the BC
algebra, by computing the corresponding groups for the C∗-dynamical system
algebras arising from the action of Q

∗ on the adèles of Q. The calculation
for the BC algebra then follows by taking an increasing sequence of smooth
subalgebras and an inductive limit over certain Morita equivalent subalgebras.
Further results related to aspects of the BC construction and generalizations
can be found in [3], [15], [24], [29], [30], [55].

5 Fabulous States

Given a number field K, we let AK denote the adèles of K and JK = GL1(AK)
be the group of idèles of K. We write CK for the group of idèles classes
CK = JK/K∗ and DK for the connected component of the identity in CK .

If we remain close to the spirit of the Hilbert 12th problem, we can formulate
a general question, aimed at extending the results of [5] to other number fields
K. Given a number field K, with a choice of an embedding K ⊂ C, the “prob-
lem of fabulous states” consists in constructing a C∗-dynamical system (A, σt)
and an “arithmetic” subalgebra A, which satisfy the following properties:

1. The idèles class group G = CK/DK acts by symmetries on (A, σt) pre-
serving the subalgebra A.
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2. The states ϕ ∈ E∞, evaluated on elements of A, satisfy:
• ϕ(a) ∈ K̄, the algebraic closure of K in C;
• the elements of {ϕ(a) : a ∈ A}, for ϕ ∈ E∞ generate Kab.

3. The class field theory isomorphism

θ : CK/DK
�−→ Gal(Kab/K)

intertwines the actions,

α ◦ ϕ = ϕ ◦ θ−1(α), (1)

for all α ∈ Gal(Kab/K) and for all ϕ ∈ E∞.

Notice that, with this formulation, the problem of the construction of fabulous
states is intimately related to Hilbert’s 12th problem. This question will be
pursued in [13].
We shall construct here a system which is the analog of the BC system for
GL2(Q) instead of GL1(Q). This will extend the results of [5] to this non-
abelian GL2 case and will exhibit many new features which have no counter-
part in the abelian case. Our construction involves the explicit description of
the automorphism group of the modular field, [51]. The construction of fabu-
lous states for imaginary quadratic fields, which will be investigated with N.
Ramachandran in [13], involves specializing the GL2 system to a subsystem
compatible with complex multiplication in a given imaginary quadratic field.

The construction of the GL2 system gives a C∗-dynamical system (A, σt) and
an involutive subalgebra AQ defined over Q, satisfying the following proper-
ties:

• The quotient group S := Q
∗\GL2(Af ) of the finite adèlic group of GL2

acts as symmetries of the dynamical system (A, σt) preserving the subal-
gebra AQ.

• For generic ϕ ∈ E∞, the values {ϕ(a) ∈ C : a ∈ AQ} generate a subfield
Fϕ ⊂ C which is an extension of Q of transcendence degree 1.

• For generic ϕ ∈ E∞, there exists an isomorphism

θ : S
�−→ Gal(Fϕ/Q)

which intertwines the actions

α ◦ ϕ = ϕ ◦ θ−1(α), (2)

for all α ∈ Gal(Fϕ/Q).

There are a number of important nuances between the abelian case above
and the non-abelian one. For instance, in the abelian case the field generated
by ϕ(A) does not depend on the choice of ϕ ∈ E∞ and the isomorphism θ



296 Alain Connes and Matilde Marcolli

is also independent of ϕ. This no longer holds in the non-abelian case, as
is clear from the presence of inner automorphisms of the symmetry group
S. Also, in the latter case, the action of S on E∞ is not transitive and the
corresponding invariant of the orbit of ϕ under S is the subfield Fϕ ⊂ C.
Another important nuance is that the algebra A is no longer unital while AQ

is an algebra of unbounded multipliers of A. Finally, the symmetries require
the full framework of endomorphisms as explained above in §2.

6 The subalgebra AQ and Eisenstein Series

In this section we shall recast the BC algebra in terms of the trigonometric
analog of the Eisenstein series, following the analogy developed by Eisenstein
and Kronecker between trigonometric and elliptic functions, as outlined by
A.Weil in [56].
This will be done by first giving a geometric interpretation in terms of Q-
lattices of the noncommutative space X whose algebra of continuous functions
C(X) is the BC C∗-algebra. The space X is by construction the quotient of
the Pontrjagin dual of the abelian group Q/Z by the equivalence relation
generated by the action by multiplication of the semi-group N

×.
Let

R =
∏
p

Zp

be the compact ring product of the rings Zp of p-adic integers. It is the max-
imal compact subring of the locally compact ring of finite adèles

Af =
∏
res

Qp

We recall the following standard fact

Proposition 6.1 • The inclusion Q ⊂ Af gives an isomorphism of abelian
groups

Q/Z = Af/R .

• The following map is an isomorphism of compact rings

j : R → Hom(Q/Z, Q/Z) , j(a)(x) = a x , ∀x ∈ Af/R , ∀a ∈ R .

We shall use j from now on to identify R with Hom(Q/Z, Q/Z). Note that
by construction Hom(Q/Z, Q/Z) is endowed with the topology of pointwise
convergence. It is identified with lim←−Z/NZ using the restriction to N -torsion
elements.
For every r ∈ Q/Z one gets a function e(r) ∈ C(R) by,

e(r)(ρ) := exp2πiρ(r) ∀ρ ∈ Hom(Q/Z, Q/Z)
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and this gives the identification of R with the Pontrjagin dual of Q/Z and of
C(R) with the group C∗-algebra C∗(Q/Z).
One can then describe the BC C∗-algebra as the cross product of C(R) by the
semigroup action of N

× as follows. For each integer n ∈ N
× we let nR ⊂ R be

the range of multiplication by n. It is an open and closed subset of R whose
characteristic function πn is a projection πn ∈ C(R). One has by construction

πn πm = πn∨m , ∀n , m ∈ N
×

where n ∨ m denotes the lowest common multiple of n and m.
The semigroup action of N

× on C(R) corresponds to the isomorphism

αn(f)(ρ) := f(n−1 ρ) , ∀ρ ∈ nR . (1)

of C(R) with the reduced algebra C(R)πn
of C(R) by the projection πn. In

the BC algebra one has

µn f µ∗
n = αn(f) , ∀f ∈ C(R). (2)

There is an equivalent description of the BC algebra in terms of the étale
groupoid G of pairs (r, ρ), where r ∈ Q

∗
+, ρ ∈ R and r ρ ∈ R. The composition

in G is given by

(r1, ρ1) ◦ (r2, ρ2) = (r1 r2, ρ2) , if r2 ρ2 = ρ1 , (3)

and the convolution of functions by

f1 ∗ f2(r, ρ) :=
∑

f1(rs−1, s ρ) f2(s, ρ) , (4)

while the adjoint of f is

f∗(r, ρ) := f(r−1, r ρ) . (5)

All of this is implicit in ([5]) and has been amply described in the subsequent
papers mentioned in §4. In the description above, µn is given by the function
µn(r, ρ) which vanishes unless r = n and is equal to 1 for r = n. The time
evolution is given by

σt(f)(r, ρ) := rit f(r, ρ) , ∀f ∈ C∗(G) . (6)

We shall now describe a geometric interpretation of this groupoid G in terms
of commensurability of Q-lattices. In particular, it will pave the way to the
generalization of the BC system to higher dimensions. The basic simple geo-
metric objects are Q-lattices in R

n, defined as follows.

Definition 6.2 A Q-lattice in R
n is a pair (Λ, φ) , with Λ a lattice in R

n,
and φ : Q

n/Z
n −→ QΛ/Λ an homomorphism of abelian groups.
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Two lattices Λj in R
n are commensurable iff their intersection Λ1 ∩ Λ2 is of

finite index in Λj . Their sum Λ = Λ1 + Λ2 is then a lattice and, given two
homomorphisms of abelian groups φj : Q

n/Z
n −→ Q Λj/Λj , the difference

φ1 − φ2 is well defined modulo Λ = Λ1 + Λ2.
Notice that in Definition 6.2 the homomorphism φ, in general, is not an iso-
morphism.

Definition 6.3 A Q-lattice (Λ, φ) is invertible if the map φ is an isomor-
phism of abelian groups.

We consider a natural equivalence relation on the set of Q-lattices defined as
follows.

Proposition 6.4 The following defines an equivalence relation called com-
mensurability between Q-lattices: (Λ1, φ1) , (Λ2, φ2) are commensurable iff
Λj are commensurable and φ1 − φ2 = 0 modulo Λ = Λ1 + Λ2.

Proof. Indeed, let (Λj , φj) be three Q-lattices and assume commensurability
between the pairs (1, 2) and (2, 3). Then the lattices Λj are commensurable
and are of finite index in Λ = Λ1 + Λ2 + Λ3. One has φ1 − φ2 = 0 modulo Λ,
φ2 − φ3 = 0 modulo Λ and thus φ1 − φ3 = 0 modulo Λ. But Λ′ = Λ1 + Λ3 is
of finite index in Λ and thus φ1 − φ3 gives a group homomorphism

Q
n/Z

n −→ Λ/Λ′

which is zero since Q
n/Z

n is infinitely divisible and Λ/Λ′ is finite. This shows
that φ1 − φ3 = 0 modulo Λ′ = Λ1 + Λ3 and hence that the pair (1, 3) is
commensurable. �

Notice that every Q-lattice in R is uniquely of the form

(Λ, φ) = (λ Z, λ ρ) , λ > 0, (7)

with ρ ∈ Hom(Q/Z, Q/Z) = R.

Proposition 6.5 The map

γ(r, ρ) = ((r−1
Z, ρ) , (Z, ρ)) , ∀(r, ρ) ∈ G ,

defines an isomorphism of locally compact étale groupoids between G and the
quotient R / R

∗
+ of the equivalence relation R of commensurability on the space

of Q-lattices in R by the natural scaling action of R
∗
+.

Proof. First since r ρ ∈ R the pair (r−1
Z, ρ) = r−1(Z, r ρ) is a Q-lattice

and is commensurable to (Z, ρ). Thus, the map γ is well defined. Using the
identification (7), we see that the restriction of γ to the objects G(0) of G
is an isomorphism of R with the quotient of the space of Q-lattices in R by
the natural scaling action of R

∗
+. The freeness of this action shows that the

quotient R / R
∗
+ is still a groupoid, and one has



From Physics to Number Theory via Noncommutative Geometry 299

γ(r1, ρ1) ◦ γ(r2, ρ2) = γ(r1 r2, ρ2) if r2 ρ2 = ρ1 .

Finally, up to scaling, every element of R is of the form

((r−1
Z, r−1 ρ′) , (Z, ρ))

where both ρ′ and ρ are in R and r = a
b ∈ Q

∗
+. Moreover since r−1 ρ′ = ρ

modulo 1
aZ one gets aρ − bρ′ = 0 and r−1 ρ′ = ρ. Thus γ is surjective and is

an isomorphism. �

This geometric description of the BC algebra allows us to generate in a nat-
ural manner a rational subalgebra which will generalize to the two dimensional
case. In particular the algebra C(R) can be viewed as the algebra of homoge-
neous functions of “weight 0” on the space of Q-lattices for the natural scaling
action of the multiplicative group R

∗
+ where weight k means

f(λΛ, λφ) = λ−k f(Λ, φ) , ∀λ ∈ R
∗
+ .

We let the function c(Λ) be the multiple of the covolume |Λ| of the lattice,
specified by

2π i c(Z) = 1 (8)

The function c is homogeneous of weight −1 on the space of Q-lattices. For
a ∈ Q/Z , we then define a function e1,a of weight 0 by

e1,a(Λ, φ) = c(Λ)
∑

y∈Λ+φ(a)

y−1 , (9)

where one uses Eisenstein summation i.e. limN→∞
∑N

−N when φ(a) �= 0 and
one lets e1,a(Λ, φ) = 0 when φ(a) = 0.
The main result of this section is the following

Theorem 6.6 • The e1,a , a ∈ Q/Z generate Q[Q/Z].
• The rational algebra AQ is the subalgebra of A = C∗(G) generated by the

e1,a , a ∈ Q/Z and the µn, µ∗
n.

We define more generally for each weight k ∈ N and each a ∈ Q/Z a function
εk,a on the space of Q-lattices in R by

εk,a(Λ, φ) =
∑

y∈Λ+φ(a)

y−k . (10)

This is well defined provided φ(a) �= 0. For φ(a) = 0 we let

εk,a(Λ, φ) = λk c(Λ)−k, (11)

where we shall fix the constants λk below in (14). The function εk,a has weight
k i.e. it satisfies the homogeneity condition
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εk,a(λΛ, λφ) = λ−kεk,a(Λ, φ) , ∀λ ∈ R
∗
+ .

When a = b
N the function εk,a has level N in that it only uses the restriction

φN of φ to N -torsion points of Q/Z,

φN :
1
N

Z/Z −→ 1
N

Λ/Λ.

The products
ek,a := ck εk,a (12)

are of weight 0 and satisfy two types of relations.
The first relations are multiplicative and express ek,a as a polynomial in e1,a,

ek,a = Pk(e1,a) (13)

where the Pk are the polynomials with rational coefficients uniquely deter-
mined by the equalities

P1(u) = u , Pk+1(u) =
1
k

(u2 − 1
4
) ∂uPk(u) .

This follows for φ(a) /∈ Λ from the elementary formulas for the trigonometric
analog of the Eisenstein series ([56] Chapter II). Since e1,a(Λ, φ) = 0 is the
natural choice for φ(a) ∈ Λ, the validity of (13) uniquely dictates the choice
of the normalization constants λk of (11). One gets

λk = Pk(0) = (2k − 1) γk , (14)

where γk = 0 for odd k and γ2j = (−1)j Bj

(2j)!
with Bj ∈ Q the Bernoulli

numbers. Equivalently,

x

ex − 1
= 1 − x

2
−

∞∑
1

γ2j x2j .

One can express the ek,a as Q-linear combinations of the generators e(r). We
view e(r) as the function on Q-lattices which assigns to (Λ, φ) = (λ Z, λ ρ),
λ > 0, the value

e(r)(Λ, φ) := exp2πiρ(r).

One then has

Lemma 6.7 Let a ∈ Q/Z, and n > 0 with na = 0. Then

e1,a =
n−1∑
k=1

(
k

n
− 1

2
) e(k a). (15)
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Proof. We evaluate both sides on (Λ, φ) = (λ Z, λ ρ), λ > 0. Both sides only
depend on the restriction x �→ c x of ρ to n-torsion elements of Q/Z which we
write as multiplication by c ∈ Z/nZ. Let a = b

n . If bc = 0(n) then φ(a) = 0 and
both sides vanish since e(k a)(Λ, φ) = exp2πi(kbc

n ) = 1 for all k. If bc �= 0(n)
then φ(a) �= 0 and the left side is 1

2 (U + 1)/(U − 1) where U = exp2πi bc
n ,

Un = 1, U �= 1. The right hand side is

n−1∑
k=1

(
k

n
− 1

2
)Uk ,

which gives 1
2 (U + 1) after multiplication by U − 1. �

This last equality shows that e1,a is (one half of) the Cayley transform of e(a)
with care taken where e(a) − 1 fails to be invertible. In particular while e(a)
is unitary, e1,a is skew-adjoint,

e∗1,a = − e1,a .

We say that a Q-lattice (Λ, φ) is divisible by an integer n ∈ N when φn = 0.
We let πn be the characteristic function of the set of Q-lattices divisible by n.
It corresponds to the characteristic function of nR ⊂ R.
Let N > 0 and (Λ, φ) a Q-lattice with φN (a) = c a for c ∈ Z/NZ. The order
of the kernel of φN is m = gcd(N, c). Also a divisor b|N divides (Λ, φ) iff it
divides c. Thus for any function f on N

∗ one has
∑
b|N

f(b)πb(Λ, φ) =
∑

b|gcd(N,c)

f(b) ,

which allows one to express any function of the order m = gcd(N, c) of the ker-
nel of φN in terms of the projections πb , b|N . In order to obtain the function
m �→ mj we let

fj(n) :=
∑
d|n

µ(d)(n/d)j ,

where µ is the Möbius function so that

fj(n) = nj
∏

p prime, p|n
(1 − p−j) .

Notice that f1 is the Euler totient function and that the ratio f−β+1/f1 gives
the r.h.s. of (23) in Theorem 3.2.
The Möbius inversion formula gives

∑
b|N

fj(b)πb(Λ, φ) = mj , m = gcd(N, c) . (16)

We can now write division relations fulfilled by the functions (12).
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Lemma 6.8 Let N > 0 then∑
N a=0

ek,a = γk

∑
d|N

((2k − 2) f1(d) + Nkf−k+1(d))πd. (17)

Proof. For a given Q-lattice (Λ, φ) with KerφN of order m|N , N = md, the
result follows from∑
N a=0

εk,a(Λ, φ) = m
∑

y∈ 1
d Λ\Λ

y−k +m (2k−1) γk c−k(Λ) = m (d k +2k−2)γk c−k

together with (16) applied for j = 1 and j = 1 − k. �

The semigroup action of N
× is given on functions of Q-lattices by the endo-

morphisms
αn(f)(Λ, φ) := f(nΛ, φ) , ∀(Λ, φ) ∈ πn , (18)

while αn(f)(Λ, φ) = 0 outside πn. This semigroup action preserves the ratio-
nal subalgebra BQ generated by the e1,a , a ∈ Q/Z , since one has

αn(ek,a) = πn ek,a/n , (19)

(independently of the choice of the solution b = a/n of n b = a) and we shall
now show that the projections πn belong to BQ.

Proof of Theorem 6.6
Using (17) one can express πn as a rational linear combination of the ek,a, with
k even, but special care is needed when n is a power of two. The coefficient of
γk πN in (17), when N = pb is a prime power, is given by (2k−2)(p−1)pb−1−
pb(pk−1 − 1), which does not vanish unless p = 2, and is −pb−1(2 − 3p + p2)
for k = 2. Thus, one can express πN as a linear combination of the e2,a by
induction on b. For p = 2, N = 2b, b > 1 the coefficient of γk πN in (17) is
zero but the coefficient of γk πN/2 is −2b−2(2k − 1)(2k − 2) �= 0 for k even.
This allows one to express πN as a linear combination of the e2,a by induction
on b. Thus, for instance, π2 is given by

π2 = 3 + 2
∑
4 a=0

e2,a.

In general, π2n involves
∑

2n+1 a=0

e2,a.

Since for relatively prime integers n, m one has πnm = πn πm, we see that the
algebra BQ generated over Q by the e1,a contains all the projections πn. In
order to show that BQ contains the e(r) it is enough to show that for any prime
power N = pb it contains e( 1

N ). This is proved by induction on b. Multiplying
(17) by 1 − πp and using (1 − πp)πpl = 0 for l > 0 we get the equalities

(1 − πp)
∑

N a=0

ek,a = (Nk + 2k − 2) γk (1 − πp) .
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Let then z(j) = (1 − πp) e1, j
N

. The above relations together with(13) show
that in the reduced algebra (BQ)1−πp

one has, for all k,

N−1∑
j=1

Pk(z(j)) = (Nk − 1) γk .

Thus, for j ∈ {1, ..., N − 1}, the symmetric functions of the z(j) are fixed
rational numbers σh. In particular z = z(1) fulfills

Q(z) = zN−1 +
N−1∑

1

(−1)h σh zN−1−h = 0

and ± 1
2 is not a root of this equation, whose roots are the

1
2i

cot(
π j

N
). This

allows us, using the companion matrix of Q, to express the Cayley transform
of 2z as a polynomial with rational coefficients,

2z + 1
2z − 1

=
N−2∑

0

αn zn.

One then has
N−2∑

0

αn zn = (1 − πp) e(
1
N

),

where the left-hand side belongs to BQ by construction. Now πp e( 1
N ) is equal

to αp(e( p
N )). It follows from the induction hypothesis on b, (N = pb), that

e( p
N ) ∈ BQ and therefore using (19) that αp(e( p

N )) ∈ BQ. Thus, we get e( 1
N ) ∈

BQ as required. This proves the first part. To get the second notice that the
cross product by N

× is obtained by adjoining to the rational group ring of
Q/Z the isometries µn and their adjoints µ∗

n with the relation

µn f µ∗
n = αn(f) , ∀f ∈ Q[Q/Z] ,

which gives the rational algebra AQ. �

It is not true, however, that the division relations (17) combined with the
multiplicative relations (13) suffice to present the algebra. In particular there
are more elaborate division relations which we did not need in the above
proof. In order to formulate them, we let for d|N , π(N, d) be the projection
belonging to the algebra generated by the πb, b|N , and corresponding to the
subset

gcd(N, (Λ, φ)) = N/d

so that
π(N, d) = πN/d

∏
k|d

(1 − πk N/d),

where the product is over non trivial divisors k �= 1 of d.
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Proposition 6.9 The ek,a , a ∈ Q/Z , k odd, fulfill for any x ∈ Q/Z and
any integer N the relation

1
N

∑
N a=0

ek,x+a =
∑
d|N

π(N, d) d k−1 ek,d x.

Proof. To prove this, let (Λ, φ) be such that gcd(N, (Λ, φ)) = N/d = m
and assume by homogeneity that Λ = Z. Then when a ranges through the
j
N , j ∈ {0, ..., N −1}, the φ(a) range m-times through the j

d , j ∈ {0, ..., d−1}.
Thus the left-hand side of (6.9) gives m-times

c(Z)k
d−1∑
j=0

∑
y∈Z+φ(x)+ j

d

y−k = c(Z)k d k
∑

y∈Z+φ(d x)

y−k.

This is clear when y = 0 does not appear in the sums involved. When it does
one has, for ε /∈ Z

d ,

d−1∑
j=0

∑
y∈Z+φ(x)+ j

d

(y + ε)−k = d k
∑

y∈Z+φ(d x)

(y + d ε)−k.

Subtracting the pole part on both sides and equating the finite values gives
the desired equality, since for odd k the value of εk,a(Λ, φ) for φ(a) = 0 can
be written as the finite value of∑

y∈Λ+φ(a)

(y + ε)−k.

For even k this no longer holds and the finite value γkc(Λ)k is replaced by
(2k − 1) γkc(Λ)k. Thus when φ(d x) ∈ Z one gets an additional term which is
best taken care of by multiplying the right hand side in Proposition 6.9 by
(1−πδ(d x)), with δ(y) the order of y in Q/Z, and adding corresponding terms
to the formula, which becomes

1
N

∑
N a=0

ek,x+a =
∑
d|N

π(N, d)(1 − πδ(d x)) d k−1 ek,d x (20)

+ γk

∑
d|N

(d k−1 + d−1(2k − 2))π(N, d)πδ(d x)

These relations are more elaborate than the division relations for trigonomet-
ric functions. They restrict to the latter on the subset of invertible Q-lattices,
for which all πn, n �= 1 are zero and the only non-zero term in the r.h.s. is the
term in d = N . The standard discussion of Eisenstein series in higher dimen-
sion is restricted to invertible Q-lattices, but in our case the construction of
the endomorphisms implemented by the µn requires the above extension to
non-invertible Q-lattices. We shall now proceed to do it in dimension 2.
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7 The Determinant part of the GL2-System

As we recalled in the previous sections, the algebra of the 1-dimensional system
can be described as the semigroup cross product

C(R) � N
×.

Thus, one may wish to follow a similar approach for the 2-dimensional case,
by replacing C(R) by C(M2(R)) and the semigroup action of N

× by the
semigroup action of M2(Z)+. Such construction can be carried out, as we
discuss in this section, and it corresponds to the “determinant part” of the
GL2 system. It is useful to analyze what happens in this case first, before we
discuss the full GL2-system in the next section. In fact, this will show quite
clearly where some important technical issues arise.
For instance, just as in the case of the BC algebra, where the time evolu-
tion acts on the isometries µn by nit and leaves the elements of C(R) fixed,
the time evolution here is given by Det (m)it on the isometries implement-
ing the semigroup action of m ∈ M2(Z)+, while leaving C(M2(R)) pointwise
fixed. In this case, however, the vacuum state of the corresponding Hamil-
tonian is highly degenerate, because of the presence of the SL2(Z) symmetry.
This implies that the partition function and the KMS states below critical
temperature can only be defined via the type II1 trace TraceΓ .
This issue will be taken care more naturally in the full GL2-system, by first
taking the classical quotient by Γ = SL2(Z) on the space M2(R) × H. This
will resolve the degeneracy of the vacuum state and the counting of modes of
the Hamiltonian will be on the coset classes Γ\M2(Z)+.
The whole discussion of this section extends to GL(n) for arbitrary n and we
shall briefly indicate how this is done, but we stick to n = 2 for definiteness.
We start with the action of the semigroup

M2(Z)+ = {m ∈ M2(Z),Det (m) > 0} = GL+
2 (Q) ∩ M2(R) (1)

on the compact space M2(R), given by left multiplication

ρ �→ mρ, (2)

where the product mρ takes place in M2(R) using the natural homomorphism

M2(Z)+ → M2(R), (3)

which is the extension to two by two matrices of the inclusion of the ring Z

in Ẑ = R. The relevant C∗-algebra is the semi-group cross product

A = C(M2(R)) � M2(Z)+. (4)

It can be viewed as the C∗-algebra C∗(G2) of the étale groupoid G2 of pairs
(r, ρ), with r ∈ GL+

2 (Q), ρ ∈ M2(R) and r ρ ∈ M2(R), where the product
takes place in M2(Af ). The composition in G2 is given by
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(r1, ρ1) ◦ (r2, ρ2) = (r1 r2, ρ2) , if r2 ρ2 = ρ1

and the convolution of functions by

f1 ∗ f2(r, ρ) :=
∑

f1(rs−1, s ρ) f2(s, ρ) , (5)

while the adjoint of f is

f∗(r, ρ) := f(r−1, r ρ) (6)

(cf. the analogous expressions (3), (4), (5) in the 1-dimensional case).
A homomorphism G2 → H of the groupoid G2 to an abelian group H deter-
mines a dual action of the Pontrjagin dual of H on the algebra of G2, as in
the case of the time evolution σt, with H = R

∗
+ and its dual identified with

R. We shall use the same term “dual action” for nonabelian H.
The main structure is given by the dual action of GL+

2 (R) corresponding to
the groupoid homomorphism j

j : G2 → GL+
2 (R) , j(r, ρ) = r (7)

obtained from the inclusion GL+
2 (Q) ⊂ GL+

2 (R). As a derived piece of struc-
ture one gets the one parameter group of automorphisms σt ∈ Aut(A) which
is dual to the determinant of the homomorphism j,

σt(f)(r, ρ) := Det(r)it f(r, ρ) , ∀f ∈ A . (8)

The obtained C∗-dynamical system (A, σt) only involves Det ◦ j and it does
not fully correspond to the BC system. We shall make use of the full dual
action of GL+

2 (R) later in the construction of the full GL2 system.
The algebra C(M2(R)) embeds as a ∗-subalgebra of A. The analogs of the
isometries µn, n ∈ N

× are the isometries µm, m ∈ M2(Z)+ given by

µm(m, ρ) = 1 , µm(r, ρ) = 0 , ∀r �= m.

The range µm µ∗
m of µm is the projection given by the characteristic function

of the subset Pm = mM2(R) ⊂ M2(R). It depends only on the lattice L =
m(Z2) ⊂ Z

2. Indeed, if m,m′ ∈ M2(Z)+ fulfill m(Z2) = m′(Z2), then m′ =
mγ for some γ ∈ Γ , hence mM2(R) = m′ M2(R). Thus, we shall label this
analog of the πn by lattices

L ⊂ Z
2 �→ πL ∈ C(M2(R) , (9)

where πL is the characteristic function of Pm, for any m such that m(Z2) = L.
The algebra generated by the πL is then governed by

πL πL′ = πL∩L′ , πZ2 = 1 . (10)
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In fact, the complete rules are better expressed in terms of partial isometries
µ(g, L), with g ∈ GL+

2 (Q), L ⊂ Z
2 a lattice, and g(L) ⊂ Z

2, satisfying

µ(g, L)(g, ρ) = πL(ρ) , µ(g, L)(r, ρ) = 0 , ∀r �= g .

One has
µ(g1, L1)µ(g2, L2) = µ(g1g2, g

−1
2 (L1) ∩ L2) , (11)

and
µ(g, L)∗ = µ(g−1, g(L)) . (12)

The µ(g, L) generate the semi-group C∗-subalgebra C∗(M2(Z)+) ⊂ A and
together with C(M2(R)) they generate A. The additional relations are

f µ(g, L) = µ(g, L) fg , ∀f ∈ C(M2(R)) , g ∈ GL+
2 (Q), (13)

where fg(y) := f(gy) whenever gy makes sense.
The action of GL2(R) on M2(R) by right multiplication commutes with the
semi-group action (2) of M2(Z)+ and with the time evolution σt. They define
symmetries

αθ ∈ Aut(A, σ) .

Thus, we have a C∗-dynamical system with a compact group of symmetries.
The following results show how to construct KMSβ-states for β > 2. We first
describe a specific positive energy representation of the C∗-dynamical sub-
system (C∗(M2(Z)+), σt). We let H = �2(M2(Z)+) with canonical basis εm,
m ∈ M2(Z)+. We define π(µ(g, L)) as the partial isometry in H with initial
domain given by the span of

εm , m =
[
m11 m12

m21 m22

]
, (m11,m21) ∈ L , (m12,m22) ∈ L , (14)

i.e. matrices m whose columns belong to the lattice L ⊂ Z
2. On this domain

we define the action of π(µ(g, L)) by

π(µ(g, L)) εm = εgm . (15)

Notice that the columns of gm belong to gL.

Proposition 7.1 1) π is an involutive representation of C∗(M2(Z)+) in H.
2) The Hamiltonian H given by Hεm = log Det(m) εm is positive and imple-
ments the time evolution σt:

π(σt(x)) = eitH π(x) e−itH ∀x ∈ C∗(M2(Z)+) .

3) Γ = SL2(Z) acts on the right in H by

ρ(γ) εm := εm γ−1 , ∀γ ∈ Γ , m ∈ M2(Z)+ .

and this action commutes with π(C∗(M2(Z)+).
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Proof. The map m �→ gm is injective so that π(µ(g, L)) is a partial isometry.
Its range is the set of h ∈ M2(Z)+ of the form g m where Det(m) > 0 and the
columns of m are in L. This means that Det(h) > 0 and the columns of h are
in gL ⊂ Z

2. This shows that

π(µ(g, L))∗ = π(µ(g−1, gL)), (16)

so that π is involutive on these elements.
Then the support of π(µ(g1, L1))π(µ(g2, L2)) is formed by the εm with
columns of m in L2, such that the columns of g2m are in L1. This is the
same as the support of π(µ(g1g2, g

−1
2 L1 ∩L2)) and the two partial isometries

agree there. Thus, we get

π(µ(g1, L1)µ(g2, L2)) = π(µ(g1, L1))π(µ(g2, L2)) . (17)

Next, using (15) we see that

H π(µ(g, L)) − π(µ(g, L))H = log(Det g)π(µ(g, L)), (18)

since both sides vanish on the kernel while on the support one can use the
multiplicativity of Det.
Now Γ = SL2(Z) acts on the right in H by

ρ(γ) εm := εm γ−1 , ∀γ ∈ Γ , m ∈ M2(Z)+ (19)

and this action commutes by construction with the algebra π(C∗(M2(Z)+).
�

The image ρ(C∗(Γ )) generates a type II1 factor in H, hence one can evaluate
the corresponding trace TraceΓ on any element of its commutant. We let

ϕβ(x) := TraceΓ (π(x) e−βH) , ∀x ∈ C∗(M2(Z)+) (20)

and we define the normalization factor by

Z(β) = TraceΓ (e−βH) . (21)

We then have the following:

Lemma 7.2 1) The normalization factor Z(β) is given by

Z(β) = ζ(β) ζ(β − 1),

where ζ is the Riemann ζ-function.
2) For all β > 2, Z−1 ϕβ is a KMSβ state on C∗(M2(Z)+).

Proof. Any sublattice L ⊂ Z
2 is uniquely of the form L =

[
a b
0 d

]
Z

2, where

a, d ≥ 1, 0 ≤ b < d (cf. [50] p. 161). Thus, the type II1 dimension of the action
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of Γ in the subspace of H spanned by the εm with Detm = N is the same as
the cardinality of the quotient of {m ∈ M2(Z)+,Det m = N} by Γ acting on

the right. This is equal to the cardinality of the set of matrices
[
a b
0 d

]
as above

with determinant = N . This gives σ1(N) =
∑
d|N

d. Thus, Z(β) is given by

∞∑
N=1

σ1(N)
Nβ

= ζ(β) ζ(β − 1) . (22)

One checks the KMSβ-property of ϕβ using the trace property of TraceΓ

together with the second equality in Proposition 7.1. �

Proposition 7.3 1) For any θ ∈ GL2(R) the formula

πθ(f) εm := f(mθ) εm , ∀m ∈ M2(Z)+

extends the representation π to an involutive representation πθ of the cross
product A = C(M2(R)) � M2(Z)+ in H.
2) Let f ∈ C(M2(Z/NZ)) ⊂ C(M2(R)). Then πθ(f) ∈ ρ(ΓN )′ where ΓN is
the congruence subgroup of level N .
3) For each β > 2 the formula

ψβ(x) := LimN→∞ Z−1
N TraceΓN

(πθ(x) e−βH) , ∀x ∈ A

defines a KMSβ state on A, where ZN := TraceΓN
(e−βH).

Proof. 1) The invertibility of θ shows that letting fL be the characteristic
function of PL one has πθ(fL) = πL independently of θ. Indeed fL(mθ) = 1
iff mθ ∈ PL and this holds iff m(Z2) ⊂ L.
To check (13) one uses

f(gmθ) = fg(mθ)) , ∀g ∈ GL+
2 (Q) .

2) Let pN : M2(R) → M2(Z/NZ) be the canonical projection. It is a ring
homomorphism. Let then f = h ◦ pN where h is a function on M2(Z/NZ).
One has, for any γ ∈ ΓN ,

πθ(f) ρ(γ) εm = πθ(f) εm γ−1 =
f(mγ−1θ) εm γ−1 = h(pN (mγ−1θ)) εm γ−1 .

The equality pN (γ) = 1 shows that

pN (mγ−1θ) = pN (m) pN (γ−1) pN (θ) = pN (m) pN (θ) = pN (mθ),

hence
πθ(f) ρ(γ) εm = ρ(γ)πθ(f) εm .
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3) One uses 2) to show that, for all N and f ∈ C(M2(Z/NZ)) ⊂ C(M2(R)),
the products f µ(g, L) belong to the commutant of ρ(ΓN ). Since ΓN has finite
index in Γ it follows that for β > 2 one has ZN := TraceΓN

(e−βH) < ∞.
Thus, the limit defining ψβ(x) makes sense on a norm dense subalgebra of
A and extends to a state on A by uniform continuity. One checks the KMSβ

condition on the dense subalgebra in the same way as above. �

It is not difficult to extend the above discussion to arbitrary n using ([51]).
The normalization factor is then given by

Z(β) =
n−1∏

0

ζ(β − k) .

What happens, however, is that the states ψβ only depend on the determinant
of θ. This shows that the above construction should be extended to involve
not only the one-parameter group σt but in fact the whole dual action given
by the groupoid homomorphism (7).

Definition 7.4 Given a groupoid G and a homomorphism j : G → H to a
group H, the “cross product” groupoid G×j H is defined as the product G×H
with units G(0) × H, range and source maps

r(γ, α) := (r(γ), j(γ)α) , s(γ, α) := (s(γ), α)

and composition
(γ1, α1) ◦ (γ2, α2) := (γ1 ◦ γ2, α2) .

In our case this cross product G̃2 = G2×jGL+
2 (R) corresponds to the groupoid

of the partially defined action of GL+
2 (Q) on the locally compact space Z0 of

pairs (ρ, α) ∈ M2(R) × GL+
2 (R) given by

g(ρ, α) := (g ρ, g α) , ∀g ∈ GL+
2 (Q) , g ρ ∈ M2(R) .

Since the subgroup Γ ⊂ GL+
2 (Q) acts freely and properly by translation on

GL+
2 (R), one obtains a Morita equivalent groupoid S2 by dividing G̃2 by the

following action of Γ × Γ :

(γ1, γ2).(g, ρ, α) := (γ1 gγ−1
2 , γ2ρ, γ2α). (23)

The space of units S
(0)
2 is the quotient Γ\Z0. We let p : Z0 → Γ\Z0 be the

quotient map. The range and source maps are given by

r(g, ρ, α) := p(gρ, gα) , s(g, ρ, α) := p(ρ, α)

and the composition is given by

(g1, ρ1, α1) ◦ (g2, ρ2, α2) = (g1g2, ρ2, α2),

which passes to Γ × Γ -orbits.
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8 Commensurability of Q-Lattices in C and the full
GL2-System

We shall now describe the full GL2 C∗-dynamical system (A, σt). It is obtained
from the system of the previous section by taking a cross product with the
dual action of GL+

2 (R) i.e. from the groupoid S2 that we just described. It
admits an equivalent and more geometric description in terms of the notion
of commensurability between Q-lattices developed in section 1.6 above and we
shall follow both points of view. The C∗-algebra A is a Hecke algebra, which
is a variant of the modular Hecke algebra defined in ([10]). Recall from section
1.6:

Definition 8.1 1) A Q-lattice in C is a pair (Λ, φ) , with Λ a lattice in C,
and φ : Q

2/Z
2 −→ Q Λ/Λ an homomorphism of abelian groups.

2) Two Q-lattices (Λj , φj) are commensurable iff Λj are commensurable and
φ1 − φ2 = 0 modulo Λ = Λ1 + Λ2.

This is an equivalence relation R between Q-lattices (Proposition 6.4). We
use the basis {e1 = 1, e2 = −i} of the R-vector space C to let GL+

2 (R) act on
C as R-linear transformations. We let

Λ0 := Z e1 + Z e2 = Z + iZ

Also we view ρ ∈ M2(R) as the homomorphism

ρ : Q
2/Z

2 −→ Q.Λ0/Λ0 , ρ(a) = ρ1(a)e1 + ρ2(a)e2 .

Proposition 8.2 The map

γ(g, ρ, α) = ((α−1 g−1Λ0, α−1 ρ) , (α−1 Λ0, α−1 ρ)) , ∀(g, ρ, α) ∈ S2

defines an isomorphism of locally compact étale groupoids between S2 and the
equivalence relation R of commensurability on the space of Q-lattices in C.

Proof. The proof is the same as for Proposition 6.5. �

We shall now describe the quotient of S2 ∼ R by the natural scaling action
of C

∗. We view C
∗ as a subgroup of GL+

2 (R) by the map

λ = a + i b ∈ C
∗ �→

[
a b
−b a

]
∈ GL+

2 (R) (1)

and identify the quotient GL+
2 (R)/C

∗ with H by the map

α ∈ GL+
2 (R) �→ τ = α(i) ∈ H. (2)

Given a pair (Λj , φj) of commensurable Q-lattices and a non zero complex
number λ ∈ C

∗ the pair (λΛj , λφj) is still a pair of commensurable Q-lattices.
Moreover, one has
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φ
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Fig. 2. Q-Lattices in C.

γ(g, ρ, α λ−1) = λ γ(g, ρ, α) , ∀λ ∈ C
∗ . (3)

The scaling action of C
∗ on Q-lattices in C is not free, since the lattice Λ0

for instance is invariant under multiplication by i. It follows that the quotient
S2/C

∗ ∼ R/C
∗ is not a groupoid. One can nevertheless define its convolution

algebra in a straightforward manner by restricting the convolution product
on S2 ∼ R to functions which are homogeneous of weight 0, where weight k
means

f(g, ρ, α λ) = λk f(g, ρ, α) , ∀λ ∈ C
∗ . (4)

Let
Y = M2(R) × H, (5)

endowed with the natural action of GL+
2 (Q) by

γ · (ρ, τ) =
(

γ ρ,
aτ + b

cτ + d

)
, (6)

for γ =
[
a b
c d

]
∈ GL+

2 (Q) and (ρ, τ) ∈ Y . Let then

Z ⊂ Γ\GL+
2 (Q) ×Γ Y (7)

be the locally compact space quotient of {(g, y) ∈ GL+
2 (Q) × Y , g y ∈ Y } by

the following action of Γ × Γ :

(g, y) �→ (γ1 g γ−1
2 , γ2 y) , ∀γj ∈ Γ .
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The natural lift of the quotient map (2), together with proposition 8.2, first
gives the identification of the quotient of Y by Γ with the space of Q-lattices
in C up to scaling, realized by the map

θ : Γ\Y → (Space of Q-lattices in C)/C
∗ = X , (8)

θ(ρ, τ) = (Λ, φ) , Λ = Z + Zτ , φ(x) = ρ1(x) − τρ2(x) .

It also gives the isomorphism θ : S2/C
∗ = Z → R/C

∗,

θ(g, y) = (λθ(gy), θ(y)), (9)

where λ = Det(g)−1(cτ + d) for γ =
[
a b
c d

]
∈ GL+

2 (Q) and y = (ρ, τ) ∈ Y .

We let A = Cc(Z) be the space of continuous functions with compact support
on Z. We view elements f ∈ A as functions on GL+

2 (Q) × Y such that

f(γ g, y) = f(g, y) f(g γ, y) = f(g, γ y) , ∀γ ∈ Γ , g ∈ GL+
2 (Q) , y ∈ Y .

This does not imply that f(g, y) only depends on the orbit Γ.y but that it
only depends on the orbit of y under the congruence subgroup Γ ∩ g−1Γ g .
We define the convolution product of two such functions by

(f1 ∗ f2)(g, y) :=
∑

h∈Γ\GL+
2 (Q), hy∈Y

f1(gh−1, hy) f2(h, y) (10)

and the adjoint by
f∗(g, y) := f(g−1, g y). (11)

Notice that these rules combine (13) and (5).
For any x ∈ X we let c(x) be the commensurability class of x. It is a countable
subset of X and we want to define a natural representation in l2(c(x)). We let
p be the quotient map from Y to X. Let y ∈ Y with p(y) = x be an element
in the preimage of x. Let

Gy = {g ∈ GL+
2 (Q) | gy ∈ Y } .

The natural map g ∈ Gy �→ p(gy) ∈ X is a surjection from Γ\Gy to c(x) but it
fails to be injective in degenerate cases such as y = (0, τ) with τ ∈ H a complex
multiplication point (cf. Lemma 8.8). This corresponds to the phenomenon
of holonomy in the context of foliations ([11]). To handle it one defines the
representation πy directly in the Hilbert space Hy = l2(Γ\Gy) of left Γ -
invariant functions on Gy by

(πy(f) ξ)(g) :=
∑

h∈Γ\Gy

f(gh−1, hy) ξ(h) , ∀g ∈ Gy , (12)

for f ∈ A and ξ ∈ Hy.
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Proposition 8.3 1) The vector space A endowed with the product ∗ and the
adjoint f �→ f∗ is an involutive algebra.
2) For any y ∈ Y , πy defines a unitary representation of A in Hy whose
unitary equivalence class only depends on x = p(y).
3) The completion of A for the norm given by

||f || := Supy∈Y ||πy(f)||
is a C∗-algebra.

The proof of (1) and (2) is similar to ([10], Proposition 2). Using the com-
pactness of the support of f , one shows that the supremum is finite for any
f ∈ A (cf. [11]). �

Remark 8.4 The locally compact space Z of (7) is not a groupoid, due to
the torsion elements in Γ , which give nontrivial isotropy under scaling, for
the square and equilateral lattices. Nonetheless, Proposition 8.3 yields a well
defined C∗-algebra. This can be viewed as a subalgebra of the C∗-algebra
of the groupoid obtained by replacing Γ by its commutator subgroup in the
definition of S2 as in (23).

We let σt be the one parameter group of automorphisms of A given by

σt(f)(g, y) = (Det g)it f(g, y) . (13)

Notice that since X is not compact (but still locally compact) the C∗-algebra
A does not have a unit, hence the discussion of Proposition 2.2 applies.
The one parameter group σ2t (13) is the modular automorphism group as-
sociated to the regular representation of A. To obtain the latter we endow
X = Γ\Y with the measure

dy = dρ × dµ(τ),

where dρ =
∏

dρij is the normalized Haar measure of the additive compact
group M2(R) and dµ(τ) is the Riemannian volume form in H for the Poincaré
metric, normalized so that µ(Γ\H) = 1. We then get the following result.

Proposition 8.5 The expression

ϕ(f) =
∫

X

f(1, y) dy . (14)

defines a state on A, which is a KMS2 state for the one parameter group σt.

Proof. At the measure theory level, the quotient X = Γ\Y is the total space
over Γ\H of a bundle with fiber the probability space M2(R)/{±1}, thus the
total mass

∫
X

dy = 1. One gets
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ϕ(f∗ ∗ f) =
∫

X

∑
h∈Γ\GL+

2 (Q), hy∈Y

f(h, y)f(h, y) dy , ∀f ∈ A ,

which suffices to get the Hilbert space H of the regular representation and the
cyclic vector ξ implementing the state ϕ, which corresponds to

ξ(g, y) = 0 , ∀g /∈ Γ , ξ(1, y) = 1 , ∀y ∈ X .

The measure dρ is the product of the additive Haar measures on column
vectors, hence one gets

d(g ρ) = (Det g)−2 dρ , ∀g ∈ GL+
2 (Q) .

Let us prove that ϕ is a KMS2 state. The above equality shows that, for any
compactly supported continuous function α on Γ\GL+

2 (Q) ×Γ Y , one has
∫

X

∑
h∈Γ\GL+

2 (Q)

α(h, y) dy =
∫

X

∑
k∈Γ\GL+

2 (Q)

α(k−1, k y) (Det k)−2 dy . (15)

Let then fj ∈ A and define α(h, y) = 0 unless hy ∈ Y while otherwise

α(h, y) = f1(h−1, h y) f2(h, y)(Det h)it−2.

The l.h.s. of (15) is then equal to ϕ(f1 σz(f2)) for z = t + 2i. The r.h.s. of
(15) gives ϕ(σt(f2) f1) and (15) gives the desired equality ϕ(f1 σt+2i(f2)) =
ϕ(σt(f2) f1). �

We can now state the main result on the analysis of KMS states on the C∗-
dynamical system (A, σt). Recall that a Q-lattice l = (Λ, φ) is invertible if φ
is an isomorphism (Definition 6.3). We have the following result.

Theorem 8.6 1) For each invertible Q-lattice l = (Λ, φ), the representation
πl is a positive energy representation of the C∗-dynamical system (A, σt).
2) For β > 2 and l = (Λ, φ) an invertible Q-lattice, the formula

ϕβ,l(f) = Z−1
∑

Γ\M2(Z)+

f(1,m ρ,m(τ))Det(m)−β ,

defines an extremal KMSβ state ϕβ,l on (A, σt), where Z = ζ(β) ζ(β − 1) is
the partition function.
3) For β > 2 the map l �→ ϕβ,l is a bijection from the space of invertible
Q-lattices (up to scaling) to the space Eβ of extremal KMSβ states on (A, σt).

The proof of 1) reflects the following fact, which in essence shows that the
invertible Q-lattices are ground states for our system.
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Lemma 8.7 1) Let s : Q
2/Z

2 → Q
2 be a section of the projection π : Q

2 →
Q

2/Z
2. Then the set of s(a + b) − s(a) − s(b) , a, b ∈ Q

2/Z
2, generates Z

2.
2) Let l = (Λ, φ) be an invertible Q-lattice and l′ = (Λ′, φ′) be commensurable
with l. Then Λ ⊂ Λ′.

Proof. 1) Let L ⊂ Z
2 be the subgroup generated by the s(a + b) − s(a) −

s(b) , a, b ∈ Q
2/Z

2. If L �= Z
2 we can assume, after a change of basis, that

for some prime number p one has L ⊂ p Z ⊕ Z. Restricting s to the p-torsion
elements of Q

2/Z
2 and multiplying it by p, we get a morphism of groups

Z/p Z ⊕ Z/p Z → Z/p2
Z ⊕ Z/p Z,

which is a section of the projection

Z/p2
Z ⊕ Z/p Z → Z/p Z ⊕ Z/p Z.

This gives a contradiction, since the group Z/p2
Z ⊕ Z/p Z contains elements

of order p2.
2) Let s (resp. s′) be a lift of φ modulo Λ (resp. of φ′ modulo Λ′). Since
φ−φ′ = 0 modulo Λ′′ = Λ+Λ′ one has s(a)−s′(a) ∈ Λ+Λ′ for all a ∈ Q

2/Z
2.

This allows one to correct s modulo Λ and s′ modulo Λ′ so that s = s′. Then
for any a, b ∈ Q

2/Z
2 one has s(a + b)− s(a)− s(b) ∈ Λ∩Λ′ and the first part

of the lemma together with the invertibility of φ show that Λ ∩ Λ′ = Λ. �

Given y ∈ Y we let Hy be the diagonal operator in Hy given by

(Hy ξ)(h) := log(Det(h)) ξ(h) , ∀h ∈ Gy (16)

It implements the one parameter group σt i.e.

πy(σt(x)) = eitHy πy(x) e−itHy , ∀x ∈ A . (17)

In general the operator Hy is not positive but when the lattice l = (Λ, φ) =
θ(p(y)) is invertible one has

Det(h) ∈ N
∗ , ∀h ∈ Gy,

hence Hy ≥ 0. This proves the first part of the theorem. The basis of the
Hilbert space Hy is then labeled by the lattices Λ′ containing Λ and the
operator Hy is diagonal with eigenvalues the logarithms of the orders Λ′ :
Λ. Equivalently, one can label the orthonormal basis εm by the coset space
Γ\M2(Z)+. Thus, the same counting as in the previous section (cf.[51]) shows
that

Z = Trace(e−βHy ) = ζ(β) ζ(β − 1)

and in particular that it is finite for β > 2. The KMSβ property of the func-
tional

ϕβ,l(f) = Z−1 Trace(πy(f) e−βHy )
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then follows from (17). One has, using (12) for y = (ρ, τ) ∈ Y ,

〈πy(f)(εm), εm〉 = f(1,m ρ,m(τ)) ,

hence we get the following formula for ϕβ,l:

ϕβ,l(f) = Z−1
∑

Γ\M2(Z)+

f(1,m ρ,m(τ))Det(m)−β . (18)

Finally, the irreducibility of the representation πy follows as in [11] p.562 using
the absence of holonomy for invertible Q-lattices. This completes the proof of
2) of Theorem 8.6.
In order to prove 3) of Theorem 8.6 we shall proceed in two steps. The first
shows (Proposition 8.10 below) that KMSβ states are given by measures on
the space X of Q-lattices (up to scaling). The second shows that when β > 2
this measure is carried by the commensurability classes of invertible Q-lattices.
We first describe the stabilizers of the action of GL+

2 (Q) on the space of
Q-lattices in C.

Lemma 8.8 Let g ∈ GL+
2 (Q), g �= 1 and y ∈ Y, y = (ρ, τ) such that gy = y.

Then ρ = 0. Moreover g ∈ Q
∗ ⊂ GL+

2 (Q) unless τ is an imaginary quadratic
number in which case g ∈ K∗ ⊂ GL+

2 (Q) where K = Q(τ) is the corresponding
quadratic field.

Proof. Let g =
[
a b
c d

]
, then g(τ) = τ means aτ + b = τ (cτ + d). If c �= 0

this shows that τ is an imaginary quadratic number. Let K = Q(τ) be the
corresponding field and let {τ, 1} be the natural basis of K over Q. Then the
multiplication by (cτ + d) is given by the transpose of the matrix g. Since
g �= 1 and K is a field we get

g − 1 =
[
a − 1 b

c d − 1

]
∈ GL2(Q)

and thus (g − 1)ρ = 0 implies ρ = 0. If c = 0 then aτ + b = τ (cτ + d) implies
a = d, b = 0 so that g ∈ Q

∗ ⊂ GL+
2 (Q). Since g �= 1 one gets ρ = 0. �

We let X = Γ\Y be the quotient and p : Y → X the quotient map. We let
F be the closed subset of X, F = p({(0, τ); τ ∈ H}).
Lemma 8.9 Let g ∈ GL+

2 (Q), g /∈ Γ and x ∈ X, x /∈ F . There exists a
neighborhood V of x, such that

p(g p−1(V )) ∩ V = ∅
Proof. Let Γ0 = Γ ∩ g−1Γg and X0 = Γ0\Y . For x0 ∈ X0 the projections
p1(x0) = p(y) and p2(x0) = p(gy) are independent of the representative y ∈ Y .
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Moreover if p1(x0) /∈ F then p1(x0) �= p2(x0) by Lemma 8.8. By construction
Γ0 is of finite index n in Γ and the fiber p−1

1 (x) has at most n elements.
Let then W ⊂ X0 be a compact neighborhood of p−1

1 (x) in X0 such that
x /∈ p2(W ). For z ∈ V ⊂ X sufficiently close to x one has p−1

1 (z) ⊂ W and
thus p2(p−1

1 (z)) ⊂ V c which gives the result. �

We can now prove the following.

Proposition 8.10 Let β > 0 and ϕ a KMSβ state on (A, σt). Then there
exists a probability measure µ on X = Γ\Y such that

ϕ(f) =
∫

X

f(1, x) dµ(x) , ∀f ∈ A .

Proof. Let g0 ∈ GL+
2 (Q) and f ∈ Cc(Z) such that

f(g, y) = 0 , ∀g /∈ Γ g0 Γ .

Since any element of Cc(Z) is a finite linear combination of such functions, it is
enough to show that ϕ(f) = 0 provided g0 /∈ Γ . Let hn ∈ Cc(X), 0 ≤ hn ≤ 1
with support disjoint from F and converging pointwise to 1 in the complement
of F . Let un ∈ A be given by

un(1, y) := hn(y) , un(g, y) = 0 , ∀g /∈ Γ .

The formula
Φ(f)(g, τ) := f(g, 0, τ) ∀f ∈ A (19)

defines a homomorphism of (A, σt) to the C∗ dynamical system (B, σt) ob-
tained by specialization to ρ = 0, with convolution product

f1 ∗ f2(ρ, τ) =
∑

h

f1(gh−1, h(τ))f2(h, τ),

where now we have no restriction on the summation, as in [10].
For each n ∈ N

∗ we let

µ[n](g, y) = 1 if g ∈ Γ.[n] , µ[n](g, y) = 0 if g /∈ Γ.[n] . (20)

One has µ∗
[n] µ[n] = 1 and σt(µ[n]) = n2it µ[n] , ∀t ∈ R. Moreover, the range

π(n) = µ[n] µ
∗
[n] of µ[n] is the characteristic function of the set of Q-lattices

that are divisible by n, i.e. those of the form (Λ, nφ).
Let ν[n] = Φ(µ[n]). These are unitary multipliers of B. Since they are eigen-
vectors for σt, the system (B, σt) has no non-zero KMSβ positive functional.
This shows that the pushforward of ϕ by Φ vanishes and by Proposition 2.5
that, with the notation introduced above,

ϕ(f) = lim
n

ϕ(f ∗ un) .
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Thus, since (f ∗ un)(g, y) = f(g, y)hn(y), we can assume that f(g, y) = 0
unless p(y) ∈ K, where K ⊂ X is a compact subset disjoint from F . Let
x ∈ K and V as in lemma 8.9 and let h ∈ Cc(V ). Then, upon applying the
KMSβ condition (6) to the pair a, b with a = f and

b(1, y) := h(y) , b(g, y) = 0 , ∀g /∈ Γ ,

one gets ϕ(b∗f) = ϕ(f ∗b). One has (b∗f)(g, y) = h(gy) f(g, y). Applying this
to f ∗ b instead of f and using h(gy)h(y) = 0 , ∀y ∈ X we get ϕ(f ∗ b2) = 0
and ϕ(f) = 0, using a partition of unity on K. �

We let Det be the continuous map from M2(R) to R given by the determinant
[
a b
c d

]
∈ M2(R) �→ a d − b c ∈ R .

For each n ∈ N
∗, the composition πn ◦ Det defines a projection π′(n), which

is the characteristic function of the set of Q-lattices whose determinant is
divisible by n. If a Q-lattice is divisible by n its determinant is divisible by n2

and one controls divisibility using the following family of projections πp(k, l).
Given a prime p and a pair (k, l) of integers k ≤ l, we let

πp(k, l) := (π(pk) − π(pk+1)) (π′(pk+l) − π′(pk+l+1)). (21)

This corresponds, when working modulo N = pb, b > l, to matrices in the
double class of [

a 0
0 d

]
, vp(a) = k , vp(d) = l ,

where vp is the p-adic valuation.

Lemma 8.11 • Let ϕ be a KMSβ state on (A, σt). Then, for any prime p
and pair (k, l) of integers k < l, one has

ϕ(πp(k, l)) = p−(k+l)β pl−k (1 + p−1) (1 − p−β) (1 − p1−β)

while for k = l one has

ϕ(πp(l, l)) = p−2lβ (1 − p−β) (1 − p1−β) .

• For distinct primes pj one has

ϕ(
∏

πpj
(kj , lj)) =

∏
ϕ(πpj

(kj , lj)).

Proof. For each n ∈ N
∗ we let νn ∈ M(A) be given by

νn(g, y) = 1 , ∀g ∈ Γ

[
n 0
0 1

]
Γ , νn(g, y) = 0 otherwise .
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One has σt(νn) = nit νn , ∀t ∈ R. The double class Γ

[
n 0
0 1

]
Γ is the union

of the left Γ -cosets of the matrices
[
a b
0 d

]
where a d = n and gcd(a, b, d) = 1.

The number of these left cosets is

ω(n) := n
∏

p prime, p|n
(1 + p−1)

and
ν∗

n ∗ νn(1, y) = ω(n) , ∀y ∈ Y. (22)

One has
νn ∗ ν∗

n(1, y) =
∑

h∈Γ\GL+
2 (Q), hy∈Y

νn(h−1, hy)2 .

With y = (ρ, τ), the r.h.s. is independent of τ and only depends upon the
SL2(Z/nZ) − GL2(Z/nZ) double class of ρn = pn(ρ) ∈ M2(Z/nZ).
Let us assume that n = pl is a prime power. We can assume that ρn = pn(ρ)
is of the form

ρn =
[
pa 0
0 pb

]
, 0 ≤ a ≤ b ≤ l .

We need to count the number ω(a, b) of left Γ -cosets Γ hj in the double class

Γ

[
n−1 0
0 1

]
Γ such that hjy ∈ Y i.e. hjρ ∈ M2(R). A full set of representatives

of the double class is given by hj = (αt
j)

−1 where the αj are

α0 =
[
n 0
0 1

]
α(s) =

[
1 s
0 n

]
, s ∈ {0, 1, ..., n − 1}

and for x ∈ {1, 2, ..., l − 1}, s ∈ Z/pl−x
Z prime to p

α(x, s) =
[
px s
0 pl−x

]
.

The counting gives

• ω(a, b) = 0 if b < l.
• ω(a, b) = pa if a < l, b ≥ l.
• ω(a, b) = pl(1 + p−1) if a ≥ l.

Let ep(i, j), (i ≤ j) be the projection corresponding to a ≥ i, b ≥ j. Then for
i < j one has

πp(i, j) = ep(i, j) − ep(i + 1, j) − ep(i, j + 1) + ep(i + 1, j + 1) (23)

while
πp(j, j) = ep(j, j) − ep(j, j + 1). (24)
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The computation above gives

νn ∗ ν∗
n(1, y) = pl(1 + p−1)ep(l, l) +

l−1∑
0

pk (ep(k, l) − ep(k + 1, l)) , (25)

where we omit the variable y in the r.h.s.
Let ϕ be a KMSβ state, and σ(k, l) := ϕ(ep(k, l)). Then, applying the KMSβ

condition to the pair (µ[p]f, µ∗
[p]) for f ∈ C(X), one gets

σ(k, l) = p−2kβ σ(0, l − k) .

Let σ(k) = σ(0, k). Upon applying the KMSβ condition to (νn, ν∗
n), one gets

pl(1+p−1)p−lβ = pl(1+p−1)p−2lβ+
l−1∑
0

pk (p−2kβσ(l−k)−p−2(k+1)βσ(l−k−1) .

Since σ(0) = 1, this determines the σ(n) by induction on n and gives

σ(n) = a pn(1−β) + (1 − a) p−2nβ ,

with

a = (1 + p)
pβ − 1

p1+β − 1
.

Combined with (23) and (24), this gives the required formulas for ϕ(πp(k, l))
and the first part of the lemma follows.
To get the second part, one proceeds by induction on the number m of primes
pj . The function f =

∏m−1
1 πpj

(kj , lj) fulfills

f(h y) = f(y) , ∀y ∈ Y , ∀h ∈ Γ

[
n−1 0
0 1

]
Γ,

where n = pl
m. Thus, when applying the KMSβ condition to (νn f, ν∗

n), the
above computation applies with no change to give the result. �

Let us now complete the proof of 3) of Theorem 8.6. Let ϕ be a KMSβ state.
Proposition 8.10 shows that there is a probability measure µ on X such that

ϕ(f) =
∫

X

f(1, x) dµ(x) , ∀f ∈ A .

With y = (ρ, τ) ∈ X, Lemma 8.11 shows that the probability ϕ(ep(1, 1)) =
σ(1, 1) that a prime p divides ρ is p−2β . Since the series

∑
p−2β converges

(β > 1
2 would suffice here), it follows (cf. [44] Thm. 1.41) that, for almost all

y ∈ X, ρ is only divisible by a finite number of primes. Next, again by Lemma
8.11, the probability that the determinant of ρ is divisible by p is
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ϕ(ep(0, 1)) = σ(1) = (1 + p)p−β − p1−2β .

For β > 2 the corresponding series
∑

((1 + p)p−β − p1−2β) is convergent.
Thus, we conclude that with probability one

ρp ∈ GL2(Zp) , for almost all p.

Moreover, since
∑

ϕ(πp(k, l)) = 1, one gets with probability one

ρp ∈ GL2(Qp) , ∀p .

In other words, the measure µ gives measure one to finite idèles. (Notice
that finite idèles form a Borel subset which is not closed.) However, when
ρ is a finite idèle the corresponding Q-lattice is commensurable to a unique
invertible Q-lattice. Then the KMSβ condition shows that the measure µ is
entirely determined by its restriction to invertible Q-lattices, so that, for some
probability measure ν,

ϕ =
∫

ϕβ,l dν(l).

It follows that the Choquet simplex of extremal KMSβ states is the space of
probability measures on the locally compact space

GL2(Q)\GL2(A)/C
∗

of invertible Q-lattices 5 and its extreme points are the ϕβ,l. �

In fact Lemma 8.11 admits the following corollary:

Corollary 8.12 For β ≤ 1 there is no KMSβ state on (A, σt).

Proof. Indeed the value of ϕ(πp(k, l)) provided by the lemma is strictly neg-
ative for β < 1 and vanishes for β = 1. In the latter case this shows that the
measure µ is supported by {0}×H ⊂ Y and one checks that no such measure
fulfills the KMS condition for β = 1. �

In fact the measure provided by Lemma 8.11 allows us to construct a specific
KMSβ state on (A, σt) for 1 < β ≤ 2. We shall analyze this range of values in
Chapter III in connection with the renormalization group.
To get some feeling about what happens when β → 2 from above, we shall
show that, on functions f which are independent of τ , the states ϕβ,l con-
verge weakly to the KMS2 state ϕ of (14), independently of the choice of the
invertible Q-lattice l. Namely, we have

ϕβ,l(f) →
∫

M2(R)

f(a) da .

Using the density of functions of the form f ◦ pN among left Γ -invariant
continuous functions on M2(R), this follows from:

5 cf. e.g. [39] for the standard identification of the set of invertible Q-lattices with
the above double quotient
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Lemma 8.13 For N ∈ N, let Γ (N) be the congruence subgroup of level N
and

Zβ =
∑

Γ (N)\M2(Z)+

Det(m)−β .

When β → 2 one has, for any function f on M2(Z/NZ),

Z−1
β

∑
Γ (N)\M2(Z)+

f(pN (m))Det(m)−β → N−4
∑

M2(Z/NZ)

f(a) .

Proof. For x ∈ M2(Z/NZ) we let

h(x) = lim
β→2

Z−1
β

∑
m∈Γ (N)\M2(Z)+, pN (m)=x

Det(m)−β

be the limit of the above expression, with f the characteristic function of the
subset {x} ⊂ M2(Z/NZ). We want to show that

h(x) = N−4 , ∀x ∈ M2(Z/NZ) . (26)

Since pN is a surjection SL2(Z) → SL2(Z/NZ) and Γ (N) a normal subgroup
of Γ , one gets

h(γ1 xγ2) = h(x) , ∀γj ∈ SL2(Z/NZ) . (27)

Thus, to prove (26) we can assume that x is a diagonal matrix

x =
[
n 0
0 n �

]
∈ M2(Z/NZ) .

Dividing both n and N by their g.c.d. k does not affect the validity of (26),
since all m ∈ Γ (N)\M2(Z)+ with pN (m) = x are of the form k m′, while
Det(m)−β = k−2β Det(m′)−β . This shows that (26) holds for n = 0 and
allows us to assume that n is coprime to N . Let then r be the g.c.d. of �

and N . One can then assume that x =
[
n 0
0 n′ r

]
, with r|N and with n and n′

coprime to N . Let ∆ ⊂ SL2(Z/NZ) be the diagonal subgroup. The left coset
∆x ⊂ M2(Z/NZ) only depends on r and the residue δ ∈ (Z/N ′

Z)∗ of nn′

modulo N ′ = N/r. It is the set of all diagonal matrices of the form

y =
[
n1 0
0 n2 r

]
, n1 ∈ (Z/NZ)∗ , n1 n2 = δ (N ′) .

Let Γ∆(N) ⊂ Γ be the inverse image of ∆ by pN . By (27) h is constant on
∆x, hence

h(x) = lim
β→2

Z−1
β

∑
m∈Γ∆(N)\M2(Z)+, pN (m)∈∆ x

Det(m)−β . (28)
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In each left coset m ∈ Γ∆(N)\M2(Z)+ with pN (m) ∈ ∆x one can find a

unique triangular matrix
[
a b
0 d

]
with a > 0 coprime to N , d > 0 divisible by

r, a d/r = δ (N ′) and b = N b′ with 0 ≤ b′ < d. Thus, we can rewrite (28) as

h(x) = lim
β→2

Z−1
β

∑
Y

d (ad)−β , (29)

where Y is the set of pairs of positive integers (a, d) such that

pN (a) ∈ (Z/NZ)∗ , r|d , a d = r δ (N).

To prove (26) we assume first that r < N and write N = N1 N2, where
N1 is coprime to N ′ and N2 has the same prime factors as N ′. One has
r = N1 r2, with r2|N2. An element of Z/N2Z is invertible iff its image in
Z/N ′

Z is invertible. To prove (26) it is enough to show that, for any of the r2

lifts δ2 ∈ Z/N2Z of δ, one has

lim
β→2

Z−1
β

∑
Y ′

d (ad)−β = N1 N−4, (30)

where Y ′ is the set of pairs of positive integers (a, d) such that

pN (a) ∈ (Z/NZ)∗ , pN2(a d) = δ2.

We let 1N be the trivial Dirichlet character modulo N . Then when XN2 varies
among Dirichlet characters modulo N2 one has

∑
Y ′

d (ad)−β = ϕ(N2)−1
∑

XN2(δ2)−1 L(1N1 ×XN2 , β)L(XN2 , β − 1),

where ϕ is the Euler totient function. Only the trivial character XN2 = 1N2

contributes to the limit (30), since the other L-functions are regular at 1.
Moreover, the residue of L(1N2 , β − 1) at β = 2 is equal to ϕ(N2)

N2
so that,

when β → 2, we have
∑
Y ′

d (ad)−β ∼ N−1
2 L(1N , 2) (β − 2)−1 .

By construction one has

Zβ ∼ |Γ : Γ (N)| ζ(2) (β − 2)−1 ,

where the order of the quotient group Γ : Γ (N) is N3
∏

p|N (1 − p−2) ([51]).
Since

L(1N , s) =
∏
p|N

(1 − p−s) ζ(s)

one gets (30). A similar argument handles the case r = N . �
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The states ϕβ,l converge when β → ∞ and their limits restrict to Cc(X) ⊂ A
as characters given by evaluation at l:

ϕ∞,l(f) = f(l) , ∀f ∈ Cc(X).

These characters are all distinct and we thus get a bijection of the space

GL2(Q)\GL2(A)/C
∗

of invertible Q-lattices with the space E∞ of extremal KMS∞ states.
We shall now describe the natural symmetry group of the above system, from
an action of the quotient group S

S := Q
∗\GL2(Af )

as symmetries of our dynamical system. Here the finite adèlic group of GL2

is given by
GL2(Af ) =

∏
res

GL2(Qp),

where in the restricted product the p-component lies in GL2(Zp) for all but
finitely many p’s. It satisfies

GL2(Af ) = GL+
2 (Q)GL2(R).

The action of the subgroup
GL2(R) ⊂ S

is defined in a straightforward manner using the following right action of
GL2(R) on Q-lattices:

(Λ, φ).γ = (Λ, φ ◦ γ) , ∀γ ∈ GL2(R) .

By construction this action preserves the commensurability relation for pairs
of Q-lattices and preserves the value of the ratio of covolumes for such pairs.
We can view it as the action

(ρ, τ).γ = (ρ ◦ γ, τ)

of GL2(R) on Y = M2(R) × H, which commutes with the left action of
GL+

2 (Q). Thus, this action defines automorphisms of the dynamical system
(A, σt) by

θγ(f)(g, y) := f(g, y.γ) , ∀f ∈ A , γ ∈ GL2(R) ,

and one has
θγ1 θγ2 = θγ1γ2 , ∀γj ∈ GL2(R) .

The complementary action of GL+
2 (Q) is more subtle and is given by endo-

morphisms of the dynamical system (A, σt), following Definition 2.3.
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For m ∈ M2(Z)+, let m̃ = Det(m) m−1 ∈ M2(Z)+. The range Rm of the map
ρ → ρ m̃ only depends on L = m(Z2). Indeed if mj ∈ M2(Z)+ fulfill m1(Z2) =
m2(Z2) then m2 = m1 γ for some γ ∈ Γ , hence M2(R) m̃1 = M2(R) m̃2. Let
then

eL ∈ C(X) (31)

be the characteristic function of Γ\(Rm × H) ⊂ Γ\(M2(R) × H), for any m
such that m(Z2) = L. Equivalently, it is the characteristic function of the
open and closed subset EL ⊂ X of Q-lattices of the form (Λ, φ ◦ m̃). One has

eL eL′ = eL∩L′ , eZ2 = 1 .. (32)

For l = (Λ, φ) ∈ EL ⊂ X and m ∈ M2(Z)+, m(Z2) = L we let

l ◦ m̃−1 := (Λ, φ ◦ m̃−1) ∈ X.

This map preserves commensurability of Q-lattices. On Y it is given by

(ρ, τ) ◦ m̃−1 := (ρ ◦ m̃−1, τ) , ∀(ρ, τ) ∈ Rm × H

and it commutes with the left action of GL+
2 (Q). The formula

θm(f)(g, y) := f(g, y ◦ m̃−1) , ∀y ∈ Rm × H, (33)

extended by θm(f)(g, y) = 0 for y /∈ Rm ×H, defines an endomorphism θm of
A that commutes with the time evolution σt. Notice that θm(1) = eL ∈ M(A)
is a multiplier of A and that θm lands in the reduced algebra AeL

, so that
(33) is unambiguous. Thus one obtains an action of the semigroup M2(Z)+

by endomorphisms of the dynamical system (A, σt), fulfilling Definition 2.3.

Proposition 8.14 The above actions of the group GL2(R) ⊂ S and of the
semigroup M2(Z)+ ⊂ S assemble to an action of the group S = Q

∗\GL2(Af )
as symmetries of the dynamical system (A, σt).

Proof. The construction above applies to give an action by endomorphisms of
the semigroup GL2(Af ) ∩M2(R), which contains both GL2(R) and M2(Z)+.
It remains to show that the sub-semigroup N

× ⊂ M2(Z)+ acts by inner
endomorphisms of (A, σt). Indeed for any n ∈ N

∗, the endomorphism θ[n]

(where [n] =
[
n 0
0 n

]
∈ M2(Z)+) is inner and implemented by the multiplier

µ[n] ∈ M(A) which was defined in (20) above i.e. one has

θn(f) = µ[n] f µ∗
[n] , ∀f ∈ A .

�
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9 The subalgebra AQ and the Modular Field

The strategy outlined in §6 allows us to find, using Eisenstein series, a suitable
arithmetic subalgebra AQ of the algebra of unbounded multipliers of the basic
Hecke C∗-algebra A of the previous section. The extremal KMS∞ states ϕ ∈
E∞ extend to AQ and the image ϕ(AQ) generates, in the generic case, a
specialization Fϕ ⊂ C of the modular field F . The state ϕ will then intertwine
the symmetry group S of the system (A, σt) with the Galois group of the
modular field i.e. we shall show that there exists an isomorphism θ of S with
Gal(Fϕ/Q) such that

α ◦ ϕ = ϕ ◦ θ−1(α) , ∀α ∈ Gal(Fϕ/Q) . (1)

Let us first define AQ directly without any reference to Eisenstein series and
check directly its algebraic properties. We let Z ⊂ Γ\GL+

2 (Q) ×Γ Y be as
above and f ∈ C(Z) be a function with finite support in the variable g ∈
Γ\GL+

2 (Q). Such an f defines an unbounded multiplier of the C∗-algebra A
with the product given as above by

(f1 ∗ f2)(g, y) :=
∑

h∈Γ\GL+
2 (Q),hy∈Y

f1(gh−1, hy) f2(h, y).

One has Y = M2(R) × H and we write f(g, y) = f(g, ρ, z), with (g, ρ, z) ∈
GL+

2 (Q) × M2(R) × H. In order to define the arithmetic elements f ∈ AQ we
first look at the way f depends on ρ ∈ M2(R). Let as above pN : M2(R) →
M2(Z/NZ) be the canonical projection. It is a ring homomorphism. We say
that f has level N iff f(g, ρ, z) only depends upon (g, pN (ρ), z) ∈ GL+

2 (Q) ×
M2(Z/NZ) × H. Then specifying f amounts to assigning the finitely many
continuous functions fg,m ∈ C(H) with m ∈ M2(Z/NZ) and

f(g, ρ, z) = fg,pN (ρ)(z).

The invariance condition

f(g γ, y) = f(g, γ y) , ∀γ ∈ Γ , g ∈ GL+
2 (Q) , y ∈ Y (2)

then shows that

fg,m|γ = fg,m , ∀γ ∈ Γ (N) ∩ g−1Γg,

with standard notations for congruence subgroups and for the slash operation
in weight 0 (cf. (29)).
We denote by F the field of modular functions which are rational over Q

ab,
i.e. the union of the fields FN of modular functions of level N rational over
Q(e2πi/N ). Its elements are modular functions h(τ) whose q

1
N -expansion has

all its coefficients in Q(e2πi/N ) (cf. [51]).
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The first requirement for arithmetic elements is that

fg,m ∈ F ∀(g,m). (3)

This condition alone, however, is not sufficient. In fact, the modular field FN

of level N contains (cf. [51]) a primitive N -th root of 1. Thus, the condition
(3) alone allows the algebra AQ to contain the cyclotomic field Q

ab ⊂ C, but
this would prevent the existence of “fabulous states”, because the “fabulous”
property would not be compatible with C-linearity. We shall then impose an
additional condition, which forces the spectrum of the corresponding elements
of AQ to contain all Galois conjugates of such a root, so that no such element
can be a scalar. This is, in effect, a consistency condition on the roots of unity
that appear in the coefficients of the q-series, when ρ is multiplied on the left
by a diagonal matrix.
Consider elements g ∈ GL+

2 (Q) and α ∈ GL2(Z/NZ), respectively of the form

g = r

[
n 0
0 1

]
and α =

[
k 0
0 1

]
, (4)

with k prime to N and n|N .

Definition 9.1 We shall say that f of level N0 is arithmetic (f ∈ AQ) iff for
any multiple N of N0 and any pair (g, α) as in (4) we have fg,m ∈ FN for all
m ∈ M2(Z/NZ) and the q-series of fg,α m is obtained from the q-series for
fg,m by raising to the power k the roots of unity that appear as coefficients.

The arithmetic subalgebra AQ enriches the structure of the noncommutative
space to that of a “noncommutative arithmetic variety”. As we shall prove in
Theorem 9.5, a generic ground state ϕ of the system, when evaluated on AQ

generates an embedded copy Fϕ of the modular field in C. Moreover, there
exists a unique isomorphism θ = θϕ of the symmetry group S of the system
with Gal(Fϕ/Q), such that

θ(σ) ◦ ϕ = ϕ ◦ σ , ∀σ ∈ S .

A first step towards this result is to show that the arithmeticity condition is
equivalent to a covariance property under left multiplication of ρ by elements
α ∈ GL2(R), in terms of Galois automorphisms. The condition is always
satisfied for α ∈ SL2(R).
For each g ∈ GL2(Af ), we let Gal(g) ∈ Aut(F ) be its natural action on F ,
written in a covariant way so that

Gal(g1 g2) = Gal(g1) ◦ Gal(g2).

With the standard contravariant notation f �→ fg (cf. e.g. [28]) we let, for all
f ∈ F ,

Gal(g)(f) := f g̃ , g̃ = Det(g) g−1 . (5)
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Lemma 9.2 For any α ∈ SL2(R) one has

fg,α m = Gal(α)fg′,m,

where g α = α′ g′ is the decomposition of g α as a product in GL2(R).GL2(Q).

Proof. Notice that the decomposition α′ g′ is not unique, but the left invariance

f(γ g′, ρ, τ) = f(g′, ρ, τ) , ∀γ ∈ Γ

shows that the above condition is well defined. Let pN : M2(R) → M2(Z/NZ)
be the projection. Then fg,α m = fg,pN (α)pN (m), for f of level N . Let γ ∈ Γ
be such that pN (γ) = pN (α). Then

fg,αm(τ) = f(g, γm, τ) = f(gγ,m, γ−1(τ)).

Thus, for g′ = gγ, one obtains the required condition. �

Lemma 9.3 A function f is in AQ iff condition (3) is satisfied and

fg,α m = Gal(α)fg′,m, ∀α ∈ GL2(R), (6)

where g α = α′ g′ is the decomposition of g α as a product in GL2(R).GL2(Q).

Proof. By Lemma 9.2, the only nontrivial part of the covariance condition (6)

is the case of diagonal matrices δ =
[

u 0
0 1

]
with u ∈ GL1(R).

To prove (6) we can assume that g = g0 γ with g0 diagonal as in (4) and
γ ∈ Γ . Let then γ α = δ α1 with δ as above and α1 ∈ SL2(R). One has

fg0,δα1m = Gal(δ) fg0,α1m

by Definition 9.1 since Gal(δ) is given by raising the roots of unity that appear
as coefficients of the q-expansion to the power k where u is the residue of k
modulo N (cf. [51] (6.2.1) p.141). One then has

fg,α m = Gal(γ−1)fg0,γαm = Gal(γ−1δ) fg0,α1m

and by Lemma 9.2, with g0α1 = α′
1g

′
0 we get

fg,α m = Gal(γ−1δα1) fg′
0,m = Gal(α) fg′

0,m

Moreover
g α = g0 γ α = g0 δ α1 = δ g0 α1 = δ α′

1 g′0
which shows that g′ = g′0
One checks similarly that the converse holds. �

Proposition 9.4 AQ is a subalgebra of the algebra of unbounded multipliers
of A, globally invariant under the action of the symmetry group S.
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Proof. For each generic value of τ ∈ H the evaluation map

h ∈ F �→ Iτ (h) = h(τ) ∈ C

gives an isomorphism of F with a subfield Fτ ⊂ C and a corresponding action
Galτ of GL2(Af ) by automorphisms of Fτ , such that

Galτ (g)(Iτ (h)) = Iτ (Gal(g)(h)). (7)

We first rewrite the product as

(f1 ∗ f2)(g, ρ, τ) =
∑

g1∈Γ\GL+
2 (Q),g1ρ∈M2(R)

f1(gg−1
1 , g1ρ, g1(τ)) f2(g1, ρ, τ) .

The proof that (f1 ∗ f2)g,m ∈ F is the same as in Proposition 2 of ([10]).
It remains to be shown that condition (6) is stable under convolution. Thus
we let α ∈ GL2(R) and we want to show that f1 ∗ f2 fulfills (6). We let
g′ ∈ GL2(Q) and β ∈ GL2(R) with g α = β g′. By definition, one has

(f1∗f2)(g, α ρ, τ) =
∑

g1∈Γ\GL+
2 (Q),g1αρ∈M2(R)

f1(gg−1
1 , g1 α ρ, g1(τ)) f2(g1, α ρ, τ).

We let g1α = α′g′1 be the decomposition of g1α, and use 6 to write the r.h.s.
as

(f1 ∗ f2)(g, α ρ, τ) =
∑

f1(gg−1
1 , g1 α ρ, g1(τ)) Galτ (α)(f2(g′1, ρ, τ)) ,

with Galτ as in (7). The result then follows from the equality

f1(gg−1
1 , g1 α ρ, g1(τ)) = Galτ (α)(f1(g

′
g

′ −1
1 , g′1 ρ, g′1(τ))), (8)

which we now prove. The equality g1α = α′g′1 together with (6) shows that

f1(gg−1
1 , g1 α ρ, g1(τ)) = Galg1(τ)(α′)(f1(g

′
g

′ −1
1 , g′1 ρ, g1(τ))) ,

using gg−1
1 α′ = gg−1

1 (g1α g
′ −1
1 ) = gα g

′ −1
1 = β g′ g

′ −1
1 .

For any h ∈ F , one has

Ig1(τ)(Gal(α′)h) = Ig1(τ)(Gal(g1)Gal(α)Gal(g
′ −1
1 )(h))

and, by construction of the Galois action [51],

Ig1(τ) ◦ Gal(g1) = Iτ ,

so that in fact

Galg1(τ)(α′)Ig1(τ)(h) = Galτ (α)Ig′
1(τ)(h)) .
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This proves (8) and it shows that AQ is a subalgebra of the algebra of un-
bounded multipliers of A. To prove the invariance under S is straightforward,
since the endomorphisms are all acting on the ρ variable by right multiplica-
tion, which does not interfere with condition (6). �

In fact, modulo the nuance between “forms” and functions, the above algebra
AQ is intimately related to the modular Hecke algebra of [10].
We can now state the main result extending Theorem 3.2 to the two dimen-
sional case.

Theorem 9.5 Let l = (ρ, τ) be a generic invertible Q-lattice and ϕl ∈ E∞ be
the corresponding KMS∞ state. The image ϕl(AQ) ⊂ C generates the special-
ization Fτ ⊂ C of the modular field F obtained for the modulus τ . The action
of the symmetry group S of the dynamical system (A, σt) is intertwined by ϕ
with the Galois group of the modular field Fτ by the formula

ϕ ◦ α = Galτ (ρα ρ−1) ◦ ϕ.

Proof. We first need to exhibit enough elements of AQ. Let us first deal with
functions f(g, ρ, τ) which vanish except when g ∈ Γ . By construction these
are functions on the space X of Q-lattices

X = (Space of Q-lattices in C)/C
∗ ∼ Γ\(M2(R) × H) . (9)

To obtain such elements of AQ we start with Eisenstein series and view them
as functions on the space of Q-lattices. Recall that to a pair (ρ, τ) ∈ Y we
associate the Q-lattice (Λ, φ) = θ(ρ, τ) by

Λ = Z + τ Z , φ(a) = ρ1(a) − τρ2(a) ∈ QΛ/Λ, (10)

where ρj(a) =
∑

ρjk(ak) ∈ Q/Z, for a = (a1, a2) ∈ (Q/Z)2. The Eisenstein
series are given by

E2k,a(ρ, τ) = π−2k
∑

y∈Λ+φ(a)

y−2k. (11)

This is undefined when φ(a) ∈ Λ, but we shall easily deal with that point
below. For k = 1 we let

Xa(ρ, τ) = π−2

⎛
⎝ ∑

y∈Λ+φ(a)

y−2 −
∑′

y∈Λ

y−2

⎞
⎠ (12)

when φ(a) /∈ Λ and Xa(ρ, τ) = 0 if φ(a) ∈ Λ. This is just the evaluation of
the Weierstrass ℘-function on φ(a).
For γ ∈ Γ = SL2(Z) we have Xa(γ ρ, γ τ) = (cτ + d)2 Xa(ρ, τ), which
shows that the function c(τ)Xa is Γ -invariant on Y , where
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c(τ) = −27 35 g2g3

∆
(13)

has weight −2 and no pole in H. We use c as we used the covolume in the
1-dimensional case, to pass to modular functions. This corresponds in weight
2 to passing from division values of the Weierstrass ℘-function to the Fricke
functions (cf. [28] §6.2)

fv(τ) = −2735 g2 g3

∆
℘(λ(v, τ)), (14)

where v = (v1, v2) ∈ (Q/Z)2 and λ(v, τ) := v1 τ + v2. Here g2, g3 are the
coefficients giving the elliptic curve Eτ = C/Λ in Weierstrass form,

y2 = 4x3 − g2x − g3,

with discriminant ∆ = g3
2 − 27g2

3 . One has (up to powers of π)

g2 = 60 e4 , g3 = 140 e6,

where one defines the standard modular forms of even weight k ∈ 2 N as

ek(Λ) := π−k
∑

y∈Λ\{0}
y−k

with q-expansion (q = e2πiτ )

ek =
2k

k!
B k

2
+ (−1)k/2 2k+1

(k − 1)!

∞∑
1

σk−1(N) qN ,

where the Bn are the Bernoulli numbers and σn(N) is the sum of dn over the
divisors d of N . The e2n for n ≥ 2 are in the ring Q[e4, e6] (cf [56]) thanks to
the relation

1
3
(m − 3)(4m2 − 1)e2m =

m−2∑
2

(2r − 1)(2m − 2r − 1)e2re2m−2r. (15)

Notice that Xa := c Xa ∈ C(M2(R)×H) = C(Y ) is a continuous function on
Y . The continuity of Xa as a function of ρ comes from the fact that it only
involves the restriction ρN ∈ M2(Z/NZ) of ρ to N -torsion elements a with
Na = 0.
We view Xa as a function on Z by

Xa(γ, ρ, τ) := Xa(ρ, τ) , ∀γ ∈ Γ,

while it vanishes for γ /∈ Γ . Let us show that Xa ∈ AQ. Since the Fricke
functions belong to the modular field F we only need to check (6). For α ∈
GL2(R) and generic τ we want to show that
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Xa(α ρ, τ) = Galτ (α)Xa(ρ, τ).

If ρ(a) = 0 both sides vanish, otherwise they are both given by Fricke functions
fv, fv′ , corresponding respectively to the labels (using (10))

v = s α ρ(a) , v′ = s ρ(a) , s =
[
0 −1
1 0

]
.

Thus, v′ = s α s−1(v) = (s−1 αt s)t(v) and the result follows from (5) and the
equality

α̃ = Det(α) α−1 = s−1 αt s,

with the Galois group GL2(Z/nZ)/ ± 1 of the modular field Fn over Q(j)
acting on the Fricke functions by permutation of their labels:

fσ(u)
v = futv , ∀u ∈ GL2(Z/nZ).

This shows that Xa ∈ AQ and it suffices to show that, with the notation of the
theorem, ϕl(AQ) generates Fτ , since the modular field F is the field generated
over Q by all the Fricke functions. It already contains Q(j) at level 2 and it
contains in fact Q

ab(j).
Let us now display elements Tr1,r2 ∈ AQ, rj ∈ Q

∗
+, r1|r2, associated to the

classical Hecke correspondences. We let Cr1,r2 ⊂ Γ\GL2(Q)+ be the finite

subset given by the double class of
[
r1 0
0 r2

]
in Γ\GL2(Q)+/Γ . We then define

Tr1,r2(g, ρ, τ) = 1 if g ∈ Cr1,r2 , gρ ∈ M2(R) , Tr1,r2(g, ρ, τ) = 0 otherwise .

One needs to check (6), but if g α = α′ g′ is the decomposition of g α as
a product in GL2(R).GL2(Q)+, then g′ belongs to the double coset of g ∈
Γ\GL2(Q)+/Γ , which gives the required invariance. It is not true that the
Tr1,r2 ∈ AQ fulfill the relations of the Hecke algebra H(GL2(Q)+, Γ ) of double
cosets, but this holds when r1, r2 are restricted to vary among positive integers.
To see this one checks that the map

τ(f)(g, y) := f(g) if g ∈ M2(Z)+ , τ(f)(g, y) = 0 otherwise

defines an isomorphism

τ : H(M2(Z)+, Γ ) → AQ (16)

of the standard Hecke algebra H(M2(Z)+, Γ ) of Γ -biinvariant functions (with
Γ -finite support) on M2(Z)+ with a subalgebra H ⊂ AQ. Notice that it is
only because the condition h y ∈ Y of definition (10) is now automatically
satisfied that τ is a homomorphism.
Let us now show the intertwining equality

ϕl ◦ α = Galτ (ρα ρ−1) ◦ ϕl , ∀α ∈ S . (17)
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One has
ϕl(f) = f(1, ρ, τ) , ∀f ∈ AQ

It is enough to prove (17) for α ∈ GL2(R) and for α ∈ GL2(Q).
For α ∈ GL2(R), the state ϕl ◦ α is given simply by

(ϕl ◦ α)(f) = f(1, ρ α, τ) , ∀f ∈ AQ ,

and using (6) one gets (17) in that case.
Let m ∈ M+

2 (Z). Then the state ϕl ◦m is more tricky to obtain, since it is not
the straight composition but the 0-temperature limit of the states obtained
by composition of the KMSβ state ϕl,β with the endomorphism θm defined in
(33). Indeed, the range of θm is the reduced algebra by the projection eL, with
L = m(Z2), on which any of the zero temperature states vanishes identically.
Let us first show that for finite β we have

ϕl,β ◦ θm = ϕl,β(eL)ϕl′,β , (18)

where L = m(Z2) and l′ is given by

l′ = (ρ′, m
′ −1(τ)) , ρm = m′ ρ′ ∈ M+

2 (Z).GL2(R) . (19)

By (18) we have

ϕβ,l(θm(f)) = Z−1
∑

Γ\M2(Z)+

f(1, µ ρ m̃−1, µ(τ))Det(µ)−β ,

where µ ∈ M2(Z)+ is subject to the condition µ ρ m̃−1 ∈ M2(R). The other
values of µ a priori involved in the summation (18) do not contribute, since
they correspond to the orthogonal of the support of θm(f).
One has Det(m) = Det(m′) by construction, hence

ρ m̃−1 = ρm Det(m)−1 = Det(m′)−1 m′ ρ′ = m̃′−1
ρ′ .

Therefore the condition µ ρ m̃−1 ∈ M2(R) holds iff µ = ν m̃′ for some
ν ∈ M2(Z)+. Thus, since Det(µ) = Det(ν) · Det(m̃′), we can rewrite, up
to multiplication by a scalar,

ϕβ,l(θm(f)) = Z
′ −1

∑
Γ\M2(Z)+

f(1, ν ρ′, ν m̃′(τ))Det(ν)−β .

This proves (18). It remains to show that on AQ we have

ϕl′(f) = Galτ (ρmρ−1) ◦ ϕl(f) , ∀f ∈ AQ .

Both sides only involve the values of f on invertible Q-lattices, and there, by
(6) one has
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f(1, α, τ) = Galτ (α)f(1, 1, τ) , ∀α ∈ GL(2, R) .

Thus, we obtain

ϕl′(f) = f(1, ρ′, m
′ −1(τ)) = Im′ −1(τ)(Gal(ρ′)f) = Iτ (Gal(m′ ρ′)f) .

Since m′ ρ′ = ρm, this gives Galτ (ρmρ−1) ◦ ϕl(f) as required. �

We shall now work out the algebraic relations fulfilled by the Xa as extensions
of the division formulas of elliptic functions.
We first work with lattice functions of some weight k, or equivalently with
forms f(g, y) dyk/2, and then multiply them by a suitable factor to make
them homogeneous of weight 0 under scaling. The functions of weight 2 are
the generators, the higher weight ones will be obtained from them by universal
formulas with modular forms as coefficients.
The powers Xm

a of the function Xa are then expressed as universal polynomials
with coefficients in the ring Q [e4, e6] in the following weight 2k functions
(k > 1):

E2k,a(ρ, τ) = π−2k
∑

y∈Λ+φ(a)

y−2k. (20)

These fulfill by construction ([56]) the relations

E2m,a = Xa(E2m−2,a − e2m−2) +
(

1 −
(

2m
2

))
e2m (21)

−
m−2∑

1

(
2k + 1

2k

)
e2k+2(E2m−2k−2,a − e2m−2k−2) .

These relations dictate the value of E2k(ρ, τ) when ϕ(a) ∈ Λ: one gets

E2k(ρ, τ) = ν2k(τ) if ϕ(a) ∈ Λ, (22)

where ν2k is a modular form of weight 2k obtained by induction from (21),
with Xa replaced by 0 and E2m by ν2m. One has ν2k ∈ Q [e4, e6] and the first
values are

ν4 = −5 e4 , ν6 = −14 e6 , ν8 =
45
7

e2
4 , . . . (23)

We shall now write the important algebraic relations between the functions
Xa, which extend the division relations of elliptic functions from invertible
Q-lattices to arbitrary ones.
In order to work out the division formulas for the Eisenstein series E2m,a

we need to control the image of
(

1
N Z

)2 = 1
N Z

2 under an arbitrary element
ρ ∈ M2(R). This is done as follows using the projections πL defined in (9).
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Lemma 9.6 Let N ∈ N
∗, and ρ ∈ M2(R). There exists a smallest lattice

L ⊂ Z
2 with L ⊃ NZ

2, such that πL(ρ) = 1. One has

ρ(
1
N

Z
2) =

1
N

L .

Proof. There are finitely many lattices L with NZ
2 ⊂ L ⊂ Z

2. Thus, the
intersection of those L for which πL(ρ) = 1 is still a lattice and fulfills πL(ρ) =
1 by (10). Let L be this lattice, and let us show that ρ( 1

N Z
2) ⊂ 1

N L. Let
m ∈ M2(Z)+ be such that m(Z2) = L. Then πL(ρ) = 1 implies that ρ = mµ
for some µ ∈ M2(R). Thus ρ( 1

N Z
2) ⊂ m( 1

N Z
2) = 1

N L. Conversely let L′ ⊂ Z
2

be defined by ρ( 1
N Z

2) = 1
N L′. We need to show that πL′(ρ) = 1, i.e. that there

exists m′ ∈ M2(Z)+ such that L′ = m′(Z2) and m′−1
ρ ∈ M2(R). Replacing

ρ by γ1ρ γ2 for γj ∈ SL2(Z) does not change the problem, hence we can use
this freedom to assume that the restriction of ρ to

(
1
N Z

)2 is of the form

ρN =
[
d1 0
0 d2

]
, dj | N , d1 | d2 . (24)

One then takes m′ =
[
d1 0
0 d2

]
∈ M2(Z)+ and checks that L′ = m′(Z2) while

m′−1
ρ belongs to M2(R). �

Given an integer N > 1, we let SN be the set of lattices

N Z
2 ⊂ L ⊂ Z

2, (25)

which is the same as the set of subgroups of (Z/NZ)2. For each L ∈ SN we
define a projection π(N, L) by

π(N, L) = πL

∏
L′∈SN ,L′�L

(1 − πL′) . (26)

By Lemma 9.6 the range of π(N, L) is exactly the set of ρ ∈ M2(R) such that

ρ(
1
N

Z
2) =

1
N

L . (27)

The general form of the division relations is as follows.

Proposition 9.7 There exists canonical modular forms ωN,L,k of level N and
weight 2k, such that for all k and (ρ, τ) ∈ Y they satisfy

∑
Na=0

Xk
a (ρ, τ) =

∑
L∈SN

π(N, L)(ρ)ωN,L,k(τ) .



From Physics to Number Theory via Noncommutative Geometry 337

In fact, we shall give explicit formulas for the ωN,L,k and show in particular
that

ωN,L,k(γ τ) = (cτ + d)2k ωN,γ−1 L,k(τ),

which implies that ωN,L,k is of level N .
We prove it for k = 1 and then proceed by induction on k. The division
formulas in weight 2 involve the 1-cocycle on the group GL+

2 (Q) with values
in Eisenstein series of weight 2 given in terms of the Dedekind η-function by
(cf. [10])

µγ (τ) =
1

12πi

d

dτ
log

∆|γ
∆

=
1

2πi

d

dτ
log

η4|γ
η4

, (28)

where we used the standard ‘slash operator’ notation for the action of GL+
2 (R)

on functions on the upper half plane:

f |k α (z) = Det (α)k/2 f(α · z) j(α, z)−k , (29)

α =
[
a b
c d

]
∈ GL+

2 (R), α · z =
az + b

cz + d
and j(α, z) = cz + d .

Since µγ = 0 for γ ∈ Γ , the cocycle property

µγ1·γ2 = µγ1 |γ2 + µγ2 (30)

shows that, for m ∈ M2(Z)+, the value of µm−1 only depends upon the lattice
L = m(Z2). We shall denote it by µL.

Lemma 9.8 For any integer N , the Xa, a ∈ Q/Z, fulfill the relation
∑

N a=0

Xa = N2
∑

L∈SN

π(N, L) µL

By construction the projections π(N, L), L ∈ SN form a partition of unity,
∑

L∈SN

π(N, L) = 1 .

Thus to prove the lemma it is enough to evaluate both sides on ρ ∈ π(N, L).
We can moreover use the equality

µγ−1L = µL|γ , ∀γ ∈ Γ

to assume that L and ρN are of the form

L =
[
d1 0
0 d2

]
Z

2 , ρN =
[
d1 0
0 d2

]
, dj | N , d1 | d2 .

Let d2 = nd1. The order of the kernel of ρN is d1 d2 and the computation of∑
N a=0 Xa(ρ, τ) gives
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−N2e2(τ) + d1 d2 N2
∑

(a,b)∈Z2\{0}
(a d1 − b d2τ)−2

which gives N2(n e2(n τ) − e2(τ)) = N2µL.

This proves the proposition for k = 1. Let us proceed by induction using (21)
to express Xk

a as E2k,a plus a polynomial of degree < k in Xa with coefficients
in Q[e4, e6]. Thus, we only need to prove the equality

∑
N a=0

E2k,a =
∑

L∈SN

π(N, L) αN,L,k,

where the modular forms αN,L,k are given explicitly as

αN,L,k = N2kd2nk+1e2k|m−1 − Det(m) (e2k − ν2k),

with m ∈ M2(Z)+, m(Z2) = L, and (d, dn) the elementary divisor of L.
The proof is obtained as above by evaluating both sides on arbitrary ρ ∈
π(N, L). �

One can rewrite all the above relations in terms of the weight 0 elements

Xa := c Xa , E2k,a := ck E2k,a ∈ AQ.

In particular, the two basic modular functions c2 e4 and c3 e6 are replaced by

c2 e4 =
1
5

j (j − 1728) , c3 e6 = − 2
35

j (j − 1728)2.

We can now rewrite the relations (21) in terms of universal polynomials

Pn ∈ Q(j)[X],

which express the generators E2k,a in terms of Xa by

E2k,a = Pk(Xa).

In fact, from (21) we see that the coefficients of Pk are themselves polynomials
in j rather than rational fractions, so that

Pn ∈ Q[j,X].

The first ones are given by

P2 = X2 − j(j − 1728) , P3 = X3 − 9
5

Xj(j − 1728) +
4
5
j(j − 1728)2 , · · ·
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10 The noncommutative boundary of modular curves

We shall explain in this section how to combine the dual of the GL2-system
described above with the idea, originally developed in the work of Connes–
Douglas–Schwarz [12] and Manin–Marcolli [37], of enlarging the boundary of
modular curves with a noncommutative space that accounts for the degener-
ation of elliptic curves to noncommutative tori.
The GL2-system described in the previous sections admits a “dual” system
obtained by considering Q-lattices up to commensurability but no longer up
to scaling. Equivalently this corresponds to taking the cross product of the
GL2-system by the action of the Pontrjagin dual of C

∗, which combines the
time evolution σt with an action by the group Z of integral weights of modular
forms. The resulting space is the total space of the natural C

∗-bundle.
In adélic terms this “dual” noncommutative space L2 is described as follows,

Proposition 10.1 There is a canonical bijection from the space of GL2(Q)-
orbits of the left action of GL2(Q) on M2(Af ) × GL2(R) to the space L2 of
commensurability classes of two-dimensional Q-lattices.

Proof. The space of GL2(Q) orbits on M2(Af ) × GL2(R) is the same as the
space of GL+

2 (Q) orbits on M2(R) × GL+
2 (R). �

By the results of the previous sections, the classical space obtained by consid-
ering the zero temperature limit of the quantum statistical mechanical system
describing commensurability classes of 2-dimensional Q-lattices up to scaling
is the Shimura variety that represents the projective limit of all the modular
curves

GL2(Q)\GL2(A)/C
∗ . (1)

Usually, the Shimura variety is constructed as the projective limit of the

Γ ′\GL2(R)+/C
∗

over congruence subgroups Γ ′ ⊂ Γ . This gives a connected component in (1).
The other components play a crucial role in the present context, in that the
existence of several connected components allows for non-constant solutions
of the equation ζn = 1. Moreover all the components are permuted by the
Galois covariance property of the arithmetic elements of the GL2 system.
The total space of the natural C

∗-bundle, i.e. the quotient

GL2(Q)\GL2(A), (2)

is the space of invertible 2-dimensional Q-lattices (not up to scaling).
In the GL1 case, the analog of (2), i.e. the space of idèle classes

GL1(Q)\GL1(A),
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is compactified by first considering the noncommutative space of commensu-
rability classes of Q-lattices not up to scaling

L = GL1(Q)\A
·,

where A
· is the space of adèles with nonzero archimedean component. The

next step, which is crucial in obtaining the geometric space underlying the
spectral realization of the zeros of the Riemann zeta function, is to add an
additional “stratum” that gives the noncommutative space of adèle classes

L = GL1(Q)\A ,

which will be analyzed in the next Chapter.
Similarly, in the GL2 case, the classical space given by the Shimura variety
(1) is first “compactified” by adding noncommutative “boundary strata” ob-
tained by replacing GL2(Af ) in GL2(A) = GL2(Af )×GL2(R) by all matrices
M2(Af ). As boundary stratum of the Shimura variety it corresponds to degen-
erating the invertible Q-structure φ on the lattice to a non-invertible one and
yields the notion of Q-lattice. The corresponding space of commensurability
classes of Q-lattices up to scaling played a central role in this whole chapter.
The space of commensurability classes of 2-dimensional Q-lattices (not up to
scaling) is

L2 = GL2(Q)\(M2(Af ) × GL2(R)) . (3)

On L2 we can consider not just modular functions but all modular forms
as functions. One obtains in this way an antihomomorphism of the modular
Hecke algebra of level one of [10] (with variable α ∈ GL2(Q)+ restricted to
M2(Z)+) to the algebra of coordinates on L2.
The further compactification at the archimedean place, corresponding to L ↪→
L in the GL1 case, now consists of replacing GL2(R) by matrices M2(R).
This corresponds to degenerating the lattices to pseudo-lattices (in the sense
of [34]) or in more geometric terms, to a degeneration of elliptic curves to
noncommutative tori. It is this part of the “noncommutative compactification”
that was considered in [12] and [37].
A Q-pseudolattice in C is a pair (Λ, φ), with Λ = j(Z2) the image of a homo-
morphism j : Z

2 → �, with � ⊂ R
2 ∼= C a real 1-dimensional subspace, and

with a group homomorphism

φ : Q
2/Z

2 → QΛ/Λ.

The Q-pseudolattice is nondegenerate if j is injective and is invertible if φ is
invertible.

Proposition 10.2 Let ∂Y := M2(R) × P
1(R). The map

(ρ, θ) �→ (Λ, φ), Λ = Z + θZ, φ(x) = ρ1(x) − θρ2(x) (4)
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gives an identification

Γ\∂Y � (Space of Q-pseudolattices in C)/C
∗. (5)

This space parameterizes the degenerations of 2-dimensional Q-lattices

λ(y) = (Λ, φ) where Λ = h̃(Z + i Z) and φ = h̃ ◦ ρ, (6)

for y = (ρ, h) ∈ M2(R) × GL2(R) and h̃ = h−1Det (h), when h ∈ GL2(R)
degenerates to a non-invertible matrix in M2(R).

Proof. Q-pseudolattices in C are of the form

Λ = λ(Z + θZ), φ(a) = λρ1(a) − λθρ2(a), (7)

for λ ∈ C
∗ and θ ∈ P

1(R) and ρ ∈ M2(R). The action of C
∗ multiplies λ,

while leaving θ unchanged. This corresponds to changing the 1-dimensional
linear subspace of C containing the pseudo-lattice and rescaling it. The ac-
tion of SL2(Z) on P

1(R) by fractional linear transformations changes θ. The
nondegenerate pseudolattices correspond to the values θ ∈ P

1(R)�P
1(Q) and

the degenerate pseudolattices to the cusps P
1(Q).

For y = (ρ, h) ∈ M2(R) × GL2(R) consider the Q-lattice (6), for h̃ =
h−1Det (h). Here we use the basis {e1 = 1, e2 = −i} of the R-vector space C to
let GL+

2 (R) act on C as R-linear transformations. These formulas continue to
make sense when h ∈ M2(R) and the image Λ = h̃(Z + i Z) is a pseudolattice
when the matrix h is no longer invertible.
To see this more explicitly, consider the right action

m �→ m · z (8)

of C
∗ on M2(R) determined by the inclusion C

∗ ⊂ GL2(R) as in (1), The
action of C

∗ on M2(R) � {0} is free and proper. The map

ρ(α) =

{
α(i) (c, d) �= (0, 0)

∞ (c, d) = (0, 0)
with α =

[
a b
c d

]
(9)

defines an isomorphism

ρ : (M2(R) � {0})/C
∗ → P

1(C), (10)

equivariant with respect to the left action of GL2(R) on M2(R) and the action
of GL2(R) on P

1(C) by fractional linear transformations. Moreover, this maps
M2(R)+ to the closure of the upper half plane

H = H ∪ P
1(R). (11)

The rank one matrices in M2(R) map to P
1(R) ⊂ P

1(C). In fact, the isotropy
group of m ∈ M2(R) is trivial if m �= 0, since m · z = m only has nontrivial
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solutions for m = 0, since z − 1 is invertible when nonzero. This shows that
M2(R)\{0} is the total space of a principal C

∗-bundle. �

Notice that, unlike the case of Q-lattices of (8), where the quotient Γ\Y can
be considered as a classical quotient, here the space Γ\∂Y should be regarded
as a noncommutative space with function algebra

C(∂Y ) � Γ.

The usual algebro–geometric compactification of a modular curve YΓ ′ = Γ ′\H,
for Γ ′ a finite index subgroup of Γ , is obtained by adding the cusp points
Γ\P

1(Q),
XΓ ′ = YΓ ′ ∪ { cusps } = Γ ′\(H ∪ P

1(Q)) . (12)

Replacing GL2(R) by M2(R) in (3) corresponds to replacing the cusp points
P

1(Q) by the full boundary P
1(R) of H. Since Γ does not act discretely on

P
1(R), the quotient is best described by noncommutative geometry, as the

cross product C∗-algebra C(P1(R)) � Γ ′ or, up to Morita equivalence,

C(P1(R) × P) � Γ, (13)

with P the coset space P = Γ/Γ ′.
The noncommutative boundary of modular curves defined this way retains
a lot of the arithmetic information of the classical modular curves. Various
results of [37] show, from the number theoretic point of view, why the irra-
tional points of P

1(R) in the boundary of H should be considered as part of
the compactification of modular curves.
The first such result is that the classical definition of modular symbols (cf.
[36]), as homology classes on modular curves defined by geodesics connecting
cusp points, can be generalized to “limiting modular symbols”, which are
asymptotic cycles determined by geodesics ending at irrational points. The
properties of limiting modular symbols are determined by the spectral theory
of the Ruelle transfer operator of a dynamical system, which generalizes the
Gauss shift of the continued fraction expansion by taking into account the
extra datum of the coset space P.
Manin’s modular complex (cf. [36]) gives a combinatorial presentation of the
first homology of modular curves, useful in the explicit computation of the
intersection numbers obtained by pairing modular symbols to cusp forms. It
is shown in [37] that the modular complex can be recovered canonically from
the K-theory of the C∗-algebra (13).
Moreover, Mellin transforms of cusp forms of weight two for the congruence
subgroups Γ0(p), with p prime, can be obtained by integrating along the
boundary P

1(R) certain “automorphic series” defined in terms of the con-
tinued fraction expansion and of modular symbols.
These extensions of the theory of modular symbols to the noncommutative
boundary appear to be interesting also in relation to the results of [10], where
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the pairing with modular symbols is used to give a formal analog of the
Godbillon–Vey cocycle and to obtain a rational representative for the Euler
class in the group cohomology H2(SL2(Q), Q).
The fact that the arithmetic information on modular curves is stored in their
noncommutative boundary (13) is interpreted in [38] as an instance of the
physical principle of holography. Noncommutative spaces arising at the bound-
ary of Shimura varieties have been further investigated by Paugam [41] from
the point of view of Hodge structures.
This noncommutative boundary stratum of modular curves representing de-
generations of lattices to pseudo-lattices has been proposed by Manin ([34]
[35]) as a geometric space underlying the explicit class field theory problem
for real quadratic fields. In fact, this is the first unsolved case of the Hilbert
12th problem. Manin developed in [34] a theory of real multiplication, where
noncommutative tori and pseudolattices should play for real quadratic fields a
role parallel to the one that lattices and elliptic curves play in the construction
of generators of the maximal abelian extensions of imaginary quadratic fields.
The picture that emerges from this “real multiplication program” is that the
cases of Q (Kronecker–Weber) and of both imaginary and real quadratic fields
should all have the same underlying geometry, related to different specializa-
tions of the GL2 system. The relation of the GL2 system and explicit class
field theory for imaginary quadratic fields is analyzed in [13].

11 The BC algebra and optical coherence

It is very natural to look for concrete physical realizations of the phase tran-
sition exhibited by the BC system. An attempt in this direction has been pro-
posed in [43], in the context of the physical phenomenon of quantum phase
locking in lasers.
This interpretation relates the additive generators e(r) of the BC algebra
(cf. Proposition 3.1) with the quantum phase states, which are a standard
tool in the theory of optical coherence (cf. e.g. [32]), but it leaves open the
interpretation of the generators µn. Since on a finite dimensional Hilbert space
isometries are automatically unitary, this rules out nontrivial representations
of the µn in a fixed finite dimensional space.
After recalling the basic framework of phase states and optical coherence, we
interpret the action of the µn as a “renormalization” procedure, relating the
quantum phase states at different scales.
There is a well known analogy (cf. [46] §21-3) between the quantum statisti-
cal mechanics of systems with phase transitions, such as the ferromagnet or
the Bose condensation of superconducting liquid Helium, and the physics of
lasers, with the transition to single mode radiation being the analog of “con-
densation”. The role of the inverse temperature β is played in laser physics
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by the “population inversion” parameter, with critical value at the inversion
threshold. The injected signal of the laser acts like the external field respon-
sible for the symmetry breaking mechanism. Given these identifications, one
in fact obtains similar forms in the two systems for both thermodynamic
potential and statistical distribution. The phase locking phenomenon is also
analogous in systems with phase transitions and lasers, with the modes in the
laser assuming same phase and amplitude above threshold being the analog of
Cooper pairs of electrons acquiring the same energy and phase below critical
temperature in superconductors.
In a laser cavity typically many longitudinal modes of the radiation are os-
cillating simultaneously. For a linewidth ∆ν around a frequency ν0 for the
active medium in the cavity of length L and frequency spacing δν = c/2L,
the number of oscillating modes is N = �∆ν/δν� and the field output of the
laser is

E(x, t) =
N/2∑

n=−N/2

An exp(−2πiνn(t − x/c) + 2πiθn), (1)

with all the beat frequencies between adjacent modes νn − νn−1 = δν. Due to
noise in the cavity all these modes are uncorrelated, with a random distribu-
tion of amplitudes An and phases θn.
A mode locking phenomenon induced by the excited lasing atoms is responsi-
ble for the fact that, above the threshold of population inversion, the phases
and amplitudes of the frequency modes become locked together. The resulting
field

E(x, t) = Ae2πiθ exp(−2πiν0(t − x/c))
(

sin(πδν(N + 1)(t − x/c))
sin(πδν(t − x/c))

)
, (2)

shows many locked modes behaving like a single longitudinal mode oscillating
inside the cavity (cf. Figure 3). This phenomenon accounts for the typical
narrowness of the laser linewidth and monocromaticity of laser radiation.
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Fig. 3. Output pulse train in lasers above threshold.
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Since the interaction of radiation and matter in lasers is essentially a quantum
mechanical phenomenon, the mode locking should be modeled by quantum
mechanical phase operators corresponding to the resonant interaction of many
different oscillators. In the quantum theory of radiation one usually describes
a single mode by the Hilbert space spanned by the occupation number states
|n〉, with creation and annihilation operators a∗ and a that raise and lower
the occupation numbers and satisfy the relation [a, a∗] = 1. The polar decom-
position a = S

√
N of the annihilation operator is used to define a quantum

mechanical phase operator, which is conjugate to the occupation number op-
erator N = a∗a. Similar phase operators are used in the modeling of Cooper
pairs. This approach to the definition of a quantum phase has the drawback
that the one sided shift S is not a unitary operator. This can also be seen in
the fact that the inverse Cayley transform of S, which gives the cotangent of
the phase, is a symmetric non self-adjoint operator.
The emission of lasers above threshold can be described in terms of coherent
state excitations,

|α〉 = exp(−|α|2)
∑

n

αn

(n!)1/2
|n〉,

which are eigenfunctions of the annihilation operators,

a |α〉 = α |α〉.
These are quantum mechanical analogs of classical electromagnetic waves as
in (1) (2). One can show (cf. e.g. [32] §7.4) that the field excitation in a
laser approaches a coherent state as the pumping increases to values above
the population inversion threshold, with the phase diffusion governed by the
equation of motion for quantum mechanical phase states.
The problem in defining a proper quantum phase operator, due to lack of
self-adjointness, has been overcome by the following approximation of the
basic quantum operators on the Fock space H. One selects a scale, given by a
positive integer N ∈ N and cuts down H to a finite dimensional subspace by
the phase state projector

PN =
∑
m

|θm,N 〉 〈θm,N |,

where the orthonormal vectors |θm,N 〉 in H are given by

|θm,N 〉 :=
1

(N + 1)1/2

N∑
n=0

exp
(

2πi
mn

N + 1

)
|n〉. (3)

These are eigenvectors for the phase operators, that affect discrete values given
by roots of unity, replacing a continuously varying phase.
This way, phase and occupation number behave like positions and momenta.
An occupation number state has randomly distributed phase and, conversely,
a phase state has a uniform distribution of occupation numbers.
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We now realize the ground states of the BC system as representations of the
algebra A in the Fock space H of the physical system described above. Given
an embedding ρ : Q

ab → C, which determines the choice of a ground state,
the generators e(r) and µn (cf. Proposition 3.1) act as

e(a/b) |n〉 = ρ(ζn
a/b) |n〉,

µk |n〉 = |kn〉.
In the physical system, the choice of the ground state is determined by the
primitive N + 1-st root of unity

ρ(ζN+1) = exp(2πi/(N + 1)).

One can then write (3) in the form

|θm,N 〉 = e

(
m

N + 1

)
· vN . (4)

where we write vN for the superposition of the first N + 1 occupation states

vN :=
1

(N + 1)1/2

N∑
n=0

|n〉.

Any choice of a primitive N + 1-st root of unity would correspond to another
ground state, and can be used to define analogous phase states. This con-
struction of phase states brings in a new hidden group of symmetry, which
is different from the standard rotation of the phase, and is the Galois group
Gal(Qab/Q). This raises the question of whether such symmetries are an arti-
fact of the approximation, or if they truly represent a property of the physical
system.
In the BC algebra, the operators µn act on the algebra generated by the e(r)
by endomorphisms given by

µn P (e(r1), . . . , e(rk))µ∗
n =

πn

nk

∑
ns=r

P (e(s1), . . . , e(sk)), (5)

for an arbitrary polynomial P in k-variables, with πn = µnµ∗
n and s =

(s1, . . . , sk), r = (r1, . . . , rk) in (Q/Z)k. In particular, this action has the
effect of averaging over different choices of the primitive roots.
The averaging on the right hand side of (5), involving arbitrary phase observ-
ables P (e(r1), . . . , e(rk)), has physical meaning as statistical average over the
choices of primitive roots. The left hand side implements this averaging as a
renormalization group action.
Passing to the limit N → ∞ for the phase states is a delicate process. It is
known in the theory of optical coherence (cf. e.g. [33] §10) that one can take
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such limit only after expectation values have been calculated. The analogy
between the laser and the ferromagnet suggests that this limiting procedure
should be treated as a case of statistical limit, in the sense of [57]. In fact,
when analyzing correlations near a phase transition, one needs a mechanism
that handles changes of scale. In statistical mechanics, such mechanism exists
in the form of a renormalization group, which expresses the fact that different
length or energy scales are locally coupled. This is taken care here by the
action of (5).
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Summary. Another family of generalized zeta functions built over the Riemann
zeros {ρ}, namely Z (s, x) =

∑
ρ
(x−ρ)−s, has its analytic properties and (countably

many) special values listed in explicit detail.
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This work is a partial expansion of our first paper [20] on zeta functions
built over the Riemann zeros {ρ}, i.e., the nontrivial zeros of the Riemann zeta
function ζ(s). While our oral presentation was more introductory, here we
will pursue a fully parallel treatment, begun in [20], for two such generalized
(i.e., parametric) zeta functions:
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Z(σ, v) def=
∞∑

k=1

(τk
2 + v)−σ (and Z(σ)def= Z(σ, 0)), (1)

Z (s, x) def=
∑

ρ

(x−ρ)−s ≡
∑

ρ

(ρ+x−1)−s (and Z (s)def= Z(s, 1)), (2)

where {ρ} = {1
2 ± iτk}k=1,2,... = {the Riemann zeros} (3)

(or, in a latest extension, the zeros of arithmetic zeta or L-functions [21]).
The two families (1) and (2) are truly inequivalent except for one function,

Z(σ, 0) ≡ Z(σ) ≡ (2 cos πσ)−1 Z (2σ, 1
2 ), (4)

already considered in [8, Sect. 4 ex. (A)], [4]. Other previous results appear
in [11, 15] for the functions Z(σ, 1

4 ), in [5, 18] for the family {Z } and earlier
[16, 12, 10] for the specific sums Z (n) ≡ ∑

ρ ρ−n (often denoted σn).
In [20], we mainly strived at exhausting explicit results for the family

(1), handling the family (2) in lesser detail. Here we will pursue a fully par-
allel explicit description for the family (2), but now based on a parametric
analytical-continuation formula, (1). At the same time we will switch from a
Hadamard to a zeta-regularized product formalism, definitely simpler for the
family (2). This zeta-regularization technique is adapted from spectral the-
ory and quantum mechanics, where it serves to define spectral (or functional)
determinants [19, 17]. However, our analysis remains wholly decoupled from
any actual spectral meaning whatsoever for the Riemann zeros.

We recapitulate the results of [20] in Sect. 1, but refer to that article for
further details. We basically keep the same notations, with (2) subsuming the
main few changes: the second family used in [20] was ξ(s, x) ≡ (2π)s Z (s, x),
and Z (n) =

∑
ρ ρ−n was formerly Zn; we also slightly renormalize the func-

tion called D, cf. (27) below. The other essential notations are [1, 7, 3, 6]:{
Bn

En

}
:
{

Bernoulli
Euler

}
numbers; Bn(·) : Bernoulli polynomials;

γ : Euler’s constant; γc
n−1 : “Stieltjes cumulants”, defined by: (5)

log [s ζ(1 + s)] ≡
∞∑

n=1

(−1)n−1

(n − 1)!
γc

n−1 sn (e.g., γc
0 = γ) ;

the γc
n−1 are cumulants [20] for the more classic Stieltjes constants γn−1 [1, 12];

see also ηn−1 ≡ (−1)nnγc
n−1 /(n − 1)! in [2] – notations are not standardized

(the so denoted constants and cumulants all truly have degree n, anyway);

Ξ(s) def= s(s − 1)π−s/2
Γ (s/2) ζ(s), (6)

which is an entire function, even under s ←→ (1 − s), normalized to
Ξ(0) = Ξ(1) = 1, and only keeping the nontrivial zeros of ζ(s);

β(s) def=
∞∑

n=0

(−1)n(2n + 1)−s : the Dirichlet β-function, (7)
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which is a particular L-series of period 4;

ζ(s, a) def=
∞∑

n=0

(n + a)−s : the Hurwitz zeta function, (8)

which has a single pole at s = 1, of polar part 1/(s−1), and the special values

ζ(−m, a) = −Bm+1(a)/(m+1) (m ∈ N), (e.g., ζ(0, a) = 1
2−a) (9)

FPs=1 ζ(s, a) = −Γ
′(a)/Γ (a) (FP def= finite part at a pole) (10)

ζ ′(0, a) = log
[
Γ (a)/(2π)1/2

]
; (11)

upon generalized zeta functions as in (1), (2), (11), ′ will always mean differ-
entiation with respect to the principal variable: the exponent, s or σ.

1 Summary of previous results

1.1 Zeta functions and zeta-regularized products

We first recall some needed results on zeta and infinite-product functions built
over certain abstract numerical sequences {xk}k=1,2,... (0 < x1 ≤ x2 ≤ · · ·,
xk ↑ +∞ as in [19]; or xk ∈ C

∗ with |xk| ↑ ∞, | arg xk| sufficiently bounded
as in [17, 14, 9]). Such a sequence is deemed admissible of order µ0 for some
µ0 ∈ (0,+∞) if, essentially, the series

Z(s) def=
∞∑

k=1

xk
−s converges in {Re s > µ0}, (1)

and this zeta function Z(s) (analytic for Re s > µ0) admits a meromorphic ex-
tension to the whole s-plane, with poles lying in a real sequence µ0 > µ1 > · · ·
(µn ↓ −∞). The smaller details are better fine-tuned to each context: thus,
the zeta functions Z in (1) could be treated earlier [20] using a very low order
µ0 < 1 but double poles, which are handled in [14, 9]; now, the functions Z
in (2) will require µ0 = 1 but only simple poles, as in [19, 17].

As a consequence of (1), the Weierstrass infinite product

∆(x) def=
∞∏

k=1

(
1 +

x

xk

)
exp

{ ∑
1≤m≤µ0

1
m

(
− x

xk

)m
}

(2)

converges ∀x ∈ C, to an entire function. In the context of the Riemann zeros,
the above meromorphic continuation requirements for Z(s) are more easily
enforced through a controlled large-x behavior of log ∆(x) [20]; here we impose

log ∆(x) ∼
∞∑

n=0

(ãµn
log x + aµn

)xµn (x → ∞, | arg x| < θ) (3)
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uniformly in x for some θ > 0, with ãµn
�= 0 only for the (finitely many)

µn ∈ N [19]: this will fit the family {Z }, which only features simple poles
(any µn /∈ N with ãµn

�= 0 would give a double pole).
At the same time, log ∆(x) has a specially simple Taylor series at x = 0 :

− log ∆(x) =
∑

m>µ0

Z(m)
m

(−x)m (converging for |x| < inf
k
|xk|) (4)

= O(|x|m0) for m0
def= the least integer > µ0.

The latter bound and (3) allow these Mellin representations for Z(s):

π

s sin πs
Z(s) =

∫ ∞

0

log ∆(y) y−s−1dy (µ0 < Re s < m0) (5)

≡ · · · ≡ (−1)m0 Γ (−s)
Γ (m0 − s)

∫ ∞

0

(log ∆)(m0)(y) ym0−s−1dy. (6)

[Proof: equations (5) and (6) are equivalent through integrations by parts;
now to verify (6), expand (log ∆)(m0)(y) = (−1)m0−1(m0−1)!

∑
k(y+xk)−m0

and integrate term by term.] Then, repeated integrations by parts, as in [20,
Sect. 2.2 and App. A] but pushed further, likewise imply that Z(s) is mero-
morphic in C, with poles lying in the sequence {µn} and polar parts

Z(µn + ε) = µn

[
π−1 sin πµn aµn

+ cos πµn ãµn

]
ε−1 + O(1)ε→0 , (7)

by specializing formula (23) in [20]. Thus for Z(s), all the poles are simple,
and s = 0 is a regular point (as well as all points s ∈ −N).

All previous results transfer to shifted admissible sequences {x+xk} up to
reasonable limitations on the shift parameter x (e.g., (x + xk) /∈ R

− ∀k), and
hence to the generalized zeta function Z(s, x) def=

∑
k(x + xk)−s. Then, the

zeta-regularized product D(x) (formally “
∏

k (x + xk) ”) can be defined as

D(x) def= exp [−Z ′(0, x)] (recalling that ′ ≡ ∂/∂s, as in (11)). (8)

It can also be uniquely characterized in several concrete ways [19]. On the one
hand, it relates to ∆(x) through a definite multiplicative factor, trivial in the
sense that D(x) stays entire and keeps the same zeros (and order) as ∆(x):

D(x) ≡ exp
[
−Z ′(0) −

∑
1≤m≤µ0

Zm

m
(−x)m

]
∆(x), (9)

with Z1 = FPs=1Z(s) (finite part) (10)
and Zm = Z(m) if Z(s) is regular at m,

otherwise Zm (m ≥ 2) is more contrived [19, eq. (4.12)] but unneeded when
µ0 = 1; in which case (4), (9) and (10) finally simplify to
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− log D(x) ≡ Z ′(0)−[FPs=1Z(s)]x − log ∆(x) (11)

= Z ′(0)−[FPs=1Z(s)]x +
∞∑

m=2

Z(m)
m

(−x)m (|x|< inf
k
|xk|). (12)

On the other hand, log D(x) has a characteristic large-x asymptotic behavior
as well: a generalized Stirling expansion, of a very specific or “canonical” form,

− log D(x) ∼
∞∑

n=0

âµn
{xµn} (x → +∞), (13)

where {xµn} = xµn for µn /∈ N

{xµn} = xµn(log x − Cµn
) for µn ∈ N, C0 = 0, C1 = 1

(higher Cm [19, eq. (5.1)] are again unneeded when µ0 = 1); conversely, the
constrained form of expansion (3) for log ∆(x) is implied by (9) and (13).

A basic feature of the zeta-regularized product prescription is, by con-
struction, its full invariance under pure translations {xk} �→ {xk + y} (but
under no other change of variables in general). As an application, we now
express Z(s, x) as a Mellin transform over log D. First, for integer m > µ0,
the formulae (4), (9), (10) shifted by y yield

Z(m, y) =
∑

k

(y + xk)−m ≡ − 1
(m − 1)!

(
− d

dy

)m

log D(y); (14)

whereas for m = 1, they yield the finite part value

FPs=1Z(s, y) = (log D)′(y). (15)

Then, since (log D)(m) ≡ (log ∆)(m) for m > µ0 by (9), it follows that (14)
can be substituted into (6) shifted by x, giving

Z(s, x) =
(m0 − 1)!

Γ (s)Γ (m0−s)

∫ ∞

0

Z(m0, x + y) ym0−s−1dy (µ0 < Re s < m0),

(16)
Remarks: – (16) actually defines an extension of (14) to m ≡ s no longer an
integer; – the rightmost pole of Z(s, x) remains s = µ0 for any x.

The above results will be invoked later for µ0 = 1, hence m0 = 2; except
that we will actually need a formula analogous to (16) but for some Re s < 1:
this just requires a couple of integrations by parts upon (16), as

Z(s, x) =
sin πs

π(1 − s)

∫ ∞

0

Z(2, x + y) y1−sdy (1 < Re s < 2) (17)

= − sin πs

π(1 − s)2

∫ ∞

0

d
dy

[yZ(2, x + y)]y1−sdy (0 < Re s < 2) (18)

=
sin πs

π(1 − s)

∫ ∞

0

Z̃x(2, y) y1−sdy (0 < Re s < 1), (19)

with y Z̃x(2, y) def= yZ(2, x + y) + ã1 (vanishing at y = +∞). (20)
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1.2 The family {Z(σ, v)}
We make a digression to recall earlier formulae for that family [20]. The main
primary result was the integral representation (72) therein for Z(σ) ≡ Z(σ, 0),

Z(σ) =
−Z(2σ) + 22σe∓2πiσ

2 cos πσ
+

sin πσ

π

∫ +e±iε∞

0

t−2σ ζ ′

ζ

(
1
2 + t

)
dt, (21)

Z(2σ) def= Z(2σ, 1
2 ), where (22)

Z(s, x) def=
∞∑

k=1

(x + 2k)−s ≡ 2−sζ(s, 1 + x/2) (23)

(admitting real variants [20, eqs. (73)–(74)]); Z(2σ) is the “shadow” zeta func-
tion of Z(σ), i.e., the precise counterpart of Z(σ) for the trivial zeros of ζ(s);
the more general form Z(s, x) will enter in Sect. 2, and (23) writes it as a
variant of the Hurwitz zeta function (8).

As shown in [20], (21) supplies an explicit analytical continuation of Z(σ)
to a meromorphic function in the whole complex σ-plane, plus exhaustive
explicit results and special values for Z(σ). Their extension to the full family
{Z(σ, v)} then follows using the expansion formula (91) in [20], i.e.,

Z(σ, v) =
∞∑

�=0

Γ (1 − σ)
�!Γ (1 − σ − �) Z(σ + �) v� (|v| < τ1

2). (24)

The following explicit formulae for {Z(σ, v)} resulted [20].
a) the full polar parts (of order 2):

Z(1
2 − n + ε, v) =

1
8π

Γ (n + 1
2 )

n!Γ (1
2 )

vn ε−2 + Rn(v) ε−1 + O(1)ε→0 for n ∈ N,

with Rn(v) = −Γ (n + 1/2)
n!Γ (1/2)

[ 1
4π

n∑
j=1

1
2j − 1

+
log 2π

4π

]
vn (25)

+
n∑

j=1

Γ (n + 1/2)
(n − j)!Γ (j + 1/2)

[ (−1)j

8πj
(1 − 21−2j)B2j

]
vn−j ;

b) special values at integer σ, compiled in Table 1; these evaluations can still
be pushed further ([20, Table 1] for v = 0 and 1

4 ; [21, Table 2] for general v).
Finally, as an extra result (useful for comparison with (4) below), we now

recast the Hadamard product for the Riemann zeta function,

ζ(x) =
exp (log 2π − 1 − γ /2)x

2(x − 1)Γ (1 + x/2)

∏
ρ

(1 − x/ρ)ex/ρ, (26)

in terms of zeta-regularized factors related to Z(σ, v).
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σ Z(σ, v) =
∞∑

k=1

(τk
2 + v)−σ

−m ≤ 0
m∑

j=0

(
m
j

)
(−1)j 2−2j(1 − 1

8
E2j) vm−j

0 7/8

derivative
at 0 Z ′(0, v) = 1

4
log 8π − log Ξ( 1

2
± v1/2)

+m ≥ 1
(−1)m−1

(m − 1)!

dm

dvm
log Ξ( 1

2
± v1/2)

Table 1. Special values of Z(σ, v) (upper half: algebraic, lower half: transcendental
[20, Sect. 4]). Notations: see (5)–(6); m is an integer.

First, the zeta-regularized product underlying the Gamma factor for the
trivial zeros, Γ (1+x/2)−1, i.e. the spectral determinant D(x) for the sequence
{2k}k=1,2,..., can be specified using (8), (23), (9) and (11), as

D(x) = exp [−Z′(0, x)] = 2−x/2π1/2/Γ (1 + x/2) (27)

(warning: the determinant called D in [20] was normalized differently). Check:
log D(x) has a large-x asymptotic behavior of the canonical form (13) for the
order µ0 = 1 (this also being the order of the entire function Γ (1 + x/2)−1),

log D(x) ∼ −1
2x(log x − 1) − 1

2 log x
[
+

∞∑
1

cnx−n
]
. (28)

The other factor in (26) essentially contains the function Ξ(x) of (6): it
can be related to the zeta-regularized product D(v) for the sequence {τk

2},
which is admissible of order µ0 = 1

2 [20], through (cf. Table 1)

D(v) = exp [−Z ′(0, v)] = (8π)−1/4Ξ( 1
2 + v1/2). (29)

The factorization formula (26) thus admits a zeta-regularized form as

ζ( 1
2 + t) = (2π)t/2 D(1

2 + t)D(t2)
t − 1

2

. (30)

This is quite analogous to an earlier decomposition of hyperbolic Selberg zeta
functions over spectral determinants [19, eq. (7.18)]. In (30), the denomina-
tor also has the zeta-regularized normalization for an elementary factor; as
for the prefactor (2π)t/2, it corrects for the discrepancy between the zeta-
regularizations with respect to t (as in D) and t2 (in D).
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2 The family {Z (s, x)}: analytical continuation formula

Apart from the special values Z (n), n ∈ N
∗ [16, 12, 10], functions equivalent

to {Z (s, x)} of (2) were considered first (to our knowledge) by Deninger for
Re x > 1 [5], then proved by Schröter and Soulé [18] to be meromorphic in the
whole s-plane over the larger domain x ∈ Ω

def= {x ∈ C | (x + ρ) /∈ R
− (∀ρ)}.

2.1 The primary result

For the family (2), the “shadow” zeta function over the trivial zeros (definable
just as before, but now with x as second argument) is just the function Z(s, x)
of (23). It governs an integral representation for Z (s, x) similar to (21), but
simpler and now available for all x ∈ Ω \ (−∞,+1]:

Z (s, x) = −Z(s, x) +
1

(x − 1)s
+

sin πs

π

∫ ∞

0

ζ ′

ζ
(x + y) y−sdy (Re s < 1);

(1)
here, (x− 1)s is given its standard determination in C \ (−∞,+1]; this cut is
not a singularity for Z (s, x), indeed the discontinuities across it of the three
right-hand side terms in (1) can be seen to precisely cancel out when added.

Alternative real forms can be built; a very simple one for real x > −2 is

Z (s, x) = −Z(s, x)+
sin πs

π

∫ ∞

0

[ζ ′

ζ
(x+y)+

1
x + y − 1

]
y−sdy (0 < Re s < 1);

(2)
this form only converges in the stated s-plane strip, but contrary to (1), it
enjoys a well defined x → +1 limit:

Z (s) (≡ Z (s, 1)) = 1−(1−2−s) ζ(s)+
sin πs

π

∫ ∞

0

[ζ ′

ζ
(1+y)+

1
y

]
y−sdy. (3)

Equation (1) (plus (2) for x real) is the new basic result here, extending an
earlier formula by Deninger valid only for Re x > 1 [5, p. 149]. It is a genuine
analog for Z (s, x) to the Joncquière–Lerch functional relation for ζ(s, a) [7,
Sect. 1.11 (16)], itself generalizing the functional equation of ζ(s). At x = 1

2 ,
(1) also restores our previous formula (21) for Z(σ) by virtue of the relation
(4). Every explicit consequence that (21) implied for Z(σ) alone will extend
here to the whole family Z (s, x) solely by (1).

2.2 Derivation of the main formula (1)

As a preliminary step, we transform the Hadamard product (26) for ζ(s) into
a zeta-regularized factorization even simpler than (30).

We now just factor out the previous “shadow” determinant D(x), as

ζ(x) ≡ D(x)D(x)
x − 1

, (4)
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D(x) = (x − 1) 2x/2π−1/2
Γ (1 + x/2)ζ(x) ≡ 1

2π−1/2(2π)x/2Ξ(x). (5)

We can then anticipate that this factor D(x) must be a zeta-regularized prod-
uct in x over the Riemann zeros {ρ}. Indeed, D(x) has precisely the {ρ} as
zeros, and log D(x) has a large-x expansion of the canonical form (13) in x be-
cause all other factors present in (4) have that property. We will accordingly
confirm that log D(x) ≡ −Z ′(0, x) below: see (5), and earlier in a variant
form, [5, thm 3.3] (for Re x > 1) and [18] (for general x).

Now to prove (1), we specialize the results of Sect. 1.1 to the sequences
{−ρ} and {2k}: both of these are admissible of order µ0 = 1 [5, 18, 9], mainly
because log D(x), and hence log D(x), comply with (3) (cf. (28), then (4)).

Specifically here, the factorization (4), together with (14) at m = 2 (first
with Z = Z , then with Z = Z) and with (20), entail

Z̃x(2, y) ≡ −̃Zx(2, y) + (x + y − 1)−2 − [ζ ′/ζ]′(x + y) (6)

with Z̃x(2, y) ≡ Z (2, x + y) +
1
2y

, ˜Zx(2, y) ≡ Z(2, x + y) − 1
2y

; (7)

the last line comes from generalized Stirling expansions for D and D, cf.
(28). Upon the specific decomposition (6), it is allowed to apply the Mellin
transformation (19) term by term on both sides, at fixed x ∈ Ω \ (−∞,+1].
Then, the left-hand side yields Z (s, x); as for the right-hand side, the first
term yields −Z(s, x) by exactly the same argument, the second term trivially
evaluates to (x − 1)−s, and the last term can be subjected to an ultimate
integration by parts now valid in the whole half-plane {Re s < 1}, using

Jζ(s, x) def=
1

1 − s

∫ ∞

0

−
[ζ ′

ζ

]′
(x + y) y1−sdy =

∫ ∞

0

ζ ′

ζ
(x + y) y−sdy; (8)

all that yields the desired formula (1). If the last two terms in (6) are kept
together instead, (2) can be obtained likewise. The structure of the represen-
tation (1) thus clearly stems from the simple factorization formula (4).

3 Explicit consequences for the family {Z (s, x)}
3.1 Analytical results (in the s-variable)

First, (1) gives an explicit one-step analytical continuation of Z (s, x) to the
half-plane {Re s < 1}. It also implies its analytical continuation in s to all of
C \ {1}, since the Mellin transform Jζ(s, x) of (8) is seen (through repeated
integrations by parts, using [log ζ](n)(x) = o(x−N )x→+∞ ∀n, N) to be mero-
morphic in the whole s-plane, and to have only simple poles at s = 1, 2, . . .
with residues

Ress=nJζ(s, x) = −[log |ζ|](n)(x)/(n − 1)! (x �= 1), n = 1, 2, . . . (1)
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(the singularity at x = 1 is harmless: see after (9), and left part of Table 3).
At fixed x, (1) and (1) imply that Z (s, x) acquires its polar structure solely
from −Z(s, x): it thus has the only pole s = 1, of polar part − 1

2/(s− 1) [18].

Still for fixed x, the mere substitution into (1) of the classic Dirichlet series

ζ ′

ζ
(z) = −

∑
n≥2

Λ(n)
nz

(Λ(n) def= log p if n = pr for some prime p, else 0) (2)

for z = x + y, followed by term-by-term y-integration, yields

Z (s, x) + Z(s, x) − (x − 1)−s ∼ − 1
Γ (s)

∑
n≥2

Λ(n)
nx

(log n)s−1. (3)

The summation in the right-hand side of (3) converges iff the Dirichlet series
(2) converges uniformly for y > 0: i.e., for Re x > 1, where (3) becomes an
identity – written in [5, p. 148], but it is just a particular case of Weil’s explicit
formula, or equivalently of equation (1.1) in [8], again provided Re x > 1.
Here, by contrast, (3) is meant for general fixed x, albeit only as an asymptotic
expansion (for s → −∞) if Re x ≤ 1: in this range (e.g., at the most interesting
points x = 1 and 1

2 ) Weil’s explicit formula breaks down, so life is harder.

3.2 Special values for general x

Finally, (1) outputs all the special values of Z (s, x) just by inspection:

Z (−n, x) = −2nζ(−n, 1 + x/2) + (x − 1)n (n ∈ N), (4)

Z ′(0, x) = − 1
2 (log 2)x + 1

2 log π − log Γ (1 + x/2) − log[(x − 1)ζ(x)]
≡ − log D(x), (5)

FPs=1 Z (s, x) =
1
2

(
log 2 + Γ ′

Γ
(1 + x/2)

)
+

[ 1
x − 1

+
ζ ′

ζ
(x)

]
(6)

≡ (log D)′(x), (7)

Z (+n, x) = −2−nζ(n, 1 + x/2)

+
[
(x−1)−n− (−1)n

(n−1)!
[log |ζ|](n)(x)

]
(n = 2, 3, . . .) (8)

≡ (−1)n−1

(n − 1)!
(log D)(n)(x) (n = 2, 3, . . .) (9)

using (9)–(11), (23), (5), (1); the quantities in square brackets are apparently
singular for x = +1 but globally extend there by continuity, using the expan-
sion (5) with the Stieltjes cumulants.

In particular, (5) confirms that the factor D(x) in (4) is the zeta-
regularized product in x over the sequence of Riemann zeros {ρ} – the ar-
gument is not circular, because our derivation of the basic formula (1) does
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not rely on that fact but purely on the factorization itself. Thereupon, (7),
(9) simply repeat the general formulae (15), (14) respectively.

The point s = 1 (= µ0) deserves extra attention. Upon logarithmic differ-
entiation, one Hadamard product formula for Ξ(x) [6, Sects. 1.10, 2.8] directly
yields

Ξ(x) =
∏
ρ

(1 − x/ρ) =⇒ Z (1, x) def=
∑

ρ

(x − ρ)−1 ≡ (log Ξ)′(x), (10)

where both product and sum (now only semiconvergent) are performed with
zeros grouped in symmetrical pairs, as usual. Thus, in spite of the pole of

Z (s, x) at s = 1, (10) yields a finite value for Z (1, x), which however differs
from the finite part (FP) of Z (s, x) at s = 1:

Z (1, x) − FPs=1 Z (s, x) ≡ −1
2 log 2π (11)

according to (5), (7). This fixed discrepancy can also be traced to the nonzero
residue of the double pole in the former zeta function Z(σ), see (20) below.

The resulting special values for {Z (s, x)} are fully compiled in Table 2,
in their form closest to their analogs for the family {Z(σ, v)} in Table 1.

s Z (s, x) =
∑
ρ

(x − ρ)−s

−n ≤ 0 2nBn+1(1 + x
2
) / (n + 1) + (x − 1)n

0 1
2
(x + 3)

derivative
at 0 Z

′(0, x) = − 1
2
(log 2π) x + 1

2
(log 4π) − log Ξ(x)

finite part
at +1 FPs=1 Z (s, x) = 1

2
log 2π + (log Ξ)′(x)

+n ≥ 1
(−1)n−1

(n − 1)!
(log Ξ)(n)(x)

Table 2. Special values of Z (s, x) (upper part: algebraic, lower part: transcendental
[20, Sect. 4]); see also (4)–(62′). Notations: see (6); Bn+1(·) : Bernoulli polynomial;
n is an integer.

Finally, we state several sets of linear identities imposed upon the values
Z (n, x) purely by the symmetry (ρ ←→ 1 − ρ) in (2). First:

Z (n, x) = (−1)n Z (n, 1 − x) for n = 1, 2, . . . . (12)

Then, these “sum rules” previously known for x = 1 only [10, eq. (18)]:

Z (k, x) = −1
2

∞∑
�=k+1

(
�−1
k−1

)
(2x−1)�−kZ (�, x) for each odd k ≥ 1 (13)
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which actually admit this more convergent variant (unreported elsewhere),

∞∑
�=k

(
�−1
k−1

)
(x− 1

2 )�−kZ (�, x) = 0 for each odd k ≥ 1. (62′)

The sum rules (13) merely result from the Taylor expansion around x= 1
2 of

(x−1 + ρ)−k = (−1)k(x−ρ)−k
[
1− (2x−1)/(x−ρ)

]−k followed by summation
over the zeros ρ grouped in pairs. But the zeros’ symmetry also readily implies

∑
ρ

( 1
2 − ρ)−k (≡ Z (k, 1

2 )) ≡ 0 for each odd k ≥ 1, (14)

and now the expansion of this as 0 =
∑

ρ (x−ρ)−k
[
1− (x−1

2 )/(x−ρ)
]−k yields

(62′). Either set of sum rules recursively allows to eliminate any finite subset
of odd-k values, in terms of all higher-� values. (In the infinite recursion limit,
every odd-k value would end up eliminated in terms of the higher even-� values
only, formally as Z (2m+1, x) =

∑∞
j=m+1 Am,j Z (2j, x) (x− 1

2 )2j−(2m+1), but
these have to be divergent series (exercise !); only for x = 1

2 do all odd-k values
eliminate truly but trivially, according to (14).)

Also linked to the functional equation (Ξ(s) ≡ Ξ(1 − s)) like (12)–(14),
finite triangular linear relations connect the values Z (n, x) to the other special
values Z(m, v), m = 1, 2, . . . at v ≡ (x − 1

2 )2, as derived in [21, Sect. 3.3]:

Z(m, v) =

⎧⎪⎪⎨
⎪⎪⎩

m−1∑
�=0

(
m+�−1
m − 1

)
(2x−1)−m−�Z (m−�, x) (v �= 0)

1
2 (−1)m Z (2m, 1

2 ) (v = 0)

⇐⇒ Z (n, x)
n

=
∑

0≤�≤n/2

(−1)�

(
n−�

�

)
(2x−1)n−2� Z(n−�, v)

n − �
. (15)

Remark: the derivation of (13) reminds of the v-expansion (24) which
yielded the general-v properties of Z(σ, v); otherwise, the general-x description
of Z (s, x) is better drawn from the continuation formula (1) alone.

3.3 Special values for x = 1 and 1
2

For half-integer x, the values ζ(±m, 1 + x/2) which arose in (4) and (8) can
be made slightly more explicit, and even more so for integer x. The most
interesting cases are x = 1 and 1

2 : then, (23) implies

Z(s, 1) ≡ (1−2−s) ζ(s)−1, Z(s, 1
2 ) ≡ 1

2

[
(2s−1) ζ(s)+2sβ(s)

]−2s, (16)

and the resulting special values of Z (s, 1) ≡ Z (s) and Z (s, 1
2 ) form Ta-

ble 3. They display many relations with the special values of Z(σ, 1
4 ) and

Z(σ, 0) ≡ Z(σ) respectively [20, Table 1], as discussed next.
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s Z (s) ≡
∑
ρ

ρ−s [x = 1] Z (s, 1
2
) ≡

∑
ρ

(ρ − 1
2
)−s [x = 1

2
]

−n<0 1 − (2n−1)
Bn+1
n+1

{
2−n+1(1 − 1

8
En) n even

− 1
2
(1−2−n)

Bn+1
n+1

n odd

0 2 7/4

derivative
at 0 Z ′(0) = 1

2
log 2 Z ′(0, 1

2
) = log

[
211/4π1/2 Γ ( 1

4
)−1|ζ( 1

2
)|−1

]
finite part

at +1 FPs=1 Z (s) = 1 − 1
2
(log 2−γ) FPs=1 Z (s, 1

2
) = 1

2
log 2π

+1 − 1
2

log 4π + 1 + 1
2

γ 0

+n>1

⎧⎨
⎩

1−(1−2−n) ζ(n)+ n
(n−1)!

γc
n−1

≡
1−(−1)n2−nζ(n)− (log |ζ|)(n)(0)

(n−1)!

⎫⎬
⎭

⎧⎪⎨
⎪⎩
− 1

2

[
(2n−1) ζ(n) + 2nβ(n)

]
+2n+1− 1

(n−1)!
(log |ζ|)(n)( 1

2
)

}
n even

0 n odd

Table 3. Special values of the functions Z (s, x) for x = 1 (see also (62′), (15), (22)),
and for x = 1

2
(see also (14), (17)–(21)). Notations: see (5), (7); n is an integer. In

the bottom line, when n is even, ζ(n) ≡ (2π)n|Bn|/(2 n!) while β(n) remains elusive.

In the case x = 1
2 (right-hand column), there is a 1–1 correspondence

between the latter explicit results and those for Z(σ) (Sect. 1.2, and [20]),
through the relation (4):

Z (2m, 1
2 ) = 2(−1)m Z(m) for m ∈ Z (17)

Z (1+2m, 1
2 ) = (−1)m+12π Resσ= 1

2+m Z(σ) for m ∈ Z
∗ (18)

Ress=1 Z (s, 1
2 ) = −4π lim

ε→0
[ε2Z( 1

2 + ε)] (= − 1
2 ) (19)

FPs=1 Z (s, 1
2 ) = −2π Resσ= 1

2
Z(σ) (= 1

2 log 2π) (20)

Z ′(0, 1
2 ) = Z ′(0). (21)

For m = +1,+2, . . ., (18) restores (14) or Z (1 + 2m, 1
2 ) ≡ 0, just missing the

first case Z (1, 1
2 ) = 0. The latter and (20) in turn imply, upon setting x = 1

2
in the formula (11), that the constant discrepancy [Z (1, x)− FPs=1 Z (s, x)]
relates to the nonzero residue in the double pole of Z(σ) at σ = 1

2 . The
actual value (−(4π)−1 log 2π) of this residue [20], used in (20), follows from
(25) taken at n = 0, v = 0.

In the case x = 1 (left-hand column), and with n = 1, 2, . . . henceforth,
the special values Z (n) were already known: for n = 1, see [3, ch. 12], [6,
Sec. 3.8]; for n > 1, we tabulate two equivalent expressions [16, 12, 20] and
we refer to [12, Table 5] for numerical values. Furthermore, the Z (n) satisfy
three sets of linear identities:
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- the (infinite) sum rules (13) or better, (62′), specialized to x = 1 (remark:
[10, eq. (18)] states the x = 1 sum rule (13) for even indices k as well, but
these reduce to finite linear combinations of higher odd-k sum rules only);
- the (finite, triangular) relations (15) specialized to x = 1, v = 1

4 , which then
connect the Z (n) to the other special values Z(m, 1

4 ) [15, 20];

- a similar connection to the sequence λn
def=

∑
ρ [1− (1− 1/ρ)n] used by Li’s

criterion for the Riemann Hypothesis (i.e., λn > 0 ∀n [13]) [10, eq. (27)] [2,
thm 2]:

λn =
n∑

j=1

(−1)j+1

(
n

j

)
Z (j) ⇐⇒ Z (n) =

n∑
j=1

(−1)j+1

(
n

j

)
λj . (22)

(Note: the λn of [13], used here, are n times the λn of [10].)
Aside from those Z (n), n = 1, 2, . . . and Z ′(0, x) [5, eq. (3.3.1)] [18], the

values in Table 3 seem new to us. Remark: the fully explicit Z ′(0) yields the
zeta-regularized product of all the Riemann zeros: “

∏
ρ

ρ ” = e−Z
′(0) = 2−1/2.

3.4 Concluding remark

Just as stated for the family (1) [20, Sect. 5.5], all of the foregoing analy-
sis straightforwardly extends to zeros of other zeta and L-functions having
functional equations similar enough to that of ζ(s) [21].
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Summary. We describe connections between the de Branges theory of Hilbert
spaces of entire functions and the Riemann hypothesis for Dirichlet L-functions.
Assuming the Riemann hypothesis holds for a given L-function, there exists an
associated de Branges space with interesting properties, and conversely. This de
Branges space comes with an associated self-adjoint operator having as eigenvalues
the imaginary parts of the L-function zeros on the critical line, and this operator
has an interpretation as a “Hilbert-Polya” generalized differential operator.
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1 Introduction

The object of this paper is to formulate a connection between Hilbert spaces of
entire functions and the Riemann hypothesis for various L-functions. We note
that Louis de Branges has long advocated the applicability of his theory of
Hilbert spaces of entire functions to the Riemann hypothesis. He has proposed
several approaches to the problem, including [11], [12]. The approach taken
here differs from these, as indicated below.

We associate to the Riemann zeta function the entire function

Eχ0(z) := ξ(
1
2
− iz) + ξ′(

1
2
− iz)

in which ξ(s) = 1
2s(s − 1)π−s/2Γ ( s

2 )ζ(s) is the Riemann ξ-function, and ξ′

denotes its derivative with respect to the s-variable. More generally, to each
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Dirichlet L-function with a primitive character χ we associate the entire func-
tion

Eχ(z) := ξχ(
1
2
− iz) + ξ

′
χ(

1
2
− iz),

in which ξχ(s) denotes the Dirichlet L-function completed with its archimedean
factors, multiplied by a certain constant of modulus one which makes ξ(s) real
on the critical line �(s) = 1

2 . Our main observation is that for each χ, Eχ(z)
is the structure function of a de Branges space H(Eχ(z)) if and only if the
Riemann hypothesis holds for L(s, χ). Furthermore it gives a strict de Branges
space (defined below) if and only if the Riemann hypothesis holds for L(s, χ)
and all its non-trivial zeros are simple zeros. Thus, assuming the Riemann hy-
pothesis holds, these associated de Branges spaces exist, and we then explore
what de Branges’s theory implies about such spaces.

We use the fact that the de Branges theory associates to each de Branges
space an integral transform which we term here the de Branges transform.
For the spaces above this transform produces a “Hilbert-Polya” (generalized)
differential operator together with self-adjoint boundary conditions that give
an eigenvalue interpretation of the zeros of these L-functions. The Riemann
hypothesis is interpretable as a positivity property of the coefficient functions
of this “Hilbert-Polya” operator. This allows the possibility of approaching
the Riemann hypothesis by finding a direct construction of this operator.

We now remark on de Branges’s approaches to the Riemann hypothe-
ses taken in [11], [12]. There he formulates theorems that state that any de
Branges space H(E) that satisfies certain hypotheses on the Hilbert space
scalar product necessarily has a structure function E(z) that has all its zeros
on the horizontal line �(z) = − 1

2 . His hope was that these results might ap-
ply to the de Branges space H(E) with structure function E(z) = ξ(1 − iz)
(more generally E(z) = ξχ(1 − iz) for certain Dirichlet L-functions), where
the conclusions of his theorems would yield the Riemann hypothesis. These de
Branges spaces exist unconditionally. However Conrey and Li [13] have shown
that the de Branges spaces with E(z) = ξ(1 − iz) and E(z) = ξχ−4(1 − iz)
fail to satisfy the hypotheses of these general theorems.

This paper presents one theorem and then indicates consequences of it. An
expanded version of this paper, with additional results, is in preparation [20].
In particular the formulation given here extends to automorphic L-functions,
i.e. principal L-functions for GLn. The research in this paper was done while
the author was employed at AT&T Labs-Research, whom he thanks for sup-
port.

2 Hilbert Spaces of Entire Functions

We give a brief review of the de Branges theory of Hilbert spaces of entire
functions. This review formulates some of de Branges’s results in [10] into
an operator-theoretic language, using the terminology of canonical differential
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systems as in Remling [22] or Sakhnovich [23], rather than in terms of integral
equations as in de Branges’s formulation. In places it makes some simplifying
assumptions, and for technically precise statements of the results, see [10] as
indicated. The complex variable used is z = x+ iy and x, y always denote real
variables.

A structure function or a de Branges function E(z) is an entire function
having the property that

|E(z)| > |E(z̄)| when �(z) > 0. (1)

This property implies that E(z) has no zeros in the upper half plane. We say
it is a strict de Branges function if E(z) has no zeros on the real axis. This
class of functions has a long history, see Chapter VII of Levin [21], who uses
the term Hermite-Biehler functions, and M. Krein [17, Theorems 9 and 11].
The de Branges theory makes use of a decomposition of the structure function
E(z) into entire functions that are pure real and pure imaginary on the real
axis, namely

E(z) = A(z) − iB(z),

given by

A(z) =
1
2

(
E(z) + E(z̄)

)
,

B(z) =
1
2i

(
E(z) − E(z̄)

)
.

A crucial observation of de Branges is that the condition (1) implies: For a de
Branges function E(z) = A(z)−iB(z), the functions A(z) and B(z) have only
real zeros, and these zeros interlace. If E(z) is a strict de Branges function,
then all the zeros are simple zeros (de Branges [7, Lemma 5]).

One associates to any de Branges function E(z) a de Branges Hilbert space
H(E) of entire functions, as follows. The Hilbert space scalar product is

〈f, g〉E =
∫ ∞

−∞

f(x)g(x)
|E(x)|2 dx. (2)

(conjugate-linear in the second factor). The entire functions f(z) that belong
to the space are those which have a finite norm ||f ||E and whose growth with
respect to E(z) is controlled in the upper half-plane C

+ := {z : �(z) > 0}
and in the lower half-plane. The growth conditions are that f(z)

E(z) and f(z̄)
E(z)

be of bounded type and nonpositive mean type in C
+. A function h(z) is

of bounded type if it can be written as a quotient of two bounded analytic
functions in C

+ and it is of nonpositive mean type if it grows no faster than
eεy for each ε > 0 as y → ∞ on the positive imaginary axis {iy : y > 0}.
One can show there always exist such functions, so the space H(E) is always
nontrivial. There are examples where it is a finite-dimensional Hilbert space,
but in the cases we will consider here it will always be infinite-dimensional.
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A de Branges space H(E) is a reproducing kernel Hilbert space, with a
kernel function KE(w, z) having the property that for each f(z) ∈ H(E),
there holds

f(w) = 〈f(z),K(w, z)〉E for all w ∈ C.

That is, evaluation of a function in H(E) at the point w is a continuous linear
functional on H(E) and is therefore represented by a scalar product with
some function gw(z) ∈ H(E) and we have K(w, z) := gw(z). (Only values of z
on the real axis are used in computing the scalar product.) The reproducing
kernel is

K(w, z) =
A(w)B(z) − A(z)B(w)

π(z − w̄)
.

If we consider the de Branges space to be determined by its reproducing
kernel, then there is some freedom in the choice of de Branges functions E(z).
For k ∈ R

+ the function Ek(z) := kA(z)− i
kB(z) gives the same reproducing

kernel, for λ ∈ R so does Eλ(z) := [A(z)+λB(z)]− iB(z), and for 0 ≤ θ < 2π
so does Eθ(z) = eiθE(z) := Aθ(z) − iBθ(z). This gives an SL(2, R)-action
on structure functions that preserve the reproducing kernel. In the case of
strict de Branges functions, we can remove this ambiguity by requiring that
E(0) = 1, and E′(0) ∈ iR, i.e. A(0) = 1, A′(0) = 0, and B(0) = 0. It
proves convenient to only partially remove this ambiguity and call a structure
function normalized if E(0) = 1, with no condition imposed on A′(0).

There is an additional degree of freedom in that one can remove zeros on
the real axis from the structure function without changing the de Branges
space in an essential way. Indeed if E(z) has a zero on the real axis, at z = x0,
say, then the form of the Hilbert space norm in (2) shows that every function
in H(E(z) must have a zero at the same location, so we can divide all functions
in the space by z−x0 and obtain a new Hilbert space of entire functions having
structure function H( E(z)

z−x0
), preserving the Hilbert space inner product. The

reproducing kernel changes, with the new reproducing kernel obtained from
the old by dividing by (z−x0)(w̄−x0). In this way we can in principle reduce
to the case of a strict de Branges space, one where the structure function E(z)
is a strict de Branges function,

There is an abstract theory of de Branges spaces. An (abstract) de Branges
space is a nonzero Hilbert space H whose elements are entire functions, such
that H(E) satisfies the axioms:

(H1) Whenever f(z) is in the space and has a non-real zero z0 then g(z) :=
f(z) z−z̄0

z−z0
is in the space and has the same norm as f(z).

(H2) For every nonreal number w ∈ C, the linear functional on H defined
by f(z) �→ f(w) is continuous.

(H3) If f(z) ∈ H then f∗(z) := f(z̄) belongs to H and has the same norm
as f(z).

Two abstract de Branges spaces are isomorphic if there is an isometry
between them that preserves properties (H1)–(H3). Then any (abstract) de
Branges space is isomorphic to some de Branges space H(E) ([10, Theorem
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23]). Each such space is isomorphic to a de Branges space H(E(z)) for which
E(z) is a strict de Branges function that is normalized, i.e. E(0) = 1.

A de Branges space H(E) comes with an unbounded operator (Mz,D(Mz))
in which Mz is “multiplication by z” and its domain is

D(Mz) = {f(z) ∈ H(E) : zf(z) ∈ H(E)}.

This domain is either dense in H(E) (the “dense” case) or has closure of codi-
mension 1 in H(E) (the “non-dense” case). We are interested here only in the
“dense” case; the property of being “dense” can be read off from properties of
E(z) on the real axis. The operator Mz is symmetric and closed (i.e. its graph
is closed in H(E) ⊕ H(E)). In the “dense” case the operator has deficiency
indices (1, 1), and so has a family of self-adjoint extensions parametrized by
the group U(1) = {eiθ : 0 ≤ θ < 2π}.

One interpretation of the de Branges theory is that it supplies a “canonical
model” for a particular subset of closed symmetric operators with deficiency
indices (1, 1). This class of operators contains the class of “entire operators”
introduced by M. Krein (see [15]). The “canonical model” allows various
properties of the operator Mz to be read off by inspection.

First, from the normalized structure function E(z) we obtain a description
of all self-adjoint extensions of the operator Mz. These extensions all have
discrete, simple spectra, as we describe below.

Second, the “canonical model” exhibits a complete chain of nested invari-
ant subspaces for the operator, which consists of subspaces which are them-
selves de Branges spaces, and which is uniquely with this property. Associated
to this chain of invariant subspaces is an integral transform somewhat like the
Fourier transform, which we will call here the de Branges transform, with a
corresponding inverse de Branges transform. The de Branges transform gives
an isometry of a de Branges transform Hilbert space K(M) (defined below)
onto the Hilbert space H(E), with inverse transform going the opposite di-
rection. (See [10, Theorem 44].) The inverse de Branges transform takes the
multiplication operator Mz is to a (generalized) linear differential operator 1

Dt acting on a system of 2× 1 vectors of functions, whose dependent variable
t runs over an interval of the real line R, which can be taken to be (0, b] with
b finite, parametrizing the chain of invariant subspaces.

A major theorem of de Branges used in the construction of this transform
is the total ordering theorem which says if two de Branges spaces H(E1) and
H(E2) are isometrically embedded in a de Branges space H(E) (i.e. their

1 More accurately, the de Branges theory uses a 2 × 2 matrix integral equation in
the parameter t. If the integral equation could be differentiated, then one obtains
the canonical differential system (3) (4) given below, see for example Dym [14, p.
396]. The matrix M(t) in (4) is related to de Branges’s symmetric 2 × 2 matrix
m(t) with entries (α(t), β(t), γ(t)) given in [10, Theorem 38] by M(t) = d

dt
m(t).

The canonical differential equation formalism works more generally by allowing
M(t)dt = dm(t) to be a 2 × 2 matrix-valued measure, see Remling [22].
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reproducing kernels are obtained by restriction) then either H(E1) ⊂ H(E2)
or H(E2) ⊂ H(E1) ([10, Theorem 35]). The order type of the resulting chain
of subspaces can be either discrete, where the dimension jumps by 1 at some
points, or continuous, or some mixture of discrete and continuous. In any case
we can embed such an order type in an interval, and write the family as H(Et)
where 0 ≤ t ≤ b, say, with H(Et1) ⊂ H(Et2) if t1 < t2. In a parametrization
by an interval, some values of t correspond to members of the chain, and
other values of t do not, being filler values to permit parametrization of the
chain by an interval on the real axis. For this de Branges introduces notions of
“regular” and “singular” values of a parametrization ([10, p. 136]) in which a
“regular” value of t apparantly corresponds to belonging to the chain. For the
discussion here we shall suppose that we are dealing with a pure continuous
case, and also that it is legitimate to differentiate and obtain the canonical
system (3) below.

For a given normalized strict structure function E(z) it is possible to find a
family of normalized strict structure functions of the de Branges chain H(Et),
denoted by Et(z) := A(t, z) − iB(t, z) parametrized with 0 < t ≤ b, that
satisfy 2 a “canonical differential system” (see [23]) for each z ∈ C,

d

dt

[
A(t)
B(t)

]
= zJM(t)

[
A(t)
B(t)

]
, (3)

in which

J =
[

0 −1
1 0

]
and M(t) =

[
α̃(t) β̃(t)
β̃(t) γ̃(t)

]
. (4)

such that at the right endpoint Eb(z) = E(z) for all z ∈ C, and at the left
endpoint satisfies

lim
t→0+

A(t, z) = 1 and lim
t→0+

B(t, z) = 0, (5)

see [10, Theorem 40]. A principal feature is that for (almost all) t the matrix
M(t) is real, symmetric and positive semidefinite. The right endpoint is “reg-
ular” in a sense defined by de Branges [10, p. 136]. The Hilbert space K(M)
consists of vector-valued functions [A(t), B(t)]T on an interval, say [0, b], with
norm

||(f(t), g(t))||2M =
∫ b

0

[f(t), g(t)]M(t)
[

f(t)
g(t)

]
dt.

The de Branges transform T : K(M) → H(E) is:

V (t) := (f(t), g(t)) �−→ T (V )(z) :=
1
π

∫ b

0

[f(t) g(t)]M(t)
[

A(t, z̄)
B(t, z̄)

]
dt, (6)

2 A a differential equation of the general form (3), (4) for a fixed z is called a
canonical differential equation. A “canonical differential system” is a family of
such equations with family parameter z.
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see [10, Theorems 43 and 44]. Note that A(t, z̄) = A(t, z) and B(t, z̄) = B(t, z).
The de Branges direct theorem asserts that: Any canonical differential

system (3) with “initial condition” (5) with the property that the 2 × 2
matrix function M(t) is measurable and positive semi-definite symmetric
for all t ∈ (0, b], and which is integrable over the interval, has solutions
{(A(t, z), B(t, z)) : 0 < t < b, all z ∈ C} such that each E(t, z) =
A(t, z)− iB(t, z) with t constant and z ∈ C is a strict, normalized de Branges
structure function. This is proved ([10, Theorem 41]) provided some growth
conditions are imposed on the coefficients of M(t). These growth conditions
characterize those (strict, normalized) de Branges functions belonging to the
Polya class. The Polya class consists of those de Branges functions whose
modulus is nondecreasing on each vertical line in the upper half-plane, see
[10, Sect. 7]. The de Branges functions which are entire functions of expo-
nential type are exactly the class for which the canonical differential equation
(3) is regular at its left endpoint for each z ∈ C. For de Branges functions of
faster growth this endpoint is singular.

The de Branges inverse theorem asserts the following: For any strict nor-
malized de Branges structure function E(z) = A(z)−iB(z) in the Polya class,
there exists a set of real coefficient functions (α̃(t), β̃(t), γ̃(t)) such that the
real matrix M(t) is positive semidefinite for almost all t in a finite half-open
interval (0, b] and the solutions to the canonical differential system (3) at the
left-endpoint satisfy (5) and at the right endpoint t = b have

A(b, z) = A(z) and B(b, z) = B(z). (7)

In addition the right endpoint is a “regular” value in de Branges’s sense. The
precise assertion (see [10, Theorem 40]), is an extremely strong inverse spectral
theorem which subsumes many known inverse spectral theorems, see Krein [18]
and Remling [22, Theorem 7.3]. The canonical differential system (3) can be
made essentially unique by reparametrizing it to have Tr(M(t)) ≡ 1 almost
everywhere. With this reparametrization the interval may become infinite to
the left, with an endpoint at −∞.

We now describe the self-adjoint extensions of the operator Mz, assum-
ing that we are in the “dense” case. The structure function E(z) specifies
two particular self-adjoint extensions associated to A(z) and B(z), respec-
tively. Recall that A(z) and B(z) have real zeros and these zeros interlace.
The self-adjoint extension Mz associated to A(z), denoted M̃z or Mz(A),
has pure discrete simple spectrum located at those zeros of A(z) that have
multiplicity exceeding that of B(z) at the same point, and for each such
zero ρ an eigenfunction fρ(z) = A(z)

(z−ρ)j , where A(z) has a zero of order j

at z = ρ. The domain D(Mz(A)) = D(Mz) ⊕ C[fρ0 ] for any single func-
tion fρ0 . We obtain all self-adjoint extensions of Mz by considering instead
{Aθ(z) : 0 ≤ θ < 2π}, obtained from Eθ(z) = eiθE(z). Now suppose that E(z)
is a strict de Branges function, in which case j = 1 always, and the functions
{fρ(z) = A(z)

z−ρ : A(ρ) = 0} form an orthogonal basis of H(E(z)) ([10, Theorem
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22]). This orthogonal basis gives rise to a “summation formula” expressing the
Hilbert space norm of an arbitrary function f(z) ∈ H(E),

||f(z)||2E =
∫ ∞

−∞

∣∣∣∣ f(x)
E(x)

∣∣∣∣
2

dx =
∑

ρ

π

φ′(ρ)

∣∣∣∣ f(ρ)
E(ρ)

∣∣∣∣
2

, (8)

in which the phase function φ(t) is given by E(x) = e−iφ(x)E0(x), with E0(x)
real-valued.

The operator Dt on the de Branges transform space K(M) having defi-
ciency indices (1, 1) can be formally written as

Dt := M(t)−1J−1 d

dt
= M(t)−1

[
0 d

dt

− d
dt 0

]
,

under the extra assumption that M(t) is invertible everywhere. Theorem 45
of [10] gives a description of the range of the symmetric operator Dt. In
the de Branges transform space K(M) is a corresponding orthogonal basis of
eigenfunctions Vρ(t) := [Aρ(t), Bρ(t)]T of D̃t defined indirectly by M(Vρ) =
A(z)
z−ρ , where A(ρ) = 0. Expressing members of the Hilbert space K(M) in
terms of this basis gives an “eigenfunction expansion” associated with the de
Branges theory.

There are additional aspects to the de Branges theory not covered here.
Some of this is to be discussed in [20].

3 de Branges Spaces Associated to Dirichlet L-Functions

Associated to the Riemann zeta function is the Riemann ξ-function, given by

ξ(s) =
1
2
s(s − 1)π− s

2 Γ (
s

2
)ζ(s).

It is an entire function, real on the real axis and on the critical line �(s) = 1
2 ,

satisfies the functional equation ξ(s) = ξ(1 − s) and its zeros are exactly
the nontrivial zeros of the Riemann zeta function, those in the critical strip
0 < �(s) < 1. We write ξ(s) := ξχ0(s) where χ0 is the identity Dirichlet
character.

We can similarly associate to each Dirichlet L-function L(s, χ) with a
primitive character χ of conductor q a corresponding ξ-function ξχ(s). We
define the completed L-function

L̂χ(s) := (
π

q
)−

s+k
2 Γ (

s + k

2
)L(s, χ),

in which k = 0 if χ(−1) = 1 and k = 1 if χ(−1) = −1. This is an entire
function which satisfies the functional equation
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L̂χ(s) = ε(χ)L̂χ̄(1 − s),

in which χ̄ is the complex conjugate of the character χ and ε(χ) := ik τ(χ)

q
1
2

is a constant of absolute value 1, see for example Davenport [6, Chap. 9].
The fact that L̂χ(s) transforms under complex conjugation as L̂χ(s) = L̂χ(s̄)
together with the functional equation implies that L̂χ(s) has constant modulus
(mod π) on the critical line, i.e. there is a constant eiθ such that L̂χ( 1

2 + it) =
eiθgχ(t) for some continuous real-valued function gχ(t). There remains an
ambiguity of a sign in the choice of eiθ which is removed by requiring that
ξχ(s) be positive on the critical line in the upper half-plane just above s = 1

2 .
We then define the modified function

ξχ(s) := e−iθL̂(s, χ), (1)

which is real-valued on the critical line, and satisfies the functional equation

ξχ(s) = ξχ̄(1 − s).

The zeros of the function ξχ(s) are exactly the non-trivial zeros of the Dirichlet
L-function in the critical strip, counting multiplicities.

In the following result the notation f ′(s) denotes the derivative with re-
spect to the s-variable, following standard usage in number theory.

Theorem 1. For each primitive Dirichlet character χ including the trivial
character χ0, set Eχ(z) = Aχ(z) − iBχ(z) with

Aχ(z) = ξχ(
1
2
− iz), Bχ(z) = i ξ

′
χ(

1
2
− iz).

Then these functions are real on the real axis, and the following holds.
(i) Eχ(z) is a de Branges function if and only if the Riemann hypothesis

holds for L(s, χ).
(ii) Eχ(z) is a strict de Branges function if and only if the Riemann hy-

pothesis holds for L(s, χ) and all its nontrivial zeros are simple zeros.

Proof. The function Aχ(z) is real on the real axis since ξχ(s) is real on
the critical line. Then Bχ(z) inherits this property under differentiation.

(i) If Eχ(z) is a de Branges function then by de Branges’ lemma both
Aχ(z) and Bχ(z) have only real zeros, which interlace. The reality of zeros of
Aχ(z) is the Riemann hypothesis for ξχ(s).

Now assume that the Riemann hypothesis holds for ξχ(s) . Then Aχ(z) has
real zeros. Since Aχ(z) is an entire function of order 1 (and infinite type), La-
guerre’s theorem ([16, Theorem 5.7]) applies to show that Bχ(z) = − d

dz Aχ(z)
has real zeros and they interlace with those of Aχ(z).

We show that the Riemann hypothesis for L(s, χ) implies that

�
(

ξ′χ(s)
ξχ(s)

)
> 0 for �(s) >

1
2
. (2)
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This fact is well known for the Riemann ξ-function, see Lagarias [19]. Starting
from the Hadamard product factorization

ξχ(s) = eA+Bs
∏
ρ

(
1 − s

ρ

)
e

s
ρ ,

and the logarithmic derivative we obtain

gχ(s) :=
ξ′χ(s)
ξχ(s)

= B +
∑

ρ

(
1

s − ρ
+

1
ρ
) = (B +

∑
ρ

1
ρ
) +

∑
ρ

(
1

s − ρ
),

where the sum is not absolutely convergent in the last equality and must be
viewed as taken over |ρ| < T and then letting T → ∞. Taking the real part of
this sum, one can check term by term that �( 1

s−ρ ) > 0 whenever �(s) > �(ρ).
We also have �(B+

∑
ρ

1
ρ ) = 0, which is deduced from the functional equation

gχ(s) = −gχ(1 − s). By hypothesis �(ρ) ≤ 1
2 , and (2) follows.

Now (2) gives �
(

Bχ(z)
Aχ(z)

)
= �

(
i

ξ′( 1
2−iz)

ξ( 1
2−iz)

)
> 0 when �(z) > 0. Then

|Bχ(z)
Aχ(z)

+ i| > |Bχ(z)
Aχ(z)

− i| = |Bχ(z̄)
Aχ(z̄)

+ i|

under the same condition. Thus for �(z) > 0,

|Eχ(z)| = | − iAχ(z)||i +
Bχ(z)
Aχ(z)

|

> | − iAχ(z̄)||i +
Bχ(z̄)
Aχ(z̄)

| = |Eχ(z̄)|,

so that Eχ(z) is a de Branges function.
(ii) This is straightforward. ��
Assuming the Riemann hypothesis, it can be shown that the functions

Eχ(z) belong to the Polya class, and that the associated de Branges spaces
fall in the “dense” case. We now consider the consequences of having a strict
de Branges space, where we can make use of the de Branges transform.

First, the self-adjoint extension M̃z of Mz corresponding to the function
Aχ(z) = ξχ( 1

2 − iz) has a complete orthogonal set of eigenfunctions given by

fρ(z) :=
ξχ( 1

2 − iz)
z − γ

, with ρ =
1
2

+ iγ,

where ρ runs over all the zeros (assumed simple) of ξχ(s).
Second, the de Branges summation formula applied to this set of orthog-

onal eigenfunctions gives for all f(z) ∈ H(Eχ), putting F ( 1
2 − iz) = f(z),

||f(z)||2Eχ
= π

∑
{ρ:ξχ(ρ)=0}

|F (ρ)|2
|ξ′

χ(ρ)|2 ,
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The right side of this formula resembles the spectral side of the “explicit for-
mula” of prime number theory. Viewed this way, the positivity of the Hilbert
space norm appears to encode “Weil positivity,” compare [1, Sec. 4].

Third, the associated de Branges transform gives an encoding of the Rie-
mann hypothesis plus simplicity of the zeros as a positivity property. To show
a given Eχ(z) is a strict de Branges function, it suffices to show that a cor-
responding normalized function EN

χ (z) = k0E(z) (with constant k0 chosen so
that EN

χ (1) = 1) is a normalized strict de Branges function. The de Branges
inverse theorem then says there exists data

M(t) =
[

α̃(t) β̃(t)
β̃(t) γ̃(t)

]
.

which is real, symmetric and positive semidefinite, and whose canonical dif-
ferential system, suitably parametrized, produces on the interval (0, b] the
function

EN
χ (z) = AN

χ (b, z) − iBN
χ (b, z)

at its right endpoint. (The Tr(M) ≡ 1 reparametrization would necessarily be
on an infinite interval (−∞, b] in this case.) If these coefficient functions are
found, then the de Branges direct theorem certifies that EN

χ (z) is a strict de
Branges function, so that Eχ(z) is as well, whence A(b, z) = ξχ( 1

2−iz) has real
simple zeros. Thus the Riemann hypothesis plus simple zeros is encoded as
the positive semidefiniteness property of the coefficient matrix M(t) on (0, b].
It seems reasonable to expect that for these particular de Branges spaces the
matrix M(t) will always be positive definite. We note that the fact that EN

χ (z)
is not a bandlimited function implies that the canonical differential system for
it will necessarily be singular at the left endpoint t = 0, with γ(t) → ∞ as
t → 0.

Fourth, the de Branges transform produces a “Hilbert-Polya” operator, by
which we mean a self-adjoint differential operator on a Hilbert space whose
eigenvalues encode the zeta zeros. We take the operator D̃t to be the self-
adjoint extension of the (generalized) differential operator Dt on K(M) that
corresponds to the extension M̃z of the de Branges operator Mz under the
de Branges transform. It is possible to describe this operator and its domain
more concretely. There are particularly interesting forms for it in the case of
a real primitive character χ, the self-dual case.

According to the de Branges theory there has been so far no loss of in-
formation. That is, if the Riemann hypothesis plus simple zeros holds, then
the objects above all exist, if properly interpreted as integral equations rather
than differential equations, and conversely. Some inferences on what the co-
efficient functions of M(t) might look like for the Riemann zeta function case
H(Eχ0) can be obtained by analogy with those of certain Sonine spaces of
entire functions, cf. de Branges [8], [9], Burnol [3], [4]. Burnol has also stud-
ied some other Hilbert spaces associated to the zeta function and Dirichlet
L-functions [2] [5].
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4 Conclusions

We have formulated the Riemann hypothesis for Dirichlet L-functions in terms
of the existence of particular de Branges spaces. This provides a possible
approach to the Riemann hypothesis plus simplicity of the zeta zeros, namely
to construct these hypothetical spaces directly in a way that certifies they are
de Branges spaces with the correct structure function.

There are at least three ways to construct a de Branges space. The first
way is to find a structure function E(z) for the space, and directly prove E(z)
has the defining property (2). The second way is to obtain the de Branges
transform data {M(t) : 0 ≤ t ≤ b}, verify that each 2 × 2 matrix M(t)
is real and positive semi-definite symmetric, and integrable over the specified
interval. The third way is to construct in some fashion a Hilbert space of entire
functions and show directly that it satisfies the axioms (H1)–(H3), without
obtaining either the structure function or the de Branges transform. This
last approach can sometimes be taken using a weighted Mellin transform, as
in de Branges [9] and Burnol [3]. In following the latter two approaches, an
additional necessary task is to establish that the resulting de Branges space
has the desired structure function E(z).

The usefulness of this reformulation of the Riemann hypothesis will likely
depend on whether information coming from number theory, either from arith-
metical algebraic geometry, automorphic representations, or from some other
source entirely, can be applied to show the existence of these particular (hy-
pothetical) de Branges spaces.
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Introduction

In this article we want to give the basic definitions and properties of dynamical
zeta functions, and describe a few of their applications. The emphasis is on
giving the flavour of the subject rather than a detailed summary.
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To fix ideas, let us assume that V is a compact surface with some ap-
propriate Riemannian metric < ·, · >TV , say. We shall always assume that
V has negative curvature at every point on V (although we will not neces-
sarily assume that it has constant negative curvature). In studying geometric
properties of manifolds it is sometimes convenient to study the associated
geodesic flow. Fortunately, geodesic flows for negatively curved surfaces are
important examples of a broader class of flows, namely hyperbolic flows, which
are amenable to quite powerful techniques in dynamical systems which have
evolved over the last 40 years (from the work of Anosov, Sinai, Ratner, Smale,
Bowen, Ruelle, and many others). In particular, it is often (but not always)
convenient to introduce simple symbolic models for these flows. The basic hope
is that, despite the sacrifice of some of the geometry, we can benefit from be-
ing able to apply fairly directly ideas from ergodic theory and what is often
colloquially called “Thermodynamic Formalism”. Somewhat surprisingly, this
method is successful for various classes of problems, including:

(a) Geometric problems (e.g., counting closed geodesics, or equivalently closed
orbits for the geodesic flow);

(b) Statistical Properties (e.g., determining rates of mixing for flows); and
(c) Distributional properties (e.g., linear actions associated to the horocycle

foliation).

Of course, anyone familiar with the Selberg zeta function for surfaces of con-
stant negative curvature will recognise many of the ideas in (a), for example.
The main difference is that instead of using the Selberg trace formula, say, we
use transfer operators to study the zeta function. What we lose in elegance
(and error terms!) we hope to make up for in the generality of the setting.

In this overview we want to recall a number of the key themes and outline
some recent and ongoing developments. The choice of topics reflects the au-
thor’s idiosyncratic tastes. The results are organised so as to give the illusion
of coherence, but are in fact a mixture of older and more recent material. For
different accounts and perspectives, the reader is referred to [7], [62]. In par-
ticular, nowadays non-symbolic methods are catching up in terms of efficiency
in the above areas.

Finally, I would like to express my gratitude to the organisers of the Les
Houches School for their invitation to participate.

1 Symbolic dynamics and zeta functions

The familiar geodesic flow for V is a flow φt (t ∈ R) defined on the (three
dimensional) unit tangent bundle T1V = {(x, v) ∈ TV : ||v||TV = 1}, i.e.,
those tangent vectors to V having length one with respect to the ambient
Riemannian norm. The flow acts in the standard way by moving one tangent
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vector v ∈ T1V to another v′ =: φtx, using parallel transport [5]. 1 It is the
hypothesis of negative curvature ensures that this geodesic flow is a hyperbolic
flow, i.e., one for which directions transverse to the flow direction (in a natural
sense) are either expanding or contracting. 2

1.1 Sections

The modern use of symbolic dynamics to model hyperbolic systems prob-
ably dates back to the work of Adler and Weiss [2], who showed that the
famous Arnold CAT map could be modelled by a shift map on the space of
sequences from a finite alphabet of symbols. This lead to Sinai’s seminal work
introducing Markov partitions for more general hyperbolic maps and then
Ratner and Bowen’s extension to hyperbolic flows [10], [56]. Historically, the
use of sequences to model geodesic flows goes back even further to the work
of Morse and Hedlund [25] who coded geodesics in terms of generators for the
fundamental group.

Step 1 (Discrete maps from flows)

At its most general (and probably least canonical) the coding of orbits for
hyperbolic flows φt : M → M on any compact manifold M starts with a finite
number of codimension one sections T1, . . . , Tk to the flow. Let X = ∪iTi

denote the union of the sections. We can consider the discrete Poincaré return
map T : X → X, i.e, the map which takes a point x on a section to the point
T (x) where its φ-orbit next intersects a section. Of course, we need to assume
that the sections are chosen so that

(i) every orbit hits the union of the sections infinitely often.

We would also like to consider the map r : ∪iTi → R
+ which gives the time

it takes for x ∈ X to flow to T (x) ∈ X, i.e., φr(x)(x) = T (x).

1 More precisely, given any (x, v) ∈ M we let γ(x,v) : R → M be the unit speed
geodesic with γ(x,v)(0) = x and γ̇(x,v)(0) = v. We define the geodesic flow φt :
M → M by φt(x, v) = (γ(x,v)(t), γ̇(x,v)(t)).

2 For completeness we recall the formal definition, although we won’t need it in the
sequel. Let M be any C∞ compact manifold then we call a C1 flow φt : M → M
hyperbolic (or Anosov) if:

(a) the tangent bundle TM has a continuous splitting TΛM = E0⊕Eu⊕Es into Dφt-
invariant sub-bundles E0 is the one-dimensional bundle tangent to the flow; and
there exist C, λ > 0 such that ||Dφt|Es|| ≤ Ce−λt for t ≥ 0 and ||Dφ−t|Eu|| ≤
Ce−λt for t ≥ 0;

(b) φt : M → M is transitive (i.e., there exists a dense orbit); and
(c) the periodic orbits are dense in M .

(More generally, if there is a closed φ-invariant set Λ with the above properties
then φt : Λ → Λ is called a hyperbolic flow.)
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Key idea (modulo a slight fudge) There is a natural correspondence be-
tween periodic discrete orbits Tnx = x and continuous periodic orbits τ of
period λ = λ(τ) > 0 (i.e., the smallest value such that φλ(xτ ) = xτ for all
xτ ∈ τ), where

λ = r(x) + r(Tx) + . . . + r(Tn−1x).

T

T

T

i

j

l

x

T(x)

M

Fig. 1. Transverse (Markov) sections for a hyperbolic flow code a typical orbit and
a closed orbit

Like many simple ideas, it is not quite true. There is an additional technical
complication because of the closed orbits which pass through the boundaries
of sections. However, this is not the typical case and an extra level of technical
analysis sorts out this problem [10].

Step 2 (Sequence spaces from the Poincaré map)

The essential idea in symbolic dynamics is that a typical orbit {φt(x) : −∞ <
t < ∞} will traverse these sections infinitely often (both in forward time and
backward time) giving rise to a bi-infinite sequence (xn)∞n=−∞ of labels of the
sections it traverses [10], [56].

(ii) The sections are chosen to have a Markov property (i.e., essentially that
the space Σ of all possible sequences (xn)∞n=−∞ is given by a nearest
neighbour condition: there exists a k× k matrix A with entries either 0 or
1 such that the sequence occurs if and only if A(xn, xn+1) = 1).
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Alternatively, we can retain a little of the regularity of the functions as
follows.

Step 2′ (Expanding maps from the Poincaré map)

Instead of a reducing orbits to sequences, we can replace the invertible
Poincaré map by an expanding map (on a smaller space). The basic idea
is to remove the contracting direction by identifying the sections X along the
stable directions. We can then replace the union of two dimensional sections
X by a union of one dimensional intervals Y . The Poincaré map T : X → X
then quotients down to an expanding map S : Y → Y [59]. Of course, we lose
track of the “pasts” of orbits, but for most purposes this is not a real problem.

1.2 An alternative approach for constant curvature: The Modular
surface and compact surfaces

We mentioned that for geodesic flows on surfaces of constant negative curva-
ture there is an alternative method of Hedlund and Hopf to code geodesics.
This method was further developed by Adler and Flatto [1] and Series [69].
Again it leads to a Cω expanding Markov map T : Y → Y . In this case, Y
corresponds to the boundary of the universal cover

D
2 = {z = x + iy ∈ C : |z| < 1}

of the surface,i.e., the unit circle. This is divided into a finite number of arcs
(actually determined by the sides of a fundamental domain for the surface).
The corresponding metric on D

2 is ds2 = (dx2 +dy2)/(1−x2 − y2)2. The side
pairs of the fundamental domain correspond to linear fractional transforma-
tions which preserve D

2. On the boundary they give rise to expanding interval
maps. A geodesic on D

2 is uniquely determined by its two end points on the
unit circle. We can associate a function r : Y → R by r(x) = log |T ′(x)|, then
we have the ingredients of the symbolic model.

Example: Modular surface We can consider the geodesic flow on the mod-
ular surface. In this case the surface is non-compact, and the difference is that
the linear fractional transformation T : Y → Y is on an infinite number of
intervals. However, in this case the transformation T is the well known con-
tinued fractional transformation on [0, 1], i.e., T : [0, 1) → [0, 1) by Tx = 1

x
(mod 1). The corresponding function r : I → R is r(x) = −2 log x, as is easily
checked.

In this case the associated transfer operator is very easy to describe. We
look at the Banach space B of analytic functions (with a continuous extension
to the boundary) on a disk {z ∈ C : |z − 1

2 | < 3
2}. The transfer operator is

given by Lsh(x) =
∑∞

n=1 h
(

1
x+n

)
1

(x+n)2s and the determinant det(I −Ls) is
analytic for Re(s) > 1. Using an approach of Ruelle [58], [59], Mayer [40], [41]
showed that
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(i) det(I − Ls) has analytic extension to C; and
(ii) ζ(s) is related to det(I − Ls+1)/det(I − Ls)

For the Modular surface (and related surfaces) this special model leads to very
elegant connections with functional equations, the Riemann zeta function and
Modular functions cf. [38].

2 Zeta functions, symbolic dynamics and determinants

Let us denote by τ closed orbits for φ and let us write λ(τ) > 0 for the period,
(i.e., given x ∈ τ we have φλ(τ)(x) = x). We shall call τ a primitive closed orbit
if λ(τ) is the smallest such value. Let us assume for simplicity a fact which
is patently not true (but which has the virtue that it makes a complicated
argument into a simple one!) that r(x) = r(x0, x1) depends on only two terms
in the sequence x = (xn)∞n=−∞ ∈ Σ. We can then associate to A a weighted
k× k matrix Ms(i, j) = A(i, j)e−sr(i,j), i.e., the entries 1 in A are replaced by
values of the exponential of −sr (with s ∈ C) [45], [44]:

ζ(s) =
∏

τ= prime
orbits

(
1 − e−sλ(τ)

)−1

= exp

⎛
⎝ ∑

τ= prime
orbits

∞∑
m=1

(e−sλ(τ))m

m

⎞
⎠

= exp

⎛
⎜⎝

∞∑
m=1

∞∑
p=1

∑
prime orbits

{x,...,σp−1x}

e−sm[r(x0,x1)+r(x1,x2)+···+r(xp−1,x0)]

m

⎞
⎟⎠

= exp

( ∞∑
n=1

∑
σnx=x

e−s[r(x0,x1)+r(x1,x2)+···+r(x−1,x0)]

n

)
(2.1)

= exp

( ∞∑
n=1

trace(Mn
s )

n

)
=

1
det(I − Ms)

.

In particular, in this model case we see that ζ(s) has a (non-zero) meromorphic
extension to the entire complex plane. Moreover, the poles are characterised
as those values s for which the matrix Ms has 1 as an eigenvalue.

More generally, the function r will be more complicated, but still retains
sufficient regularity that the spirit of the above simple argument applies. In the
more general setting, the matrix is replaced by a bounded linear operator (the
Ruelle transfer operator). 3 The spectrum of this operator is quasi-compact
(i.e., aside from isolated eigenvalues of finite multiplicity, the remaining essen-
tial spectrum is in a “small” disk). The corresponding result is then in general
[58], [44], [49]:

3 The transfer operator in the context of the Modular surface is the operator Ls

described in the last section
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Theorem 2.1 The zeta function ζ(s) converges on a half-plane Re(s) >
h. The zeta function ζ(s) has a non-zero meromorphic extension to a larger
half-plane Re(s) > h − ε, for some ε > 0.

There is a simple pole at s = h and, for geodesic flows, there are no other
poles on the line Re(s) = h.

In the special case of hyperbolic flows with analytic horocycle foliations it
is possible to show much more. This includes, for example, constant curvature
geodesic flows. This gives much stronger results [59]:

Theorem 2.2 The zeta function ζ(s) has a non-zero meromorphic ex-
tension to C.

The proof of this result is similar in spirit, except that from the hypothesis
on the foliations the expanding map on the sections (in Case 2′ before) is also
Cω. The transfer operator on analytic functions is trace class and so the
determinant makes perfect sense.

If the foliations are not analytic (which is the case for variable curvature
surfaces) then slightly less is known [32], [62] and [21].

3 Counting orbits

We want to mimic the use of the Riemann zeta function in prime number
theory, except we want to count closed orbits instead of prime numbers. The
aim is to describe that asymptotic behaviour of the number of prime numbers
less than x, i.e.,

π(x) = #{p ≤ x : p is a prime } for x > 0.

Notation: We write f(x) ∼ g(x) if f(x)
g(x) → 1 as x → +∞.

In 1896, Hadamard and de la Vallée Poussin independently showed the
asymptotic estimate π(x) ∼ x

log x , as x → +∞, i.e., the prime number theorem
[19]. The basic properties of π(x) come from the Riemann zeta function defined
by

ζR(s) =
∞∑

n=1

1
ns

=
∏

p=prime

(
1 − p−s

)−1
.

This converges to an analytic non-zero function on the domain Re(s) > 1.
Moreover, ζR(s) has the following important properties [19]:

(1) ζR(s) has an analytic non-zero extension to a neighbourhood of Re(s) ≥ 1,
except for a simple pole at s = 1;

(2) ζR(s) has a meromorphic extension to all of C; and ζR(s) and ζR(1 − s)
are related by a functional equation.
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Property (1) has a direct analogue for most hyperbolic flows (including
geodesic flows). We say that a hyperbolic flow is weak mixing if the set of
lengths of closed orbits {λ(τ) : τ = closed orbit} isn’t contained in aN, for
some a > 0. In particular, any geodesic flow is weak mixing. 4 The following
is the analogue of property (1) for the Riemann zeta function.

Theorem 3.1 Let φ be a weak mixing hyperbolic flow. There exists
h > 0 such that ζ(s) has an analytic non-zero extension to a neighbourhood
of Re(s) > h, except for a simple pole at s = h.

The value h is the topological entropy of the geodesic flow.
Unfortunately, property (2) doesn’t always have a direct analogue for gen-

eral hyperbolic flows (although it does for constant curvature geodesic flows).
5 However, since the proof of the prime number theorem only required prop-
erty (1) for the Riemann zeta function, we expect that something similar will
hold for closed orbits of hyperbolic flows. We can denote

π(T ) = Card{τ : λ(τ) ≤ T}, for T > 0.

The following result is the analogue of the prime number theorem for closed
orbits.

Corollary 3.2 Let φt : M → M be a weak mixing hyperbolic flow then

π(T ) ∼ ehT

hT
, as T → +∞. (3.1)

This was proved, although the details were not published at the time, by Mar-

gulis in 1969. This proof did not use zeta functions, but properties of transverse
measures for the horocycle foliation. (The proof was reconstructed by Toll in
his unpublished Ph.D. thesis from the University of Maryland in 1984.) An
alternative proof using zeta functions was given by Parry and Pollicott in [45].
Prior to this Sinai had shown in 1966 that limT→+∞ 1

T log π(T ) = h. For the
special case of geodesic flows on surfaces of constant curvature κ = −1, Huber
showed in 1959, using the Selberg trace formula, that π(T ) = li(ehT )+O

(
ecT

)
where li(x) =

∫ x

2
du

log u and c < h is actually related to the first non-zero eigen-
value of the Laplacian on the surface.

There are related results for counting geodesic arcs between two given
points in place of closed geodesics [54].

3.1 Riemann hypothesis and error terms for primes

The (still unproved) Riemann hypothesis states that: Riemann hypothesis ζ(s)
has all of its (non-trivial) zeros on the line Re(s) = 1/2.

4 Although height one suspended flows over hyperbolic diffeomorphisms aren’t!
5 Indeed there are examples (due to Gallavotti) of zeta functions which have loga-

rithmic singularities.
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We recall the following:
Notation: We write f(T ) = g(T )+O(h(T )) if there exists C > 0 such that

|f(T ) − g(T )| ≤ C|h(T )|.
The Riemann hypothesis would imply that for any ε > 0 we can estimate

π(x) = li(x) + O(x1/2+ε). To date, only smaller non-uniform estimates on the
zero free region are known which lead to weaker error terms [19].

3.2 Error terms for closed orbits

It turns out that it is more convenient to replace the principal asymptotic
term by li(ehT ) ∼ ehT

hT , as T → +∞.
The following result shows that for variable curvature geodesic flows we

get exponential error terms (cf. [16] [53]).
Theorem 3.3 Let φt : M → M be the geodesic flow for a compact surface

with negative curvature. There exists 0 < c < h, where h again denotes the
topological entropy, such that

π(T ) = li(ehT ) + O
(
ecT

)
, as T → +∞ (3.2)

Unfortunately, in contrast to the constant curvature case, there is little
insight into the value of c > 0. The estimate (3.2) extends to counting closed
geodesics on compact manifolds of arbitrary dimension providing that the
sectional curvature is pinched −4 ≤ κ ≤ −1. The following result on ζ(s) is
the main ingredient in the proof of Theorem 3.3.

Proposition 3.4 For a geodesic flow there exists c < h such that ζ(s)
is analytic in the half-plane Re(s) > c, except for a simple pole at s = h.
Moreover, there exists 0 < α < 1 such that ζ ′(h + it)/ζ(h + it) = O(|t|α), as
|t| → +∞.

This can be viewed as an analogue of the classical Riemann Hypothesis for
the zeta function for prime numbers. It is well-known for the case of constant
negative curvature (using the approach of the Selberg trace formula).

At the level of more general (weak mixing) hyperbolic flows no such result
can hold. Indeed, there are very simple examples with poles σn + itn for ζ(s)
such that σn ↗ h (and tn ↗ ∞) [47].

3.3 Spatial distribution of closed orbits

Given a geodesic flow φt : M → M , a classical result of Bowen [13] shows
that the closed orbits τ are evenly distributed (according to the measure of
maximal entropy µ). Consider a Hölder continuous function g : Λ → R, then
we can weight a given closed orbit τ by λg(τ) =

∫ λ(τ)

0
g(φtxτ )dt (for xτ ∈ τ).
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The following result was originally proved by Bowen [13], with a subsequent
proof by Parry [43] using suitably weighted zeta functions.

Theorem 3.5 Given a geodesic flow φ : M → M there exists a proba-
bility measure µ such that

∑
λ(τ)≤T

λg(τ)/
∑

λ(τ)≤T

λ(τ) →
∫

gdµ as T → +∞.

In the case of constant curvature surfaces the measure of maximal entropy
is the Liouville measure (i.e., the natural normalised volume).

There are also Central Limit Theorems [57] and Large Deviation Theorems
[31] for closed geodesics. In particular, the latter can be viewed as generalisa-
tions of Theorem 3.5. More generally, the following result of Kifer is valid for
any hyperbolic flow and so, in particular, for the geodesic flow φt : SV → SV .
Let µτ be the natural invariant measure supported on a closed orbit τ .

Proposition 3.6 Let U be an open neighbourhood of the measure of
maximal entropy µ in the space M of all φ-invariant probability measures on
M . Then

1
π(T )

#{τ : λ(τ) ≤ T and µτ/λ(τ) �∈ U} = O(e−δT ),

as T → +∞, where δ = infν∈M−U{h − h(ν)} > 0.

3.4 Homological distribution of closed orbits

By way of motivation, recall the asymptotic behaviour of the number B(x)
of integers less than x which can be written as a square or as the sum of
two squares, i.e., B(x) = #{1 ≤ n ≤ x : n = u2

1 + u2
2, u1, u2 ∈ Z} for x > 0.

Landau [35] showed that B(x) ∼ Kx/(log x)1/2, for some K > 0, and the
same result appears in Ramanujan’s famous letter to Hardy in 1913 [8]. The
full asymptotic expansion for B(x) has the simple form

B(x) =
Kx

(log x)1/2

(
1 +

N∑
n=1

αn

(log T )n
+ O

(
1

(log x)N

))

for any N ≥ 1. [23]. The proof of the above asymptotic expansion involves
studying the complex function

s �→ 1
1 − 2−s

∏
q

1
1 − q−s

∏
r

1
1 − r−2s

,

where q runs through all primes equal to 1 (mod 4) and r runs through all
primes equal to 3 (mod 4). Of course, this differs from the Riemann zeta func-
tion only in the factor of 2 in the last exponent, but the result is a singularity
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of the form (s − 1)−1/2, rather than a simple pole, which leads to a different
asymptotic behaviour.

As usual, we let V denote a compact surface of negative curvature. Let
α ∈ H1(V, Z) be a fixed element in the first homology. Given a closed geodesic
γ we denote by [γ] the homology class associated to a closed geodesic V . Let
π(T, α) be the number of closed geodesics in the homology class α of length
at most T , i.e.,

π(T, α) = #{γ : l(γ) ≤ T, [γ] = α}.
The following formula was proved independently by Anantharaman [4] and

Pollicott and Sharp [55].

Theorem 3.7 Let b = dim(H1(V, R)) be the first Betti number for V .
There exist C0, C1, C2, . . . (with C0 > 0) such that

π(T, α) =
ehT

T b/2+1

(
N∑

n=0

Cn

Tn
+ O

(
1

TN

))
as T → +∞,

for any N > 0.

The similarity with Landau’s result comes from a (s − 1)−1/2 singularity
also appearing in the domain of the corresponding zeta function for π(T, α).

For surfaces of constant curvature κ = −1 this was originally proved by
Phillips and Sarnak [46]. Katsuda and Sunada [30], Lalley [33] and Pollicott
[50] then each independently showed that for more general surfaces of variable
curvature the basic asymptotic formula π(T, α) ∼ ehT

T b/2+1 , as T → +∞, still
holds.

Finally, we should remark that there are interesting results on special
values of the closely related homological L-functions cf. [20], [22].

3.5 Intersections of closed orbits

There are a number of results describing the average number of times a typical
closed geodesic intersects itself [48] and [34] 6. However, we shall describe a
more topical result conjectured by Sieber and Richter[71].

Given 0 ≤ θ1 < θ2 ≤ 2π, let iθ1,θ2(γ) denote the number of self-
intersections of the closed geodesic γ such that the absolute value of the angle
of intersection lies in the interval [θ1, θ2].

Theorem 3.8 Given 0 ≤ θ1 < θ2 ≤ 2π, there exists I = I(θ1, θ2) and
c < h such that, for any ε > 0,

#
{

γ : l(γ) ≤ T,
iθ1θ2(γ)
l(γ)2

∈ (I − ε, I + ε)
}

= li(ehT ) + O(ecT ).

6 Which also corrects an error in the asymptotic expression in [48]



392 Mark Pollicott

We shall outline the idea of the proof, due to Sharp and the author. Let
F denote the foliation of SV by orbits of the geodesic flow φ. Given any
φ-invariant finite measure µ (not necessarily normalised to be a probability
measure) we can consider the associated transverse measure µ̃ for F . The
set of such transverse measures C is usually called the space of currents. Let
E = SV ⊕SV −∆ be the Whitney sum of the bundle SV with itself, minus the
diagonal ∆ = {(x, v, v) : x ∈ V, v ∈ SxV }. Let p : E → V denote the canonical
projection. In particular, points of the four dimensional vector bundle E (with
two dimensional fibres) consist of triples {(x, v, w) : x ∈ V and v, w ∈ SxV }.
Let p1 : E → SV be the projection defined by p1(x, v, w) = v and let p2 : E →
SV be defined by p2(x, v, w) = w. Following closely Bonahon’s construction
[9], we consider the two transverse foliations (with one dimensional leaves)
of E given by F1 = p−1

1 (F) and F2 = p−1
2 (F). Given 0 ≤ θ1 < θ2 ≤ π, we

define the angular intersection bundle Eθ1,θ2 ⊂ E by Eθ1,θ2 = {(x, v, w) ∈
E : ∠vw ∈ [θ1, θ2]}, where 0 ≤ ∠vw ≤ π denotes the angle between the two
vectors. This is a closed sub-bundle of E.

Given currents µ̃, µ̃′ ∈ C, we can take the lifts µ̂1 := p−1
1 µ̃ and µ̂′

2 := p−1
2 µ̃′,

which are transverse measures to the foliations F1 and F2 for E, respectively.
Bonahon defined the intersection form i : C ×C → R

+ to be the total mass of
the E with respect to the product measure µ̂1×µ̂′

2, i.e., i(µ̃, µ̃′) = (µ̂1×µ̂′
2)(E)

[9]. By analogy, we can define an angular intersection form iθ1,θ2 : C×C → R
+

to be the total mass of the Eθ1,θ2 with respect to the product measure µ̂1×µ̂′
2,

i.e., iθ1,θ2(µ̃, µ̃′) = (µ̂1 × µ̂′
2)(Eθ1,θ2).

In the present context, the large deviation result Proposition 3.6 gives the
following estimates.

Lemma 3.9 Given ε > 0, there exists δ > 0 such that

1
π(T )

#{γ : l(γ) ≤ T and |l(γ)−2(µ̂γ,1 × µ̂γ,2)(Eθ1,θ2)

− (m̂1 × m̂2)(Eθ1,θ2)| ≥ ε}
= O(e−δT ), as T → +∞.

In particular, we can set I(θ1, θ2) := iθ1,θ2(µ̃, µ̃), where µ is the measure
of maximal entropy. We deduce that, except for an exceptional set with car-
dinality of order O(e(h−δ)T ), the set of closed geodesics of length at most T
satisfy |l(γ)−2iθ1,θ2(γ) − I(θ1, θ2)| < ε. Theorem 3.8 then follows easily by
applying the asymptotic counting results described in §3.2.

3.6 Decay of Correlations (a compliment to counting orbits)

A closely related problem to that of counting closed orbits is that of decay
of correlations. Let φt : M → M be a weak-mixing hyperbolic flow and let µ
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again be the measure of maximal entropy (i.e., the measure in Theorem 3.5).
The flow φ is strong mixing, i.e.,

ρF,G(t) :=
∫

F ◦ φtGdµ −
∫

Fdµ

∫
Gdµ → 0, for all F,G ∈ L2(X,µ).

(i.e., the “correlation of the flow tends to zero”.)
Dolgopyat proved the following result on exponential decay of correlations

in the case of geodesic flows on compact negatively curved surfaces [17].

Theorem 3.10 Let φt : M → M be the geodesic flow for a surface
of variable negative curvature. There exists ε > 0 such that for any smooth
functions F,G : M → R there exists C > 0 with ρF,G(t) ≤ Ce−ε|t|.

For constant negative curvature surfaces this result can be proved using
representation theory [42], [15]. Moreover, there are very few examples of
hyperbolic flows for which exponential decay of correlations is known to hold
[17].

The complex function used in the study of ρF,G(t) is its Fourier transform
ρ̂F,G(s) =

∫
eistρF,G(t)dt.

Theorem 3.11 Let φ : M → M be a Cr hyperbolic flow (r ≥ 2 or
r = ω). There is a neighbourhood V of φ (amongst Cr flows on M) such that:

there exists ε > 0 such that the associated correlation function ρ̂(ψ)(s) has
a meromorphic extension to a strip |Im(s)| < ε, for each ψ ∈ V [47]; and
whenever si = si(φ) is a simple pole for ρ̂(φ)(s) in the strip |Im(s)| < ε
then the map V � ψ �→ si(ψ) is Cr−2 [51].

Moreover, since the analysis of the Fourier transform also depends on the
Ruelle transfer operator there is a direct relationship between the poles of
ρ̂F,G(s) and ζφ(s) (described in [47]). More precisely, s (with Im(s) < 0) is a
pole for ρ̂(s) if and only if h + is is a pole for ζ(s).

If we replace µ by the Liouville measure (or any other suitable Gibbs
measure) analogous results hold, with a suitably weighted zeta function.

4 Other applications of closed geodesics

Ruelle’s approach to the proof of theorem 2.2 has a number of other applica-
tions. Here we recall a couple of our favourites.

4.1 Determinants of the Laplacian

A very interesting object in the case of surfaces V of constant negative curva-
ture κ = −1 is the (functional) determinant of the Laplacian. The Laplacian
∆ : L2(V ) → L2(V ) is a self-adjoint linear differential operator. Let us write
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the spectrum of −∆ as 0 = λ0 < λ1 ≤ λ2 ≤ · · · ↗ +∞ and consider the
associated Dirichlet series

η(s) :=
∞∑

n=1

λ−s
n .

This converges for Re(s) > 1, as is easily seen using Weyl’s theorem. The
function η(s) has a meromorphic extension to C and we define the determinant
by det(∆) := exp(−η′(0)). 7 The function det(∆) depends smoothly on the
Riemann metric. There is considerable interest in understanding its critical
points [66].

Somewhat surprisingly this quantity can be explicitly expressed in terms of
the closed geodesics. The starting point is that is a direct connection between
det(∆) and the Selberg zeta function. First we define for each n ≥ 1 the
function

an :=
∑

|τ1|+···+|τr|=n

(−1)r+1 λ(τ1) + · · ·λ(τk)
(eλ(τ1) − 1) · · · (eλ(τk) − 1)

,

where the sum is over collections of closed orbits for the geodesic flow (or,
equivalently, closed geodesics) and |τ | denotes the word length of a corre-
sponding conjugacy class in π1(V ) with respect to a suitable choice of gener-
ators (i.e., the smallest number of generators needed to write an element in
this conjugacy class). The following theorem was proved in [52].8

Theorem 4.1 We can write det(∆) = C(g)
∑∞

n=1 an, where the series
is absolutely convergent (and |an| = O(θn2

)) and C(g) is a constant depending
only on the genus g of the surface V .

It is also possible to use the zeta functions to describe the dependence of
other dynamical invariants, such as entropy [28].

4.2 Computation

It is an interesting problem to get numerical estimates on dynamical properties
for interval maps. For example, given an expanding interval maps it might be
interesting to estimate the entropy (of the absolutely continuous invariant
measure). The “classical” approach to this problem is the Ulam method, in
which the map is essentially approximated by a piecewise linear map and the
density can be estimated from the eigenvectors of the matrix.

We can now describe a somewhat different method which applies to Cω

expanding maps T : I → I on an interval I. We can define invariant (signed)
measures νM defined by

7 A particularly nice introduction to this subject is [66].
8 The title of this article is good humoured reference to the title of the Ph.D. thesis

of G. McShane.
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νM =
∑

(n1,...,nm)
n1+...+nm≤M

(−1)m

m!

m∑
i=1

∑
x∈Fix(ni)

⎛
⎜⎝

m∏
j=1
j �=i

∑
z∈Fix(nj)

r(z, nj)

⎞
⎟⎠ δx

|(Tni)′(x) − 1|

where δx is the Dirac measure and the first summation is over ordered m-
tuples of positive integers whose sum is not greater than M , where Fix(n)
denotes the set of fixed points of Tn, and where

r(x, n) =
1

n|(Tn)′(x) − 1| .

The measure νM is supported on those periodic points of period at most
M , which can easily be computed in practise. Introducing the normalisation
constant

IM =
∑

(n1,...,nm)
n1+...+nm≤M

(−1)m

m!

m∑
i=1

∑
x∈Fix(ni)

⎛
⎜⎝

m∏
j=1
j �=i

∑
z∈Fix(nj)

r(z, nj)

⎞
⎟⎠ 1
|(Tni)′(x) − 1| ,

we then define the invariant signed probability measures µM = I−1
M νM . For

real analytic maps we have the following [27]:

Theorem 4.2 Let µ be the absolutely continuous T -invariant probability
measure. There is a sequence of T -invariant signed probability measures µM ,
supported on the points of period at most M , such that for every Cω function
g : I → R, there exists 0 < θ < 1 and C > 0 with∣∣∣∣

∫
g dµM −

∫
g dµ

∣∣∣∣ ≤ CθM(M+1)/2.

In particular, with the choice g = log |T ′| we have as a corollary that the
“Lyapunov exponent” λµ =

∫
log |T ′| dµ can be quickly approximated, i.e.,∣∣∣∣

∫
log |T ′| dµM − λµ

∣∣∣∣ ≤ CθM(M+1)/2.

Many related ideas appear in the beautiful work of Cvitanovic and his
coauthors.

5 Frame flows

Recently, there has been interest in extending results for hyperbolic flows to
partially hyperbolic flows. That is, we allow some transverse directions to the
flow that are neither expanding nor contracting. The principle example of such
systems are probably the frame flow, which is an extension of the geodesic
flow φt : M → M on the unit tangent bundle, for a manifold V with negative
sectional curvatures.
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5.1 Frame flows: Archimedean version

Let Stn+1(V ) be the space of (positively oriented) orthonormal (n+1)-frames.
The frames Stn+1(V ) form a fibre bundle over M with a natural projection
π : Stn+1(V ) → M which simply forgets all but the first vector in the frame,
i.e., π(v1, . . . , vn+1) = v1. The frame flow ft : Stn+1(V ) → Stn+1(V ) acts
on frames (v1, . . . , vn+1) ∈ Stn+1(V ) by parallel transporting for time t the
frame along the geodesic γv1 : R → V satisfying v1 = γ̇v1(0). In particular,
the frame flow semi-conjugates to the geodesic flow, i.e., πft = φtπ for all
t ∈ R.

The associated structure group acts on each fibre by rotating the frames
about the first vector v1. In particular, we can identify each fibre π−1(v) ⊂
Stn+1(V ), for v ∈ St1(V ), with the compact group SO(n). We can associate
to each closed orbit τ a holonomy element [τ ] ∈ SO(n − 1) (defined up to
conjugacy). The following is the natural analogue of Theorem 3.5 [44].

Theorem 5.1 Let f : SO(n− 1) → R be a continuous function constant
on conjugacy classes. Then

1
π(T )

∑
λ(τ)≤T

f([τ ]) →
∫

fdω, as T → +∞,

where ω is the Haar measure on SO(n − 1).

The idea of the proof is that we can model the underlying geodesic flow
symbolically by a sequence space Σ, etc. But for the frame flow we additionally
have an associated map Θ : Σ → SO(n − 1) which essentially measures the
“twist” in SO(n − 1) along the orbits.

The distribution properties of frame flows on certain non-compact man-
ifolds have been considered in [36]. In this context, there is a particularly
interesting connection with Clifford numbers [3].

5.2 Non-Archimedean version

Let Qp denote the p-adic numbers with the usual valuation |·|p. Let Zp = {x ∈
Qp : |x|p ≤ 0} denote the p-adic integers. We can study a natural analogue
of the frame flow and geodesic flow for G = PSL(2, Qp). The rôle of the
hyperbolic upper half plane H

2 in the usual archimedean case is taken here
by a regular tree X, say. We recall the basic construction.

Vertices Given any pair of vectors v1, v2 ∈ Q
2
p one associates a lattice

L = v1Zp + v2Zp. We can define an equivalence relation on lattices: L ∼ L′

if lattices L,L′ are homothetically related (i.e., there exists α ∈ Qp such that
L′ = αL). We take the equivalence classes [L] to be the vertices of the tree
X.

Edges Given two vertices (equivalence classes) [L1], [L2] we can associate
an edge [L1] → [L2] whenever we can find a basis {v1, v2} for L1 and {πv1, v2}
for L2, where π = 1

p is called the uniformizer.
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Lemma 5.2 [70] X is a homogeneous tree, with every vertex having (p+1)-
edges.

There is a natural action GL(2, Qp) × X → X on the tree given by
γ[v1Zp + v2Zp] = [(γv1)Zp + (γv2)Zp]. The construction and action is ele-
gantly described by Serre [70]. The frame flow is actually a discrete action
defined on the quotient space Γ\X of the associated tree X by a lattice Γ
and is given as multiplication by

(
1 p
0 π

)
. If Γ is torsion free then there is a

natural shift map on the space of paths σ : Σ → Σ which plays the role
of the geodesic flow. Let S be the closed multiplicative subgroup of squares
in O× = {x ∈ Qp : |x|p = 0}. There exists a Hölder continuous function
Θ : Σ → S such that the p-adic frame flow for a lattice Γ corresponds to a
simple skew product

σ̂ : Σ × S → Σ × S
σ̂(x, s) = (σx,Θ(x)s). (5.1)

Let Γn be the set of conjugacy classes of γ ∈ Γ with |trγ|p = n. For each
conjugacy class [γ] ∈ Γn, denote by σ([γ]) ∈ S the common value of p|λ

2
γ |pλ2

γ ,
where λγ denotes the maximal eigenvalue. The analogue of Theorem 5.1 is
the following result of Ledrappier and Pollicott.

Theorem 5.3 Eigenvalues of matrices in Γ are uniformly distributed in
the sense that for any continuous function φ on S, we have:

lim
n→∞

1
p2n

∑
[γ]∈Γn

φ(σ([γ])) =
∫

φ(s)dω(s),

where ω is the Haar probability measure on S.

This can be viewed as a non-archemidean version of the results in [67].
Moreover, in the particular case that Γ is an arithmetic lattice it is possible to
use Deligne’s solution of the Ramanujan-Petersson conjecture to get uniform
exponential convergence in Theorem 5.3.
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1 Introduction

Rotations on the circle T = R/Z are the prototype of quasiperiodic dynamics.
They also constitute the starting point in the study of smooth dynamics on
the circle, as attested by the concept of rotation number and the celebrated
Denjoy theorem. In these two cases, it is important to distinguish the case
of rational and irrational rotation number. But, if one is interested in the
deeper question of the smoothness of the linearizing map, one has to solve
a small divisors problem where the diophantine approximation properties of
the irrational rotation number are essential. The classical continuous fraction
algorithm generated by the Gauss map G(x) = {x−1} (where x ∈ (0, 1) and
{y} is the fractional part of a real number y) is the natural way to analyze
or even define these approximation properties. The modular group GL(2,Z)
is here of fundamental importance, viewed as the group of isotopy classes of
diffeomorphisms of T2, where act the linear flows obtained by suspension from
rotations.

There is one obvious and classical way to generalize linear flows on the
2-dimensional torus : linear flows on higher dimensional tori. One can still de-
fine the classical diophantine approximation properties and obtain KAM-type
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linearization results. However, we are far from understanding these approxi-
mation properties as well as in the classical case, basically because for n ≥ 3
the group GL(n,Z) is far from hyperbolic and we cannot hope for a continuous
fraction algorithm having all the wonderful properties it has for n = 2.

A less obvious way to generalize linear flows on the 2-dimensional torus,
but one which has received a lot of attention in recent years, is to consider
linear flows on compact surfaces of higher genus called translation surfaces.
We refer to Zorich’s paper in this volume for a precise definition and an
introduction to these very natural geometrical structures.

Linear flows on translation surfaces may be obtained as singular suspen-
sions of one-dimensional maps of an interval called interval exchange maps
(i.e.m). Such a map is obtained by cutting the interval into d pieces and re-
arranging the pieces; when d = 2, this is nothing else than a rotation if the
endpoints of the interval are identified to get a circle; for d = 3, one is still
quite close to rotations (see Section 2.7 below); for d ≥ 4, one can already ob-
tain surfaces of genus ≥ 2. Interval exchange maps (and translation surfaces)
occur naturally when analyzing the dynamics of rational polygonal billiards.

An early important result is the proof by Katok-Stepin [4] that almost
all i.e.m with d = 3 are weakly mixing. Somewhat later, Keane began a sys-
tematic study of i.e.m and discovered the right concept of irrationality in
this setting ([Ke1]). He also conjectured that almost all i.e.m are uniquely
ergodic. One should here beware that minimality is not sufficient to guaran-
tee unique ergodicity, as shown by examples of Keynes-Newton [8], see also
[1] and Keane [6]. Keane’s conjecture was proved by Masur [11] and Veech
[17] independently, see also Kerckhoff [7] and Rees [15]. The key tool devel-
oped by Veech, and also considered by Rauzy [14], is a continuous fraction
algorithm for i.e.m which has most of the good properties of the classical
Gauss map. However, the unique absolutely continuous invariant measure for
the elementary step of this algorithm is infinite. In order to be able to ap-
ply powerful ergodic-theoretical tools such as Oseledets multiplicative ergodic
theorem, one needs an absolutely continuous invariant probability measure;
this was achieved by Zorich [22] by considering an appropriate acceleration of
the Rauzy-Veech continuous fraction algorithm.

Our aim in the following is to present the basic facts on the continuous frac-
tion algorithm and its acceleration. After defining precisely interval exchange
maps (Section 2), we introduce Keane’s condition (Section 3), which guaran-
tees minimality and is exactly the right condition of irrationality to start a
continuous fraction algorithm. The basic step of the Rauzy-Veech algorithm is
then introduced (Section 4). It appears that unique ergodicity is easily char-
acterized in terms of the algorithm, and we give a proof of the Mazur-Veech
theorem (Section 4.4). Next we explain how to suspend i.e.m to obtain linear
flows on translation surfaces (Section 5). The continuous fraction algorithm
extends to this setting and becomes basically invertible in this context. In the
last chapter, we introduce Zorich’s accelerated algorithm (Section 6.2) and the
absolutely continuous invariant probability measure. However, we stop short
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of making use of this probability measure and develop the ergodic-theoretic
properties of i.e.m and the continuous fraction algorithm. We refer the reader
for these to [19, 20, 21, 23, 24, 25, 3].

Coming back to small divisors problems, there does not exist today a
KAM-like theory of non linear perturbations of i.e.m. However, as far as the
linearized conjugacy equation (also known as the cohomological equation, or
the cocycle equation, or the difference equation) is concerned, Forni has ob-
tained [2] fundamental results (in the continuous time setting) which leave
some hope that such a theory could exist. Forni solves the cohomological
equation (under a finite number of linear conditions) for an unspecified full
measure set of i.e.m. In a jointwork with Marmi and Moussa [12], we use the
continuous fraction algorithm to formulate an explicit diophantine condition
(Roth type i.e.m) of full measure which allows to solve the cohomological
equation (with slightly better loss of differentiability than Forni).

One last word of caution : one of the nice properties of the algorithm is
its invariance under the basic time-reversal involution. However, the usual
notations do not reflect this and lead by forcing an unnatural renormalization
to complicated combinatorial formulas. We have thus chosen to depart from
the usual notations by adopting from the start notations which are invariant
under this fundamental involution. This may cause some trouble but the initial
investment should be more than compensated later by simpler combinatorics.

2 Interval exchange maps

2.1 An interval exchange map (i.e.m) is determined by combinatorial data
on one side, length data on the other side.

The combinatorial data consist of a finite set A of names for the intervals
and of two bijections π0, π1 from A onto {1, . . . , d} (where d = #A); these
indicate in which order the intervals are met between and after the map.

The length data (λα)α∈A give the length λα > 0 of the corresponding
interval.

More precisely, we set

Iα := [0, λα) × {α} ,
λ∗ :=

∑
A λα ,

I := [0, λ∗) .

We then define, for ε = 0, 1, a bijection jε from
⊔
A

Iα onto I :

jε(x, α) = x +
∑

πε(β)<πε(α)

λβ .

The i.e.m T associated to these data is the bijection T = j1 ◦ j−1
0 of I.



406 Jean-Christophe Yoccoz

2.2 If A, π0, π1, λα are as above and X : A′ → A is a bijection, we can define
a new set of data by

π′
ε = πε ◦ X , ε = 0, 1 ,

λ′
α′ = λX(α′) , α′ ∈ A′ .

Obviously, the “new” i.e.m T ′ determined by these data is the same, ex-
cept for names, than the old one. In particular, we could restrict to consider
normalized combinatorial data characterized by

A = {1, . . . , d} , π0 = idA .

However, this leads later to more complicated formulas in the continu-
ous fraction algorithm because the basic operations on i.e.m do not preserve
normalization.

2.3 Given combinatorial data (A, π0, π1), we set, for α, β ∈ A

Ωα,β =

⎧⎨
⎩

+1 if π0(β) > π0(α), π1(β) < π1(α) ,
−1 if π0(β) < π0(α), π1(β) > π1(α) ,
0 otherwise .

The matrix Ω = (Ωα,β)(α,β)∈A2 is antisymmetric.
Let (λα)α∈A be length data, and let T be the associated i.e.m. For α ∈

A, y ∈ j0(Iα), we have

T (y) = y + δα ,

where the translation vector δ = (δα)α∈A is related to the length vector
λ = (λα)α∈A by :

δ = Ωλ

2.4 There is a canonical involution I acting on the set of combinatorial
data which exchange π0 and π1. For any set (λα)α∈A of length data, the
interval Iα, I are unchanged, but j0, j1 are exchanged and T is replaced by
T−1. The matrix Ω is replaced by −Ω and the translation vector δ by −δ.

Observe that I does not respect combinatorial normalization.

2.5 In the following, we will always consider only combinatorial data
(A, π0, π1) which are admissible, meaning that for all k = 1, 2, . . . , d − 1,
we have

π−1
0 ({1, . . . , k}) �= π−1

1 ({1, . . . , k}) .

Indeed, if we had π−1
0 ({1, . . . , k}) = π−1

1 ({1, . . . , k}) for some k < d, for
any length data (λα)α∈A, the interval I would decompose into two disjoint
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invariant subintervals and the study of the dynamics would be reduced to
simpler combinatorial data.

2.6 Assume that #A = 2,A = {A,B}. Without loss of generality, we have
π0(A) = π1(B) = 1, π1(A) = π0(B) = 2. When we identify I = [0, λ∗) with
the circle R/λ∗Z, the i.e.m T becomes the rotation by λB .

2.7 Assume that #A = 3,A = {A,B,C}. Without loss of generality, we may
also assume that π0(A) = 1, π0(B) = 2, π0(C) = 3. Amongst the 6 bijections
from A onto {1, 2, 3}, there are 3 choices for π1 giving rise to admissible pairs
(π0, π1), namely :

(i) π1(A) = 2, π1(B) = 3, π1(C) = 1;
(ii) π1(A) = 3, π1(B) = 1, π1(C) = 2;
(iii) π1(A) = 3, π1(B) = 2, π1(C) = 1.

In case (i) and (ii), we obtain again a rotation on the circle R/λ∗Z iden-
tified to I. In case (iii), consider Î = [0, λ∗ + λB) and T̂ : Î → Î defined
by

T̂ (y) =

{
y + λC + λB for y ∈ [0, λA + λB)

y − λA − λB for y ∈ [λA + λB, λ∗ + λB)

Then T̂ is an i.e.m on Î. For y ∈ [0, λA) or y ∈ [λA + λB , λ∗), we have
T (y) = T̂ (y) ; for y ∈ [λA, λA + λB), we have T̂ (y) /∈ I and T (y) = T̂ 2(y).
Therefore, T appears as the first return map of T̂ in I.

Thus, all i.e.m with #A ≤ 3 are rotations or are closely connected to
rotations.

3 The Keane’s property

3.1 Let T be an i.e.m defined by combinatorial data (A, π0, π1) and length
data λ = (λα)α∈A.
DEFINITION – A connexion for T is a triple (α, β,m) where α, β ∈ A, π0(β) >
1, m is a positive integer and Tm(j0(0, α)) = j0(0, β).

We say that T has Keane’s property if there is no connexion for T .
EXERCICE 1 – For d = 2, T has Keane’s property iff λA, λB are rationally
independent.
EXERCICE 2 – For d = 3, in case (i) of 2.7 above, we have T (y) = y +
λC mod λ∗Z.

Show that T has Keane’s property iff the two following conditions are
satisfied

1. T is an irrational rotation, i.e λC/λ∗ is irrational;



408 Jean-Christophe Yoccoz

2. the points 0 and λA are not on the same T -orbit, i.e there are no relations

λA = mλC + nλ∗

with m,n ∈ Z.

3.2 THEOREM – (Keane [Ke1]) An i.e.m T with the Keane’s property is
minimal, i.e all orbits are dense.
Proof – Let T be an i.e.m with the Keane’s property.

1. We first show that T has no periodic orbits. Otherwise, there exists m > 0
s.t Pm(T ) = {y, Tmy = y} is non-empty. Then y∗ := inf Pm(T ) belongs
to Pm(T ). If y∗ > 0, there exists k ∈ {0, . . . m − 1} and α ∈ A such that
T k(y∗) = j0(0, α) > 0 and (α, α,m) is a connexion. If y∗ = 0, T−1(y∗) =
j0(0, α) > 0 for some α ∈ A and (α, α,m) is again a connexion.

2. Assume now by contradiction that there exists y ∈ I such that (Tn(y))n≥0

is not dense in I. Then there exists an half-open interval J = [y0, y1) which
does not contain any accumulation point of (Tn(y))n≥0, nor any j0(0, α).
Let D be the finite set consisting of y0, y1 and the j0(0, α); let D∗ be
the set consisting of the points ŷ ∈ J such that there exists m > 0 with
Tm(ŷ) ∈ D but T l(ŷ) /∈ J for 0 < l < m. There is a canonical injective
map ŷ �→ Tm(ŷ) from D∗ to D thus D∗ is a finite set. Cut J along D∗

into half open intervals J1, . . . , Jk.

For each r ∈ {1, . . . , k}, there is by Poincaré recurrence a smallest nr > 0
such that Tnr (Jr) ∩ J �= ∅. But then, by definition of D∗, we must have
Tnr (Jr) ⊂ J . We conclude that

J∗ :=
⋃
n≥0

Tn(J) =
⋃
r

⋃
0≤n<nr

Tn(Jr)

is a finite union of half-open intervals, is fully invariant under T (because
J =

⋃
r Tnr (Jr)) and does not contain any accumulation point of (Tn(y))n≥0.

Because λ∗ cannot be the only accumulation point of (Tn(y))n≥0, we can-
not have J∗ = I. Because the combinatorial data are admissible (an obvious
consequence of Keane’s property), J∗ cannot be of the form [0, ȳ), 0 < ȳ < λ∗.

Therefore, there exists y∗ ∈ J∗ ∩ ∂J∗ with y∗ > 0. If T l(y∗) �= j0(0, α)
for all l < 0, α ∈ A, then T l(y∗) ∈ J∗ ∩ ∂J∗ for all l ≤ 0 and y∗ is periodic.
Similarly, if T l(y∗) �= j0(0, α) for all l ≥ 0, α ∈ A. Both cases are impossible
by the first part of the proof. Thus there exists l1 < 0, l2 ≥ 0 and α1, α2 ∈ A
with T l1(y∗) = j0(0, α1), T l2(y∗) = j0(0, α2). Taking l2 minimal, we have
j0(0, α2) > 0 and (α1, α2, l2 − l1) is a connexion. �

3.3 Irrationality and Keane’s property

PROPOSITION – (Keane [Ke1]). If the length data (λα)α∈A are rationally in-
dependent and the combinatorial data are admissible, then T has Keane’s
property.
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Proof – Assume on the opposite that there is a connexion (α0, αm,m). For
0 < l < m, let αl ∈ A such that T l(j0(0, α0)) ∈ j0(Iαl

). Denote by (δα)α∈A
the translation vector. We have

j0(0, αm) − j0(0, α0) =
∑

0≤l<m

δαl

which, in view of 2.3, gives

∑
π0α<π0αm

λα −
∑

π0α<π0α0

λα =
∑

0≤l<m

( ∑
π1α<π1αl

λα −
∑

π0α<π0αl

λα

)
.

Setting, for α ∈ A :

nα := #{l ∈ [0,m), π1(αl) > π1(α)} − #{l ∈ (0,m], π0(αl) > π0(α)}
we obtain

∑
nαλα = 0 and therefore nα = 0 for all α ∈ A from rational

independence.
Let d̂ be the highest value taken by the π1(αl), l ∈ [0,m) or the π0(αl), l ∈

(0,m]. Because the combinatorial data are admissible, there must exists α̂ ∈ A
with π0(α̂) ≥ d̂ but π1(α̂) < d̂. Then π0(αl) ≤ π0(α̂) for l ∈ (0,m]. As nα̂ = 0,
we must have π1(αl) ≤ π1(α̂) < d̂ for all l ∈ [0,m). In a symmetric way, we
also prove that π0(αl) < d̂ for all l ∈ (0,m]. This contradicts the definition of
d̂. �

3.4 A continuous version of interval exchange maps

The construction which follows is completely similar to the construction of
Denjoy counter examples, i.e C1 diffeomorphisms of the circle with no periodic
orbits and a minimal invariant Cantor set.

Let T be an i.e.m with combinatorial data (A, π0, π1); for simplicity we
assume that T has Keane’s property.

For n ≥ 0, define

D0(n) = {T−n(j0(0, α)), α ∈ A, π0(α) > 1} ,
D1(n) = {T+n(j1(0, α)), α ∈ A, π1(α) > 1} .

It follows from the Keane’s property that these sets are disjoint from each
other and do not contain 0.

Define an atomic measure µ by

µ =
∑
n≥0

∑
D0(n)�D1(n)

2−nδy ,

and then increasing maps i+, i− : I → R by
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i−(y) = y + µ([0, y)) ,
i+(y) = y + µ([0, y]) .

We therefore have

i+(y) < i−(y′) for y < y′

i+(y) = i−(y) for y /∈
⊔
n≥0

(D0(n) � D1(n)) ,

i+(y) = i−(y) + 2−n for y ∈ D0(n) � D1(n) .

We also define

i−(λ∗) = λ∗ + 4(d − 1)
= lim

y↗λ∗
i±(y) ,

and

K = i−(I) ∪ i+(I) ∪ {i−(λ∗)}
= i−(I) = i+(I) .

As T is minimal, K is a Cantor set whose gaps are the intervals

(i−(y), i+(y)), y ∈
⋃
n≥0

⋃
ε

Dε(n) .

PROPOSITION – There is a unique continuous map T̂ : K → K such that
T̂ ◦ i+ = i+ ◦ T on I. Moreover, T̂ is a minimal homeomorphism.
Proof – T̂ is unique because i+(I) is dense in K. Let us check that T̂ is
uniformly continuous on i+(I) : if y < y′ satisfy i+(y′) < i+(y) + 1, it is easy
to check that we have

T̂ ◦ i+(y′) − T̂ ◦ i+(y) = i+(Ty′) − i+(Ty)

< 2(i+(y′) − i+(y)) .

The first statement of the proposition follows. That T̂ is an homeomor-
phism follows from the observation that our setting gives symmetrical roles
to T and T−1. We leave the minimality as an exercice for the reader. �

4 The continuous fraction algorithm

4.1 The basic operation (Rauzy [Ra], Veech [V1], [V2])

Let T be an i.e.m defined by combinatorial data (A, π0, π1) and length data
(λα)α∈A. We assume as always that the combinatorial data are admissible.

We denote by α0, α1 the (distinct) elements of A such that
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π0(α0) = π1(α1) = d .

Observe that if λα0 = λα1 the triple (α1, α0, 1) is a connexion and T has
not the Keane’s property.

We now assume that λα0 �= λα1 and define ε ∈ {0, 1} by

λαε
= max(λα0 , λα1) .

We set

λ̂∗ = λ∗ − λα1−ε
,

Î = [0, λ̂∗) ⊂ I ,

and define T̂ : Î → Î to be the first return map of T in Î.
When ε = 0, we have

T̂ (y) =
{

T (y) if y /∈ j0(Iα1) ,
T 2(y) if y ∈ j0(Iα1) .

When ε = 1, we have similarly

T̂−1(y) =
{

T−1(y) if y /∈ j1(Iα0) ,
T−2(y) if y ∈ j1(Iα0) .

In both case, it appears that T̂ is again an interval exchange map which
can be defined using the same alphabet A. The length data for T̂ are given
by

{
λ̂α = λα if α �= αε

λ̂αε
= λαε

− λα1−ε
.

Fig. 1. Rauzy diagrams d = 2 and d = 3
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The combinatorial data (π̂0, π̂1) for T̂ are given by π̂ε = πε and

π̂1−ε(α) =

⎧⎨
⎩

π1−ε(α) if π1−ε(α) ≤ π1−ε(αε)
π1−ε(α) + 1 if π1−ε(αε) < π1−ε(α) < d
π1−ε(αε) + 1 if π1−ε(α) = d

We rewrite the relation between old and new length data as

λ = V λ̂ ,

where V = 1 + Eαεα1−ε
has now non negative integer coefficients an belongs

to SL(ZA).
We also write

(π̂0, π̂1) = Rε(π0, π1)

and observe that these new combinatorial data are admissible.

4.2 Rauzy diagrams

Let A be an alphabet. We define an oriented graph, as follows. The vertices
are the admissible pairs (π0, π1). Each vertex (π0, π1) is the starting point of
exactly two arrows with endpoints at R0(π0, π1) and R1(π0, π1). The arrow
connecting (π0, π1) to Rε(π0, π1) is said to be of type ε.

The operations R0, R1 are obviously invertible. Therefore each vertex is
also the endpoint of exactly two arrows, one of each type.

To each arrow in the graph, we associate a name in A : it is the element
αε such that πε(αε) = d (where (π0, π1) is the starting point of the arrow and
ε is its type). The element α1−ε will then be called the secondary name of
this arrow.

A Rauzy diagram is a connected component in this oriented graph.

Fig. 2. Rauzy diagram d = 4, first case
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Obviously, the Rauzy operations R0, R1 commute with change of names
(cf. 2.2).

Up to change of names, there is only one Rauzy diagram with d = #A = 2,
and one with d = #A = 3 (see figure 1), where the pair (π0, π1) is denoted
by the symbol

π−1
0 (1) . . . π−1

0 (d)
π−1

1 (1) . . . π−1
1 (d) .

For d = #A = 4, there are 2 distinct Rauzy diagrams (see figures 2 and
3).

In each of these diagrams, the symmetry with respect to the vertical axis
corresponds to the action of the canonical involution.

Fig. 3. Rauzy diagram d = 4, second case

In the last diagram, there is a further symmetry with respect to the center
of the diagram, which corresponds to the exchange of the names B0, B1. This is
a monodromy phenomenon : to each admissible pair (π0, π1), one can associate
the permutation π := π1 ◦ π−1

0 of {1, . . . , d}, which is invariant under change
of names. When we identify vertices with the same permutation, we obtain
a reduced Rauzy diagram and we have a covering map from the Rauzy
diagram onto the reduced Rauzy diagram.

In the first three examples above, the covering map is an isomorphism. In
the last exemple, the degree of the covering map is 2 and the reduced Rauzy
diagram is shown in figure 4, where π is denoted by (π−1(1), . . . π−1(d)).
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Fig. 4. Reduced Rauzy diagram d = 4 (second case)

4.3 Dynamics in parameter space

Let D be a Rauzy diagram on an alphabet A; denote by V (D) the set of
vertices of D. For (π0, π1) ∈ V (D), let

C(π0, π1) = (R∗
+)A × {(π0, π1)} ,

C∗(π0, π1) = {((λα), π0, π1) ∈ C(π0, π1), λα0 �= λα1} ,

∆(π0, π1) = {((λα), π0, π1) ∈ C(π0, π1), Σλα = 1} ,

∆∗(π0, π1) = ∆(π0, π1) ∩ C∗(π0, π1) .

For ε ∈ {0, 1}, we also write ∆ε(π0, π1), Cε(π0, π1) for the subsets of
∆∗(π0, π1), C∗(π0, π1) defined by λαε

> λα1−ε
.

The basic operation of 4.1 defines a 2 to 1 map from C∗(D) := �C∗(π0, π1)
onto C(D) := �C(π0, π1); its restriction to Cε(π0, π1) is an isomorphism onto
C(Rε(π0, π1)) given by the matrix V = 1 + Eαεα1−ε

of 4.1. We denote this
map by R. In other terms, in the context of Section 4.1, we set

R(T ) = T̂ .

Because T̂ is a first return map for T , if T has the Keane’s property, the
same will be true for T̂ . This means that for such maps we will be able to
iterate infinitely many times R.

There is a canonical projection from C(π0, π1) onto ∆(π0, π1) which
sends C∗(π0, π1) onto ∆∗(π0, π1). We define ∆(D) = �∆(π0, π1),∆∗(D) =
�∆∗(π0, π1), and we get a quotient map which we still denote by R and
which is 2 to 1 from ∆∗(D) onto ∆(D).

Let (λα)α∈A, π0, π1) ∈ C(D) be data defining an i.e.m T ; assume that T
satisfies the Keane’s property. Iterating R, we get a sequence (T (n))n≥0 of
i.e.m with T (0) = T . The data for T (n+1) are related to the data of T (n) by
formulas :

(π(n+1)
0 , π

(n+1)
1 ) = Rεn+1(π

(n)
0 , π

(n)
1 ) ,

λ(n) = V (n+1)λ(n+1) .
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Denote by γ(n+1) the arrow in D which connects the pair (π(n)
0 , π

(n)
1 ) to

(π(n+1)
0 , π

(n+1)
1 ). The sequence (γ(n))n>0 determines an infinite path in D

starting at (π(0)
0 , π

(0)
1 ).

PROPOSITION – Each name in A is taken infinitely many times by the sequence
(γ(n))n>0.
Proof – Let A′ be the set of names which are taken infinitely many times and
let A′′ = A−A′. Replacing T by some T (N), we can assume that names in A′′

are not taken at all. Then the length λ
(n)
α , α ∈ A′′, do no depend on n. But then

elements α ∈ A′′ can only appear as secondary names at most finitely many
times. Replacing again T by some T (N), we can assume that secondary names
are never in A′′. Then the sequences (π(n)

ε (α))n>0, for ε ∈ {0, 1}, α ∈ A′′, are
non decreasing and we can assume (replacing again T by T (N)) that they are
constant.

We now claim that we must have π
(0)
ε (α′′) < π

(0)
ε (α′) for all α′′ ∈ A′′, α′ ∈

A′ and ε ∈ {0, 1}. Because the pair (π(0)
0 , π

(0)
1 ) is admissible, this implies

A′ = A.
To prove the claim, assume that there exist α′ ∈ A′, α′′ ∈ A′′, ε ∈ {0, 1}

with π
(0)
ε (α′) < π

(0)
ε (α′′).

As π
(n)
ε (α′′) = π

(0)
ε (α′′) for all n ≥ 0, we can never have π

(n)
ε (α′) = d for

some n > 0. By definition of A′, there must exist n ≥ 0 such that π
(n)
1−ε(α

′) =
d ; but then π

(n+1)
ε (α′′) �= π

(0)
ε (α′′), which gives a contradiction. �

COROLLARY 1 – Each type and each secondary name is taken infinitely many
times.
Proof – The first assertion is obvious (we do not need the proposition here).
The second follows from the proposition and the following fact : if γ(n), γ(n+1)

have not the same name, the secondary name of γ(n+1) is the (main) name of
γ(n). �

COROLLARY 2 – The length of the intervals I(n) goes to 0 as n goes to ∞.
Proof – All sequences (λ(n)

α )n≥0 are non increasing and we want to show that
they go to 0. Let λ

(∞)
α be the limit. Given ε > 0, let N ≥ 0 such that

λ
(N)
α ≤ λ

(∞)
α +ε for all α ∈ A. For each α ∈ A, there exists n > N such that α

is a secondary name for γ(n); this implies that λ
(∞)
α ≤ λ

(n)
α ≤ ε and concludes

the proof. �

COROLLARY 3 – Let T be an i.e.m with admissible combinatorial data which does
not have the Keane’s property. Then the continuous fraction algorithm stops
because at some point the equality λ

(n)
α0 = λ

(n)
α1 (with π

(n)
0 (α0) = π

(n)
1 (α1) = d)

holds.
Proof – Let (α, β,m) a connexion for T = T (0). We show by infinite descent
that the algorithm has to stop. Set y0 = j0((0, β)); set y1 = j1((0, α)) if
π1(α) �= 1, y1 = T (0) if π1(α) = 1. We have T m̄(y1) = y0 with m̄ = m − 1 if
π1(α) �= 1, m̄ = m − 2 if π1(α) = 1, and m̄ ≥ 0 in both cases, with y0, y1 > 0.
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Assume by contradiction that the algorithm never stops. Observe that the
proposition and the corollaries 1 and 2 hold, because the Keane’s property
was not used in their proof. Let n be the largest integer such that

|I(n)| > max(y0, y1) ,

where I(n) is the domain for T (n). Such an n exists by Corollary 2. If we had
y0 = y1, the equality case would happen at the next step of the basic operation.
We therefore have m̄ > 0, y0 �= y1. Assume for instance that y1 > y0 (the other
case is symmetric). First, because T (n) is the first return map of T into I(n),
there exists 0 < m̂ ≤ m̄ such that (T (n))m̂(y1) = y0. Second, by the definition
of the basic operation, y′

1 = T (n)(y1) is equal to j1(0, α1) at step n + 1, where
π

(n)
1 (α1) = d. Then (T (n))m̂−1(y′

1) = y0 and therefore (as T (n+1) is a first
return map of T (n)) there exists m̄′ ≤ m̂ − 1 < m̄ such that T (n+1)(y′

1) = y0.
We have completed one step of the descent argument, and this concludes the
proof. �

COROLLARY 4 – For each m ≥ 0, there exists n > m such that the matrix
Q := V (m+1) . . . V (n) satisfies Qαβ > 0 for all α, β ∈ A.
Proof – Write Q = Q(n). Let α, β ∈ A; if Qαβ(n0) > 0 for some n0, then
Qαβ(n) > 0 for all n ≥ n0 : indeed the diagonal terms of the V matrices are
equal to 1. It therefore suffices to prove that for all α, β ∈ A there exists n0

such that Qαβ(n0) > 0. Fix α, β ∈ A. If α = β, we already have Qαβ(m+1) =
1. Assume α �= β. Let n1 > m the smallest integer such that the arrow γ(n1)

has name α. Set α1 := α and let α2 be the secondary name of γ(n1); we have
Qα1αi

(n1) > 0 for i = 1, 2. If β = α2, we are done. Otherwise, d ≥ 3 and there
exists a smallest integer n′

1 > n1 such that the name of γ(n′
1) is not α1 or α2.

There also exists a smallest integer n2 > n′
1 such that the name of γ(n2) is

α1 or α2. Then, the secondary name α3 of γ(n2) is the name of γ(n2−1) and
therefore is different from α1 or α2. We have V

(n2)
αjα3 = 1 for some j ∈ {1, 2},

and therefore Qα1αi
(n2) > 0 for i ∈ {1, 2, 3}. If β = α3 we are done. Otherwise

d ≥ 4 and we define n′
2 > n2, n3 > n′

2, α4 /∈ {α1, α2, α3} as above . . . At some
point we must have β = αj . �

COROLLARY 5 – Define a decreasing sequence of open simplicial cones in RA

by

C(0) = (R∗
+)A, C(n+1) = V (n+1)C(n)

and let C(∞) = ∩ C(n). Then C(∞) ∪ {0} is a closed simplicial cone, of dimen-
sion < d = #A.
Proof – From Corollary 4 it follows that for all m ≥ 0 there exists n > m such
that the closure of C(n) is contained in C(m) ∪{0}. This shows that C(∞) ∪{0}
is closed. For n ≥ 0, α ∈ A, let e

(n)
α = V (1) . . . V (n)(eα), where (eα)α∈A is the

canonical base of RA. Let nk be an increasing sequence of integers such that
e
(nk)
α ‖e(nk)

α ‖−1 converge towards a limit e
(∞)
α for every α ∈ A. Then we must

have



Continued Fractions and Interval Exchange Maps 417

C(∞) ∪ {0} = {
∑
A

tαe(∞)
α , tα ≥ 0} .

The limits e
(∞)
α cannot be all distinct, because all coefficients of V (1). . . V (n)

go to ∞ as n goes to ∞ (by Corollary 4), and these matrices are unimodular.
Thus C(∞) ∪{0} is closed, polyhedral of dimension < d. Indeed it is simplicial
because, as we will see in the next section, it can be interpreted as a cone of
invariant measures. �

4.4 Unique ergodicity and the continuous fraction algorithm

Recall that a transformation is uniquely ergodic if it has exactly one in-
variant probability measure.

For an i.e.m T , (normalized) Lebesgue measure is invariant, hence there
should be no other invariant probability measure.

Let T be an i.e.m with the Keane’s property. In particular, T is minimal.
Therefore, every finite invariant measure µ is continuous and supported by
the whole of I. For such a measure, we set

Hµ(x) = µ([0, x)) .

This defines an homeomorphism from I onto Iµ := [0, µ(I)). Let

Tµ = Hµ ◦ T ◦ H−1
µ .

This is a one-to-one transformation of Iµ. Actually, Tµ is immediately seen
to be an i.e.m on Iµ, whose combinatorial data are the same as for T , and
whose length data (λα(µ))α∈A are given by

λα(µ) = µ(j0(Iα)) = µ(j1(Iα)) .

Obviously, the image of µ under the conjugacy Hµ is the Lebesgue measure
on Iµ.
PROPOSITION – The map µ �→ (λα(µ))α∈A is a linear homeomorphism from
the set of T -invariant finite measures onto the cone C(∞) of Corollary 5 In
particular, T is uniquely ergodic if and only if C(∞) is a ray.
Proof – The map is obviously linear and continuous; as T and Tµ are topolog-
ically conjugated, Tµ has also the Keane’s property; moreover, the restriction
of Hµ to I(n) is an homeomorphism on I

(n)
µ which conjugates T (n) and T

(n)
µ .

Thus, the length vector (λγ(µ))α∈A belongs to C(n) for every n ≥ 0 and there-
fore to C(∞). Conversely, let (λ̃α)α∈A be a length vector in C(∞). Let T̃ be the
i.e.m defined by this length vector and the same combinatorial data than T .
The continuous fraction algorithm for T̃ never stops (with the same path in
the Rauzy diagram than for T ), hence T̃ has the Keane’s property; the same
is true for the i.e.m. T̃t whose length vector is (1− t)λ+ tλ̃ ∈ C(∞). Therefore,
for each t ∈ [0, 1], the points (T k

t (0))k≥0 are distinct, form a dense set in It

and we have
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T k
t (0) > T l

t (0) ⇐⇒ T k
t′(0) > T l

t′(0)

for all k, l ≥ 0, t, t′ ∈ [0, 1]. If we set

H(T k(0)) = T̃ k(0) ,

for all k ≥ 0, the map H extends in a unique way to an homeomorphism from
I onto Ĩ which conjugates T and T̃ . If µ is the image of Lebesgue measure
under H−1, then µ is a finite T -invariant measure on I and T̃ = Tµ. �

For d ≤ 3, interval exchange maps are rotations or first return maps of
rotations and thus are uniquely ergodic if minimal. On the other hand, Keane
has constructed ([Ke2], see also [KN], [Co]) i.e.m with d = 4 which are minimal
but not uniquely ergodic. Nevertheless, we have the following fundamental
result :
THEOREM – (Mazur [Ma], Veech [V2]) Let (Q, π0, π1) be any admissible combi-
natorial data. Then, for almost all length data (λα)α∈A, the associated i.e.m
is (minimal and) uniquely ergodic.
Proof – We will give a slightly simplified version of the proof of Kerchkoff
([Ker]). Let D be the Rauzy diagram which contains the combinatorial data
(A, π0, π1).

For any finite path γ = (γ(i))0<i≤n in D starting at (π0, π1), let (V (i))0<i≤n

be the associated matrices; let

Q(γ) = V (1) . . . V (n)

C(γ) = Q(γ)[(R∗
+)A] × {(π0, π1)} ,

∆(γ) = C(γ) ∩ ∆(π0, π1) .

For β ∈ A, we also write

Qβ(γ) =
∑
α

Qαβ(γ) .

LEMMA 1 – We have

vold−1(∆(γ)) = (
∏
β

Qβ(γ))−1 vold−1(∆(π0, π1)) .

Proof – Indeed, Q(γ) is unimodular and we have, for λ(0) = Q(γ)λ(n) :
∑
α

λ(0)
α =

∑
β

Qβ(γ)λ(n)
β .

�

LEMMA 2 – Let C ≥ 1 a constant such that

max
α

Qα(γ) ≤ C min
α

Qα(γ) .
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There exists a constant c ∈ (0, 1), depending only on C and d, and a path
γ′ extending γ such that

vold−1(∆(γ′)) ≥ c vold−1(∆(γ)) ,

diam (∆(γ′)) ≤ (1 − c) diam (∆(γ)) .

Proof – Choose a path γ̃ starting from the endpoint of γ such that Qαβ(γ̃) > 0
for all α, β ∈ A. We have Qαβ(γ̃) ≤ C1, with C1 depending only on d. Let
γ′ = γ � γ̃. We have, for β ∈ A

Qβ(γ′) =
∑
α

Qα(γ)Qαβ(γ̃) ,

and thus, by Lemma 1

vold−1(∆(γ′)) ≥ (CC1d)−d vold−1(∆(γ)) .

It is also clear, considering orthogonal projections on 1-dimensional lines,
that we have

diam (∆(γ′)) ≤
(

1 − 2
C1(d − 1) + 1

)
diam(∆(γ)) .

�

LEMMA 3 – Let (π(n)
0 , π

(n)
1 ) be the vertex of D endpoint of γ; define α0, α1 ∈ A

by π
(n)
ε (αε) = d, ε = 0, 1. For ε = 0, 1, let ∆ε(γ) be formed of those length

data in ∆(γ) for which the (n + 1)th arrow has type ε. Then

vold−1(∆ε(γ)) =
Qα1−ε

(γ)
Qα0(γ) + Qα1(γ)

vold−1(∆(γ)) .

Proof – Clear from Lemma 1. �

Let T be an i.e.m in ∆(γ) satisfying Keane’s condition, and let (γ(i)(T ))i≥0

be the associated path; we therefore have γ(i)(T ) = γ(i) for 0 < i ≤ n. Let
(V (i)(T ))i≥O be the associated matrices; define

Q(i, T ) = V (1)(T ) . . . V (i)(T ) .

Fix α ∈ A, and define Q′
α(T ) = Qα(n(α, T ), T ), where n(α, T ) is the

smallest integer m > n such that the name of γ(m)(T ) is α (this is well
defined by the proposition in 4.3). We then have :
LEMMA 4 – For any C ≥ 1, we have :

vold−1({T ∈ ∆(γ), Q′
α(T ) ≥ CQα(γ)}) ≤ C−1 vold−1(∆(γ)) .

Proof – We will show the slightly stronger result that the inequality of the
lemma holds even after conditioning by the value n̄ of n(α, T ) − n. We show
this last result by induction on n̄.
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We have n̄ = 1 iff the name of γ(n+1)(T ) is α; in this case, we have
Q′

α(T ) = Qα(γ) and the estimate holds for all C ≥ 1.
If π

(n)
0 (α) < d and π

(n)
1 (α) < d, we divide ∆(γ) into ∆0(γ) and ∆1(γ) and

apply the induction hypothesis to both simplices to conclude.
Assume on the other hand that π

(n)
0 (α) < d, π

(n)
1 (α) = d; if n̄ > 1, the

name of γ(n+1)(T ) is the element α0 ∈ A such that π
(n)
0 (α0) = d and we have

Qα(n + 1, T ) = Qα(γ) + Qα0(γ) ,

vold−1(∆0(γ)) = Qα(γ)
Qα(n+1,T ) vold−1(∆(γ)) ,

by Lemma 3. We will have Q′
α(T ) ≥ Qα(n+1, T ). If 1 ≤ C ≤ (Qα(γ))−1Qα(n+

1, T ), the estimate of the lemma holds immediately. For C > (Qα(γ))−1Qα(n+
1, T ), we set

C′ = CQα(γ)(Qα(n + 1, T ))−1 ,

γ′ = γ � γ(n+1)(T ) ,

and use the induction hypothesis to conclude. The case π
(n)
0 (α) = d > π

(n)
1 (α)

is symmetric. �

LEMMA 5 – Let C0 ≥ 1 a constant and a non trivial non empty subset A0 ⊂ A,
A0 �= A, such that

max
α∈A0

Qα(γ) ≤ C0 min
α∈A0

Qα(γ) ,

max
α∈A

Qα(γ) ≤ max
α∈A0

Qα(γ) .

There exist a constant C1 ≥ 1, a constant c1 ∈ (0, 1), depending only on
C0 and d, and paths (γ(l))1≤l≤L extending γ such that

(i) the simplices ∆(γ(l)) have disjoint interiors and

vold−1(�∆(γ(l))) ≥ c1 vold−1 (∆(γ)) ;

(ii) for every l ∈ [1, L], there exists a subset Al of A strictly larger than A0

such that

max
Al

Qα(γ(l)) ≤ C1 min
Al

Qα(γ(l)),

max
A

Qα(γ(l)) ≤ max
Al

Qα(γ(l)) .

Proof – We first extend γ to a path γ̃ such that the name of the last arrow of
γ̃ does not belong to A0; we can do this having
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max
A

Qα(γ̃) ≤ C ′
1max

A
Qα(γ),

vold−1(∆(γ̃)) ≥ c′1 vold−1(∆(γ)) ,

C ′
1, c

′
1 depend only on d.

We then apply Lemma 4, for every α ∈ A0, to γ̃ with C = 2#A0. We
obtain that the volume of those T ∈ ∆(γ̃) for which Q′

α(T ) ≤ 2#A0Qα(γ̃) for
every α ∈ A0 is at least half the volume of ∆(γ̃). For such a T , let m > ñ =
length (γ̃) the smallest integer such that the name ᾱ of γ(m)(T ) belongs to
A0. We define (for those T ) a finite path γ(T ) as follows :

1. If for some m̃ ∈ (ñ,m), some α ∈ A−A0, we have

Qα(m̃, T ) ≥ max Qα(γ̃) ,

we let γ(T ) = (γ(i)(T ))0≤i≤m̃, where m̃ is the smallest such integer.
2. Otherwise, γ(T ) = (γ(i)(T ))0≤i≤m.

We select finitely many such T1, . . . , TL such that, setting γ(l) = γ(Tl),
we have

vol (∪∆(γ(l))) ≥ 1
4

vol ∆(γ̃)

and the ∆(γ(l)) have disjoint interiors. Let l ∈ [1, L]; if Tl is as in case
a), we take Al to be the union of A0 and all α ∈ A − A0 satisfying
Qα(m̃, Tl) ≥ maxα Qα(γ̃). If Tl is as in case b), by definition of m, the
name β of γ(m−1)(Tl) does not belong to A0 and we have

Q
(m)
β (Tl) = Q(m−1)

α (Tl) + Q
(m−1)
β (Tl) ,

where α is the name of γ(m−1)(Tl). It follows that

Q
(m)
β (Tl) ≥ C−1

0 max
α∈A0

Qα(γ) .

We take Al = A0 ∪ {β} in this case. We obtain the conclusions of the
lemma with c1 = 1

4c′1 and C1 = C0(1 + 2(#A0)C ′
1).

�

Iterating Lemma 5, we obtain
LEMMA 6 – There exists a constant C, depending only on d, and paths
(γ(l))1≤l≤L extending γ such that

(i) the simplices ∆(γ(l)) have disjoint interiors and

vold−1(�∆(γ(l))) ≥ C−1 vol(∆(γ)) ;

(ii) for every 1 ≤ l ≤ L, we have

max
α

Qα(γ(l))) ≤ C min
α

(Qα(γ(l))) .

�
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The proof of the theorem is now clear : for almost every i.e.m T , with
associated path (γ(i))i>0, it follows from Lemma 6 that there are infinitely
many integers nk such that the path (γ(i))0<i≤nk

satisfy the hypothesis of
Lemma 2. It follows then from Lemma 2 that the intersection of the simplices
∆((γ(i))0<i≤n) is reduced to a point. �

5 Suspension of i.e.m

5.1 Suspension data

Let (A, π0, π1) be admissible combinatorial data, and let T be an i.e.m of this
combinatorial type, determined by length data (λα)α∈A.

We will construct a Riemann surface with a flow which can be considered as
a suspension of T . In order to do this, we need data which we call suspension
data.

We will identify R2 with C. Consider a family τ = (τα)α∈A ∈ RA. To this
family we associate

ζα = λα + iτα , α ∈ A

ξε
α =

∑
πεβ≤πεα

ζβ , α ∈ A , ε ∈ {0, 1} .

We always have ξ0
α0

= ξ1
α1

, where as before πε(αε) = d. We say that τ
defines suspension data if the following inequalities hold :

Imξ0
α > 0 for all α ∈ A, α �= α0 ,

Imξ1
α < 0 for all α ∈ A, α �= α1 .

We also set

θα = ξ1
α − ξ0

α, α ∈ A .

We then have

θ = Ωζ ,

Reθ = δ ,

and define h = −Imθ = −Ωτ .
One has hα > 0 for all α ∈ A, because of the formula

θα = (ξ1
α − ζα) − (ξ0

α − ζα) .

One has also
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Im ξ0
α0

= Im ξ1
α1

∈ [−hα1 , hα0 ] .

5.2 Construction of a Riemann surface

Let (A, π0, π1) and (ζα = λα + iτα)α∈A as above. For α ∈ A, consider the
rectangles in C = R2 :

R0
α = (Reξ0

α − λα, Reξ0
α) × [0, hα] ,

R1
α = (Reξ1

α − λα, Reξ1
α) × [−hα, 0] ,

and the segments

S0
α = {Reξ0

α} × [0, Imξ0
α) , α �= α0

S1
α = {Reξ1

α} × (Imξ1
α, 0] , α �= α1 .

Let also S0
α0

= S1
α1

be the half-open vertical segment [λ∗, ξ0
α0

) = [λ∗, ξ1
α1

).
Define then

Rζ =
⋃
ε

⋃
α

Rε
α

⋃
ε

⋃
α

Sε
α .

The translation by θα sends R0
α onto R1

α. If ξ0
α0

= ξ1
α1

= 0, S0
α0

= S1
α1

is
empty, ξ0

α1
is the top right corner of R0

α1
and ξ1

α0
is the bottom right corner

of R1
α0

. If ξ0
α0

= ξ1
α1

> 0, the translation by θα1 sends the top part S̃0
α1

=
{Reξ0

α1
} × [hα1 , Imξ0

α1
) of S0

α1
onto S1

α1
. If ξ0

α0
= ξ1

α1
< 0, the translation by

θα0 sends S0
α0

onto the bottom part S̃1
α0

= {Reξ1
α0
} × (Imξ1

α0
,−hα0 ] of S1

α0
.

We use these translations to identify in Rζ each R0
α to each R1

α, and
S0

α0
= S1

α1
(if non empty) to either S̃0

α1
or S̃1

α0
. Denote by M∗

ζ the topological
space obtained from Rζ by these identifications.

Observe that M∗
ζ inherits from C the structure of a Riemann surface, and

also a nowhere vanishing holomorphic 1-form ω (given by dz) and a vertical
vector field (given by ∂

∂y ).

5.3 Compactification of M∗
ζ

Let Ā be the set with 2d−2 elements of pairs (α,L) and (α,R), except that we
identify (α0, R) = (α1, R) and (α′

0, L) = (α′
1, L), where πε(αε) = d, πε(α′

ε) =
1.

Let σ be the permutation of Ā defined by

σ(α,R) = (β0, L) ,

σ(α,L) = (β1, R) ,

with π0(β0) = π0(α) + 1, π1(β1) = π1(α) − 1; in particular, we have
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σ(α0, R) = (π−1
0 (π0(α1) + 1), L) ,

σ(α′
1, L) = (π−1

1 (π1(α′
0) − 1), R) .

The permutation describes which half planes are met when one winds
around an end of M∗

ζ . Denote by
∑

the set of cycles of σ. To each c ∈ Σ is
associated in a one-to-one correspondance an end qc of M∗

ζ . From the local

structure around qc, it is clear that the compactification Mζ = M∗
ζ

⋃
Σ

{qc} will

be a compact Riemann surface, with the set of marked points {qc} = Mζ−M∗
ζ

in canonical correspondence with Σ. Moreover, the 1-form ω extends to a
holomorphic 1-form on Mζ ; the length of a cycle c is an even number 2nc; the
corresponding marked point qc is a zero of ω of order nc − 1.

Let ν = #Σ, and let g be the genus of Mζ . We have

d − 1 = Σnc

2g − 2 = Σ(nc − 1)

hence

d = 2g + ν − 1 .

Example : Suppose that π0, π1 satisfy

π0(α) + π1(α) = d + 1, for all α ∈ A
If d is even, there is only 1 cycle; we have d = 2g and the only zero of ω

has order 2g − 2. If d is odd, there are two cycles of equal length d − 1; we
have d = 2g + 1, and each of the two zeros of ω has order g − 1.

The vertical vector field on M∗
ζ does not extend (continuously) to Mζ when

g > 1, unless one slows it near the marked points (which we will not do here).
Nevertheless, it can be considered as a suspension of T : starting from a point
(x, 0) on the bottom side of R0

α, one flows up till reaching the top side where
the point (x, hα) is identified with the point (x + δα, 0) = (T (x), 0) in the top
side of R1

α. The return time is hα. The vector field is not complete, as some
orbits reach marked points in finite time.

5.4 The basic operation of the algorithm for suspensions

Let (A, π0, π1) and (ζα = λα + iτα)α∈A as above. Construct Rζ ,Mζ as in 5.2,
5.3. With πε(αε) = d as above, assume that

λα0 �= λα1 ..

Then the formula λαε
= max(λα0 , λα1) defines uniquely ε ∈ {0, 1} and

determines uniquely the basic step of the continuous fraction algorithm; this
step produces new combinatorial data (A, π̂0, π̂1) and length data (λ̂α)α∈A
given by
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⎧⎨
⎩

λ̂α = λα , α �= αε

λ̂αε
= λαε

− λα1−ε

For suspension data, we just define in the same way
⎧⎨
⎩

ζ̂α = ζα , α �= αε

ζ̂αε
= ζαε

− ζα1−ε

This has a nice representation in terms of the corresponding regions Rζ , Rζ̂ .
One cuts from Rζ the part where x > λ̂∗ = λ∗ − λαε

; it is made of R1−ε
α1−ε

and
a right part of Rε

αε
. We glue back R1−ε

α1−ε
to the free horizontal side of R1−ε

αε
,

and the right part of Rε
αε

to Rε
α1−ε

: see figure 5.
It is easy to check that the new suspension data satisfy the inequalities

required in 5.1; if for instance ε = 0, one has

ξ̂0
α = ξ0

α , α �= α0

with π̂0 = π0 on one hand and

ξ̂1
α = ξ1

α, α �= α0, α1

ξ̂1
α1

= ξ1
α0

,

ξ̂1
α0

= ξ1
α0

− ζα1 .

The last formula gives

−ξ̂1
α0

= ζα1 − ξ1
α0

= ζα1 − ξ0
α0

− θα0

= ζα1 − ξ1
α1

− θα0

= −ξ1
α̃1

− θα0 ,

with π1(α̃1) = d − 1. We therefore have

−Imξ̂1
α0

= −Imξ1
α̃1

+ hα > 0 ..

We also see that (still with ε = 0), if α̂1 ∈ A is such that π̂1(α̂1) = d (we
have α̂1 = α̃1 if α̃1 �= α0, α̂1 = α1 if α̃1 = α0), one has

Imξ̂1
α̂1

= Imξ1
α̃1

< 0

Conversely, given (A, π0, π1) and (ζα = λα + iτα)α∈A as above, assume
that

Imξ0
α0

= Imξ1
α1

�= 0 ,

and define ε as 0 if Imξ1
α1

< 0, 1 if Imξ0
α0

> 0. Set
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Fig. 5. The Rauzy-Veech operation for suspensions
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⎧⎨
⎩

ζ̂α = ζα for α �= αε ,

ζ̂αε
= ζαε

+ ζα1−ε
,

and define appropriately new combinatorial data; this operation is the inverse
of the one above. Thus the dynamics of the continuous fraction algorithm at
the level of suspensions is invertible (on a full measure set) and can be viewed
as the natural extension of the dynamics at the level of i.e.m.

It is clear that the Riemann surfaces Mζ ,Mζ̂ are canonically isomorphic,
and the isomorphism respects the holomorphic 1-form and the vertical vector
field.

5.5 Cohomological interpretation of Ω

Consider the following homology classes :

• cα ∈ H1(Mζ , Σ,Z) is defined by a path in Rζ joining ξ0
α − ζα to ξ0

α (or by
a path joining ξ1

α − ζα to ξ1
α);

• c∗α ∈ H1(Mζ − Σ,Z) is defined by a path in Rζ joining the center of R0
α

to the center of R1
α.

Then (cα)α∈A is a basis of H1(Mζ , Σ,Z), and (c∗α)α∈A is a basis of
H1(Mζ − Σ,Z).

For the intersection pairing on H1(Mζ − Σ,Z) × H1(Mζ , Σ,Z), (c∗α) and
(cα) are dual bases.

We have canonical maps

H1(Mζ − Σ,Z) → H1(Mζ ,Z) → H1(Mζ , Σ,Z)

where the first map is surjective and the second injective; the image of c∗α in
H1(Mζ , Σ,Z) is equal to

∑
β

Ωαβ cβ .

The 1-form ω determines a cohomology class [ω] in H1(Mζ , Σ,C) : we
have

∫
cα

ω = ζα

We have the dual sequence

H1(Mζ , Σ,C) → H1(Mζ ,C) → H1(Mζ − Σ,C)

where the first map is surjective and the second injective. The image of [ω] in
H1(Mζ − Σ,C) satisfies

∫
c∗α

ω = θα = (Ωζ)α .
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Thus Ω is the matrix of the composition

H1(Mζ , Σ,C) → H1(Mζ − Σ,C) .

The image of Ω is equal to the image of H1(Mζ ,C) into H1(Mζ −Σ,C).

When one performs the basic operation of the continuous fraction algo-
rithm and one identifies Mζ with Mζ̂ , the relation between the old and new
bases is given by

{
ĉα = cα if α �= αε ,

ĉαε
= cαε

− cα1−ε⎧⎨
⎩

ĉ∗α = c∗α if α �= α1−ε

ĉ∗α1−ε
= c∗α1−ε

+ c∗αε

At the cohomological level, we have an isomorphism of H1(Mζ ,C) given
by

⎧⎨
⎩

θ̂α = θα if α �= α1−ε

θ̂α1−ε
= θα1−ε

+ θαε

(these formulas determine an isomorphism from ImΩ onto ImΩ̂). This is the
discrete version of the so-called Kontsevich-Zorich cocycle.

5.6 The Teichmüller flow

Fix combinatorial data (A, π0, π1). Given length data (λα) and suspension
data (τα), one defines for t ∈ R

U t(λ, τ) = (et/2λ, e−t/2τ)

This flow is called the Teichmüller flow. Observe that the conditions on
the length data (λα > 0) and on the suspension data (cf. 4.1) are preserved
under the flow.

It is also obvious that the flow commutes with the basic operation of the
continuous fraction algorithm. In particular, the inequality λαε

> λα1−ε
is

preserved.
The surface Mζ is canonically equipped with an area form (coming from

C) for which its area is

A := area (Mζ) =
∑
α∈A

λαhα .

The area is preserved by the Teichmüller flow, and also by the basic oper-
ation of the continuous fraction algorithm.
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The Lebesgue measure dλ dτ on the domain of RA × RA defined by the
restrictions on length and suspension data is preserved by the Teichmüller
flow, and by the basic operation of the continuous fraction algorithm.

6 Invariant measures

6.1 The case d = 2

We have seen in 2.6 that i.e.m in this case are just rotations on the circle.
Let (λA, λB) be the length data. The basic step of the continuous fraction

algorithm sends these data on (λA−λB, λB) (resp. (λA, λB −λA)) if λA > λB

(resp. λA < λB). Set x = λB/λA if λB < λA, x = λA/λB if λA < λB . We
obtain the well-known map

g(x) =

{ x
1−x for 0 < x < 1/2

g(1 − x) = 1−x
x for 1/2 < x < 1 ,

with a parabolic fixed point at 0. This map has dx
x as a unique (up to a mul-

tiplicative constant) invariant measure absolutely continuous w.r.t Lebesgue
measure, but this measure is infinite !

Instead, the Gauss map

G(x) = {x−1}
has dx

1+x as a unique (up to a multiplicative constant) invariant measure ab-
solutely continuous w.r.t Lebesgue measure, but the density is now analytic
on [0, 1].

The map G is related to g as follows : we have G(x) = gn(x), where n is
the smallest integer > 0 such that gn−1(x) ∈ [1/2, 1).

For a general Rauzy diagram (with admissible combinatorial data), Veech
has shown ([V2]) that there exists a unique (up to a multiplicative constant)
measure absolutely continuous w.r.t Lebesgue measure which is invariant un-
der the normalized continuous fraction algorithm. But again, this measure is
infinite.

Following Zorich, it is however possible to accelerate the Rauzy-Veech
algorithm, concatenating several successive steps in a single one (as the Gauss
map does). For the new algorithm, there will exist an invariant absolutely
continuous probability measure, which is very useful for ergodic - theoretic
considerations.

6.2 The accelerated algorithm ([Z1])

Let (A, π0, π1) be admissible combinatorial data and (λα)α∈A be length data.
Assume for simplicity that the i.e.m T defined by these data satisfies the
Keane property.
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The continuous fraction algorithm applied to T gives an infinite path in the
Rauzy diagram of (A, π0, π1), starting at the vertex (π0, π1), that we denote
by (γn(T ))n>0. To each arrow γn is associated a type (0 or 1) and a name (a
letter in A); it is obvious from the definitions of type and name that γn, γn+1

have the same type iff they have the same name. We also know that each
name is taken infinitely many times (proposition in 4.3); the same assertion
for types is actually obvious.

In the accelerated algorithm, one performs in a single step the consecutive
steps of the (slow) algorithm for which the associated arrows have the same
type (or name).

Assume for instance that λα0 > λα1 . Write π1(α0) = d − d̄ < d and
π1(α

(i)
1 ) = d− i for 0 ≤ i < d̄. The accelerated algorithm makes the following

“euclidean division” : one substracts from λα0 in turn λ
α

(0)
1

, λ
α

(1)
1

,. . . λ
α

(d̄−1)
1

,
λ

α
(0)
1

, λ
α

(1)
1

. . . stopping just before the result becomes negative. This is a

single step for the accelerated algorithm. When d̄ = 1, for instance when
d = 2, it just amounts to ordinary euclidean division with remainder.

We can extend the definition of the accelerated algorithm at the level of
suspension data. Recall that at this level, the dynamics of the slow algorithm
are essentially invertible (i.e modulo a set of codimension one). The dynamics
of the accelerated algorithm is a first return map of the dynamics of the
slow one. Indeed, for fixed combinatorial data (A, π0, π1), the simplicial cone
of length data is divided into the two simplicial subcones {λα0 > λα1} and
{λα1 > λα0} according to the type 0 or 1 of the basic step. On the other hand,
we have seen in 5.4 that the polyhedral cone of suspension data is divided into
{Im ξ1

α1
< 0} and {Im ξ0

α0
> 0} according to the type 0 or 1 of the prior

basic step.
Therefore, we set

Z0 = {λα0 > λα1 , Im ξ0
α0

> 0} ,

Z1 = {λα1 > λα0 , Im ξ1
α1

< 0} ,

Z = Z0 � Z1 ..

The accelerated algorithm is the first return map to Z of the slow algo-
rithm.

Till now, we have considered λ∗ := Σλα = 1 as the natural normalization
for the length data. Actually, in the sequel, a different normalization seems
preferable. As in 4.1, for λαε

> λα1−ε
, set

⎧⎨
⎩

λ̂α = λα if α �= αε ,

λ̂αε
= λαε

− λα1−ε
.

Define then λ̂∗ :=
∑
α

λ̂α = λ∗ − λα1−ε
; we will normalize by {λ̂∗ = 1}.
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6.3 The absolutely continuous invariant measure

Consider the accelerated algorithm acting on the region Z of the (λ, τ) space.
It is invertible (up to a codimension one subset) and acts by unimodular
matrices. Therefore the restriction m0 of Lebesgue measure to Z is invariant.
The area function A =

∑
α

λαhα is also invariant, where h = −Ωτ .

We now use the Teichmüller flow U t to have the horizontal length λ̂∗ also
invariant. More precisely, let (π0, π1, λ, τ) ∈ Z, with image (π̄0, π̄1, λ̄, τ̄) under
the accelerated algorithm. Set

t(λ) = 2(log λ̂∗ − log ˆ̄λ∗) ,

Ḡ(π0, π1, λ, τ) = (π̄0, π̄1, U
t(λ)(λ̄, τ̄)) ,

and call Ḡ the normalized basic step for (the natural extension of) the accel-
erated algorithm. The measure m0 is still invariant under Ḡ because m0 is
invariant under the Teichmüller flow and t is constant along the orbits of the
flow. The area function A is still invariant. The length function λ̂∗ is now also
invariant by construction. Define

Z(1) = Z ∩ {A ≤ 1} ,

and denote by m1 the restriction of m0 to Z(1). We now project to C(D) (cf.
4.3) : we obtain a map

G(π0, π1, λ) = (π̄0, π̄1, e
1
2 t(λ)λ̄)

and a measure m2, image of m1 by the projection, which is invariant under G.
As λ̂∗ is still invariant under G, we can restrict, by homogeneity, the measure
m2 to {λ̂∗ = 1} and get the measure m invariant under G, that we are looking
for. We will now check its properties.

6.4 Computation of a volume

The density of the measure m2 (w.r.t Lebesgue measure in λ space) is given
by the volume of the fiber of the projection sending m1 onto m2. Therefore,
we have to compute the volumes of

Γε ∩ {A ≤ 1}
where

Γ0 = {Im ξ0
α > 0 , ∀ α ∈ A , Im ξ1

α < 0 , ∀ α �= α1} ,

Γ1 = {Im ξ0
α > 0 , ∀ α �= α0 , Im ξ1

α < 0 , ∀ α ∈ A} ,
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and λαε
> λα1−ε

.
The computation is symmetric and we only consider the case ε = 0. We

write the polyhedral cone Γ0 in τ -space as a union of finitely many disjoint
simplicial cones Γ up to a codimension 1 subset; for each Γ , we choose a
basis τ (1), . . . , τ (d) of RA with volume 1 which generates Γ :

Γ = {
d∑

j=1

tj τ (j) , tj ≥ 0} .

We have

vold(Γ ∩ {Σ λα hα ≤ 1}) = (d !)−1
d∏
1

(Σ λα h(j)
α )−1 ,

where h(j) = −Ωτ (j). This gives for the density X of m2 the formula

(∗) Xπ0,π1(λ) = (d !)−1
∑

ε

∑
Γ

d∏
1

(Σ λα h(j)
α )−1 .

To estimate further the density, we write, when ε = 0 :

λ̂α0 = λα0 − λα1 ,

ĥα1 = hα0 + hα1 ,

and λ̂α = λα, ĥα = hα otherwise. We have
∑
α

λα h(j)
α =

∑
α

λ̂α ĥ(j)
α

and define

Wj = {α ∈ A, ĥ(j)
α �= 0} .

6.5 The key combinatorial lemma ([V2], [Z1])

PROPOSITION – Let X be a subset of A, non empty and distinct from A. Let
EX be the subspace of RA generated by the τ ∈ Γ0 such that h = −Ωτ satisfies
ĥα = 0 for all α ∈ X. Then the codimension of EX is > #X.
COROLLARY – #{j,Wj ∩ X = ∅} + #X < d.
Proof of corollary– One has Wj ∩X = ∅ iff τ (j) ∈ EX , and the τ (j) are linearly
independent. �

Proof of proposition – As usual, we denote by α0, α1, α
′
0, α

′
1 the elements

such that πε(αε) = d, πε(α′
ε) = 1. We write the ĥα in terms of those

(−1)ε Im ξε
α, (ε, α) which are nonnegative, i.e. with (ε, α) �= (1, α1).

We have
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ĥα = Im ξ0
α − Im ξ1

α = Imξ0
β0

− Im ξ1
β1

for α �= ᾱ0, ᾱ1, α1; we have denoted by β0, β1 the elements such that πε(βε) =
πε(α)−1. The same formula still holds for α = ᾱ1 and α = ᾱ0 �= α1, with the
convention that Im ξ0

β0
= 0 if α = ᾱ0 and Im ξ1

β1
= 0 if α = ᾱ1. For α = α1,

we have

ĥα1 = Im ξ0
α1

+ Imξ1
α0

= Im ξ0
β0

= Im ξ1
β1

+ Im ξ0
γ0

+ Im ξ1
γ1

with πε(βε) = πε(α1) − 1, πε(γε) = πε(α0) − 1.
From these formulas, we define subsets A(ε, α) ⊂ A, (with A(1, α) ⊂

A− {α1}) such that ĥα = 0 implies Imξε
β = 0 for β ∈ A(ε, α) : we have

A(0, α) = {β0, α} if α �= ᾱ0, α1 ,

A(0, ᾱ0) = {ᾱ0} if ᾱ0 �= α1 ,

A(0, α1) = {γ0, β0, α1} ,

A(0, ᾱ0) = A(1, α1) = {γ0, ᾱ0 = α1} if ᾱ0 = α1 ;

A(1, α) = {β1, α} if α �= ᾱ1, α1 ,

A(1, ᾱ1) = {ᾱ1}

A(1, α1) =

{{γ1, β1, α0} if α0 �= ᾱ1 ,

{β1, α0 = ᾱ1} if α0 = ᾱ1 .

CLAIM – One has
⋃
X

A(0, α) ⊃ X

and equality holds only if X = {α, π0(α) < k} for some k ≤ π0(α1) or k = d.
Similarly, one has, if α1 /∈ X

⋃
X

A(1, α) ⊃ X

and equality holds only if X = {α, π1(α) < k}, for some k ≤ d.
The assertions of the claim are immediate from the definitions of A(ε, α).

We can now conclude the proof of the proposition. If ĥα = 0 for all α ∈ X,
we have Im ξε

β = 0 for all β ∈ ⋃
X A(ε, α). When either

⋃
X A(0, α) or⋃

X A(1, α) is strictly larger than X, we obtain the conclusion of the proposi-
tion. Otherwise, by the first half of the claim, we must have X = {α, π0(α) <
k} for some k ≤ π0(α1) or k = d. If k ≤ π0(α1), α1 /∈ X and the second
part of the claim would give X = {α, π1(α) < k}, contradicting admissibility.
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Finally, in the remaining case X = A − {α0}, one has hα = 0 for all α ∈ A
(because ĥα1 = hα1 + hα0) and τ ≡ 0. �

6.6 Checking integrability

From the formula (*) in section 6.4

Xπ0,π1(λ) =
∑
ε,Γ

XΓ (λ) ,

XΓ (λ) = (d !)−1

d∏
1

(Σ λ̂α ĥ
(j)
α )−1 ,

we deduce the estimate, for each Γ :

c−1 ≤ XΓ (λ)
d∏

j=1

(
∑
Wj

λ̂α) ≤ c . (1)

When we restrict to {λ̂∗ = 1}, the density up to a constant factor is given
by the same formula. Let us decompose the simplex ∆ := {λ, λ̂α > 0, λ̂∗ = 1}
in the following way : the set of indices is

N = {n = (nα)α∈A ∈ NA,min
α

nα = 0} .

For each n ∈ N , denote by ∆(n) the set of (λα)α∈A ∈ ∆ such that λ̂α ≥ 1
2d

if nα = 0, and

1
2d

21−nα > λ̂α ≥ 1
2d

2−nα

if nα > 0. We have a partition

∆ =
⊔
N

∆(n) .

Clearly, we have, for n ∈ N

c−1 ≤ (vol ∆(n)) 2Σnα ≤ c . (2)

On the other hand, for λ ∈ ∆(n) and Γ as above, one obtains from (1)
that

c−1 ≤ XΓ (λ) 2

−
d∑

j=1

min
Wj

nα

≤ c . (3)

With fixed n, let 0 = n0 < n1 < . . . be the values taken by the nα and
V i ⊂ A the set of indices with nα ≥ ni. On one side, one has
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∑
α

nα =
∑
i≥0

ni(#(V i − V i+1))

=
∑
i>0

(ni − ni−1)#V i .

On the other side, let Ṽ i be the set of j such that Wj ⊂ V i; one has
min
Wj

nα = ni iff j ∈ Ṽ i − Ṽ i+1 hence

d∑
j=1

min
Wj

nα =
∑
i≥0

ni(#(Ṽ i − Ṽ i+1))

=
∑
i>0

(ni − ni+1)#Ṽ i .

By the Corollary of 6.5, one has

# Ṽ i < #V i

as long as 0 < #V i < d. This shows that

∑
α

nα −
d∑

j=1

min
Wj

nα ≥ |n|∞ := max
α

nα .

The last estimate, introduced into (2), (3), gives

(vol ∆(n)) max
∆(n)

XΓ ≤ c 2−|n|∞ . (4)

The integrability of XΓ over ∆ now follows from the fact that the number
of n ∈ N with |n|∞ = N is of order Nd−2.

At the same time, we can see that the matrix Z ∈ SL(ZA) such that

λ = Zλ̂

is such that log ‖Z‖ is integrable for the invariant measure m. We use as a
norm the supremum of the coefficients. We have, for all k ∈ N (when ε = 0;
the case ε = 1 is symmetric)

‖Z‖ > k ⇐⇒ λ̂α0 > k
∑

π1α>π1α0

λ̂α ,

and therefore

‖Z‖ > (2d)2N−1 =⇒ λ ∈
⋃

|n|∞≥N

∆(n) .

This implies that
∫
‖Z‖≥2N

XΓ ≤ cNd−22−N
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for all N > 0. Therefore ‖Z‖ρ for ρ < 1 and a fortiori log ‖Z‖ are integrable
for the invariant measure m.

This integrability property puts us in position of applying Oseledets the-
orem and start studying the ergodic properties of the continuous fraction
algorithm. However, we will restrain us to do that here.
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Zorich” Séminaire Bourbaki 2003-2004, 56ème année, exposé n0 927, novembre
2003.

10. M. Kontsevich and A. Zorich “Connected components of the moduli spaces
of Abelian differentials with prescribed singularities” Inv. Math. 153 (2003)
631-678.

11. H. Masur “Interval exchange transformations and measured foliations” Annals
of Mathematics 115 (1982) 169-200.

12. S. Marmi, P. Moussa and J-C. Yoccoz “On the cohomological equation for
interval exchange maps”, C. R. Math. Acad. Sci. Paris 336 (2003) 941-948.

13. S. Marmi, P. Moussa and J-C. Yoccoz “The cohomological equation for Roth
type interval exchange maps”, to appear in J. Amer. Math. Soc. .

14. G. Rauzy “Echanges d’intervalles et transformations induites” Acta Arit. (1979)
315-328.

15. M. Rees “An alternative approach to the ergodic theory of measured foliations”
Ergod. th. Dyn. Sys. 1 (1981) 461-488.

16. W. Veech “Interval exchange transformations” Journal d’Analyse Mathémati-
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Summary. Various problems of geometry, topology and dynamical systems on sur-
faces as well as some questions concerning one-dimensional dynamical systems lead
to the study of closed surfaces endowed with a flat metric with several cone-type
singularities. Such flat surfaces are naturally organized into families which appear
to be isomorphic to moduli spaces of holomorphic one-forms.

One can obtain much information about the geometry and dynamics of an in-
dividual flat surface by studying both its orbit under the Teichmüller geodesic flow
and under the linear group action. In particular, the Teichmüller geodesic flow plays
the role of a time acceleration machine (renormalization procedure) which allows to
study the asymptotic behavior of interval exchange transformations and of surface
foliations.

This survey is an attempt to present some selected ideas, concepts and facts in
Teichmüller dynamics in a playful way.
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1 Introduction

These notes correspond to lectures given first at Les Houches and later, in an
extended version, at ICTP (Trieste). As a result they keep all blemishes of
oral presentations. I rush to announce important theorems as facts, and then
I deduce from them numerous corollaries (which in reality are used to prove
these very keystone theorems). I omit proofs or replace them by conceptual
ideas hiding under the carpet all technicalities (which sometimes constitute
the main value of the proof). Even in the choice of the subjects I poach the
most fascinating issues, ignoring those which are difficult to present no matter
how important the latter ones are. These notes also contain some philosophical
discussions and hopes which some emotional speakers like me include in their
talks and which one, normally, never dares to put into a written text.

I am telling all this to warn the reader that this playful survey of some
selected ideas, concepts and facts in this area cannot replace any serious in-
troduction in the subject and should be taken with reservation.

As a much more serious accessible introduction I can recommend a collec-
tion of introductory surveys of A. Eskin [E], G. Forni [For2], P. Hubert and
T. Schmidt [HuSdt5] and H. Masur [Ma7], organized as a chapter of the Hand-
book of Dynamical Systems. I also recommend recent surveys of H. Masur and
S. Tabachnikov [MaT] and of J. Smillie [S]. The part concerning renormal-
ization and interval exchange transformations is presented in the article of
J.-C. Yoccoz [Y] of the current volume in a much more responsible way than
my introductory exposition in Sec. 5.
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1.1 Flat Surfaces

There is a common prejudice which makes us implicitly associate a metric of
constant positive curvature to a sphere, a metric of constant zero curvature
to a torus, and a metric of constant negative curvature to a surface of higher
genus. Actually, any surface can be endowed with a flat metric, no matter
what the genus of this surface is... with the only reservation that this flat
metric will have several singular points. Imagine that our surface is made
from plastic. Then we can flatten it from the sides pushing all curvature to
some small domains; making these domains smaller and smaller we can finally
concentrate all curvature at several points.

Consider the surface of a cube. It gives an example of a perfectly flat sphere
with eight conical singularities corresponding to eight vertices of the cube.
Note that our metric is nonsingular on edges: taking a small neighborhood of
an interior point of an edge and unfolding it we get a domain in a Euclidean
plane, see Fig. 1. The illusion of degeneration of the metric on the edges comes
from the singularity of the embedding of our flat sphere into the Euclidean
space R

3.

Fig. 1. The surface of the cube represents a flat sphere with eight conical singular-
ities. The metric does not have singularities on the edges. After parallel transport
around a conical singularity a vector comes back pointing to a direction different
from the initial one, so this flat metric has nontrivial holonomy.

However, the vertices of the cube correspond to actual conical singularities
of the metric. Taking a small neighborhood of a vertex we see that it is iso-
metric to a neighborhood of the vertex of a cone. A flat cone is characterized
by the cone angle: we can cut the cone along a straight ray with an origin at
the vertex of the cone, place the resulting flat pattern in the Euclidean plane
and measure the angle between the boundaries, see Fig. 1. Say, any vertex of
the cube has cone angle 3π/2 which is easy to see since there are three squares
adjacent to any vertex, so a neighborhood of a vertex is glued from three right
angles.
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Having a manifold (which is in our case just a surface) endowed with a
metric it is quite natural to study geodesics, which in a flat metric are locally
isometric to straight lines.

General Problem. Describe the behavior of a generic geodesic on a flat sur-
face. Prove (or disprove) that the geodesic flow is ergodic1 on a typical (in any
reasonable sense) flat surface.

Does any (almost any) flat surface has at least one closed geodesic which
does not pass through singular points?

If yes, are there many closed geodesics like that? Namely, find the asymp-
totics for the number of closed geodesics shorter than L as the bound L goes
to infinity.

Believe it or not there has been no (even partial) advance in solving this
problem. The problem remains open even in the simplest case, when a sur-
face is a sphere with only three conical singularities; in particular, it is not
known, whether any (or even almost any) such flat sphere has at least one
closed geodesic. Note that in this particular case, when a flat surface is a flat
sphere with three conical singularities the problem is a reformulation of the
corresponding billiard problem which we shall discuss in Sect. 2.1.

1.2 Very Flat Surfaces

A general flat surface with conical singularities much more resembles a general
Riemannian manifold than a flat torus. The reason is that it has nontrivial
holonomy .

Locally a flat surface is isometric to a Euclidean plane which defines a
parallel transport along paths on the surface with punctured conical points. A
parallel transport along a path homotopic to a trivial path on this punctured
surface brings a vector tangent to the surface to itself. However, if the path is
not homotopic to a trivial one, the resulting vector turns by some angle. Say,
a parallel transport along a small closed path around a conical singularity
makes a vector turn exactly by the cone angle, see Fig. 1. (Exercise: perform
a parallel transport of a vector around a vertex of a cube.)

Nontrivial linear holonomy forces a generic geodesic to come back and
to intersect itself again and again in different directions; geodesics on a flat
torus (which has trivial linear holonomy) exhibit radically different behavior.
Having chosen a direction to the North, we can transport it to any other point
of the torus; the result would not depend on the path. A geodesic on the torus
emitted in some direction will forever keep going in this direction. It will either
close up producing a regular closed geodesic, or will never intersect itself. In
the latter case it will produce a dense irrational winding line on the torus.

1 In this context “ergodic” means that a typical geodesic will visit any region in
the phase space and, moreover, that in average it will spend a time proportional
to the volume of this region; see Appendix A for details.
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Fortunately, the class of flat surfaces with trivial linear holonomy is not
reduced to flat tori. Since we cannot advance in the General Problem from
the previous section, from now on we confine ourselves to the study of these
very flat surfaces (often called translation surfaces): that is, to closed ori-
entable surfaces endowed with a flat metric having a finite number of conical
singularities and having trivial linear holonomy.

Triviality of linear holonomy implies, in particular, that all cone angles
at conical singularities are integer multiples of 2π. Locally a neighborhood of
such a conical point looks like a “monkey saddle”, see Fig. 2.

Fig. 2. A neighborhood of a conical point with a cone angle 6π can be glued from
six metric half discs

As a first example of a nontrivial very flat surface consider a regular octa-
gon with identified opposite sides. Since identifications of the sides are isome-
tries, we get a well-defined flat metric on the resulting surface. Since in our
identifications we used only parallel translations (and no rotations), we, actu-
ally, get a very flat (translation) surface. It is easy to see (check it!) that our
gluing rules identify all vertices of the octagon producing a single conical sin-
gularity. The cone angle at this singularity is equal to the sum of the interior
angles of the octagon, that is to 6π.

Figure 3 is an attempt to convince the reader that the resulting surface has
genus two. We first identify the vertical sides and the horizontal sides of the
octagon obtaining a torus with a hole of the form of a square. To simplify the
drawing we slightly cheat: namely, we consider another torus with a hole of
the form of a square, but the new square hole is turned by π/4 with respect to
the initial one. Identifying a pair of horizontal sides of the hole by an isometry
we get a torus with two holes (corresponding to the remaining pair of sides,
which are still not identified). Finally, isometrically identifying the pair of
holes we get a surface of genus two.
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Fig. 3. Gluing a pretzel from a regular octagon

Convention 1. From now on by a flat surface we mean a closed oriented surface
with a flat metric having a finite number of conical singularities, such that the
metric has trivial linear holonomy. Moreover, we always assume that the flat
surface is endowed with a distinguished direction; we refer to this direction as
the “direction to the North” or as the “vertical direction”.

The convention above implies, in particular, that if we rotate the octagon
from Fig. 3 (which changes the “direction to the North”) and glue a flat
surface from this rotated octagon, this will give us a different flat surface.

We make three exceptions to Convention 1 in this paper: billiards in general
polygons considered at the beginning Sec. 2.1 give rise to flat metrics with
nontrivial linear holonomy. In Sec. 3.2 we consider flat tori forgetting the
direction to the North.

Finally, in Sec. 8.1 we consider half-translation surfaces corresponding to
flat metrics with holonomy group Z/2Z. Such flat metric is a slight general-
ization of a very flat metric: a parallel transport along a loop may change the
direction of a vector, that is a vector v might return as −v after a parallel
transport.

1.3 Synopsis and Reader’s Guide

These lectures are an attempt to give some idea of what is known (and what is
not known) about flat surfaces, and to show what an amazing and marvellous
object a flat surface is: problems from dynamical systems, from solid state
physics, from complex analysis, from algebraic geometry, from combinatorics,
from number theory, ... (the list can be considerably extended) lead to the
study of flat surfaces.
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Section 2. Motivations

To give an idea of how flat surfaces appear in different guises we give some
motivations in Sec. 2. Namely, we consider billiards in polygons, and, in partic-
ular, billiards in rational polygons (Sec. 2.1) and show that the consideration
of billiard trajectories is equivalent to the consideration of geodesics on the
corresponding flat surface. As another motivation we show in Sec. 2.2 how the
electron transport on Fermi-surfaces leads to study of foliation defined by a
closed 1-form on a surface. In Sec. 2.3 we show that under some conditions
on the closed 1-form such a foliation can be “straightened out” into an appro-
priate flat metric. Similarly, a Hamiltonian flow defined by the corresponding
multivalued Hamiltonian on a surface follows geodesics in an appropriate flat
metric.

Section 3. Basic Facts

A reader who is not interested in motivations can proceed directly to Sec. 3
which describes the basic facts concerning flat surfaces. For most of applica-
tions it is important to consider not only an individual flat surface, but an
entire family of flat surfaces sharing the same topology: genus, number and
types of conical singularities. In Sec. 3.1 we discuss deformations of flat metric
inside such families. As a model example we consider in Sec. 3.2 the family
of flat tori. In Sec. 3.3 we show that a flat structure naturally determines a
complex structure on the surface and a holomorphic one-form. Reciprocally,
a holomorphic one-form naturally determines a flat structure. The dictionary
establishing correspondence between geometric language (in terms of the flat
metrics) and complex-analytic language (in terms of holomorphic one-forms)
is very important for the entire presentation; it makes Sec. 3.3 more charged
than an average one. In Sec. 3.4 we continue establishing correspondence be-
tween families of flat surfaces and strata of moduli spaces of holomorphic
one-forms. In Sec. 3.5 we describe the action of the linear group SL(2, R) on
flat surfaces – another key issue of this theory.

We complete Sec. 3 with an attempt to present the following general prin-
ciple in the study of flat surfaces. In order to get some information about
an individual flat surface it is often very convenient to find (the closure of)
the orbit of corresponding element in the family of flat surfaces under the
action of the group SL(2, R) (or, sometimes, under the action of its diago-
nal subgroup). In many cases the structure of this orbit gives comprehensive
information about the initial flat surface; moreover, this information might
be not accessible by a direct approach. These ideas are expressed in Sec. 3.6.
This general principle is illustrated in Sec. 3.7 presenting Masur’s criterion
of unique ergodicity of the directional flow on a flat surface. (A reader not
familiar with the ergodic theorem can either skip this last section or read an
elementary presentation of ergodicity in Appendix A.)
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Section 4. Topological Dynamics of Generic Geodesics

This section is independent from the others; a reader can pass directly to any
of the further ones. However, it gives a strong motivation for renormalization
discussed in Sec. 5 and in the lectures by J.-C. Yoccoz [Y] in this volume. It
can also be used as a formalism for the study of electron transport mentioned
in Sec. 2.2.

In Sec. 4.1 we discuss the notion of asymptotic cycle generalizing the ro-
tation number of an irrational winding line on a torus. It describes how an
“irrational winding line” on a surface of higher genus winds around a flat
surface in average. In Sec. 4.2 we heuristically describe the further terms of
approximation, and we complete with a formulation of the corresponding re-
sult in Sec. 4.3.

In fact, this description is equivalent to the description of the deviation of a
directional flow on a flat surface from the ergodic mean. Sec. 4.3 involves some
background in ergodic theory; it can be either omitted in the first reading, or
can be read accompanied by Appendix B presenting the multiplicative ergodic
theorem.

Section 5. Renormalization

This section describes the relation between the Teichmüller geodesic flow and
renormalization for interval exchange transformations discussed in the lec-
tures of J.-C. Yoccoz [Y] in this volume. It is slightly more technical than
other sections and can be omitted by a reader who is not interested in the
proof of the Theorem from Sec. 4.3.

In Sec. 5.1 we show that interval exchange transformations naturally arise
as the first return map of a directional flow on a flat surface to a transversal
segment. In Sec. 5.2 we perform an explicit computation of the asymptotic
cycle (defined in Sec. 4.1) using interval exchange transformations. In Sec. 5.3
we present a conceptual idea of renormalization, a powerful technique of ac-
celeration of motion along trajectories of the directional flow. This idea is
illustrated in Sec. 5.4 in the simplest case where we interpret the Euclidean
algorithm as a renormalization procedure for rotation of a circle.

We develop these ideas in Sec. 5.5 describing a concrete geometric renor-
malization procedure (called Rauzy–Veech induction) applicable to general
flat surfaces (and general interval exchange transformations). We continue in
Sec. 5.6 with the elementary formalism of multiplicative cocycles (see also Ap-
pendix B). Following W. Veech we describe in Sec. 5.7 zippered rectangles co-
ordinates in a family of flat surfaces and describe the action of the Teichmüller
geodesic flow in a fundamental domain in these coordinates. We show that the
first return map of the Teichmüller geodesic flow to the boundary of the fun-
damental domain corresponds to the Rauzy–Veech induction. In Sec. 5.8 we
present a short overview of recent results of G. Forni, M. Kontsevich, A. Avila
and M. Viana concerning the spectrum of Lyapunov exponents of the corre-
sponding cocycle (completing the proof of the Theorem from Sec. 4.3). As
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an application of the technique developed in Sec. 5 we show in Sec. 5.9 that
in the simplest case of tori it gives the well-known encoding of a continued
fraction by a cutting sequence of a geodesic on the upper half-plane.

Section 6. Closed geodesics

This section is basically independent of other sections; it describes the rela-
tion between closed geodesics on individual flat surfaces and “cusps” on the
corresponding moduli spaces. It might be useful for those who are interested
in the global structure of the moduli spaces.

Following A. Eskin and H. Masur we formalize in Sec. 6.1 the counting
problems for closed geodesics and for saddle connections of bounded length
on an individual flat surface. In Sec. 6.2 we present the Siegel–Veech Formula
and explain a relation between the counting problem and evaluation of the
volume of a tubular neighborhood of a “cusp” in the corresponding moduli
space. In Sec. 6.3 we describe the structure of a simplest cusp. We describe the
structure of general “cusps” (the structure of principal boundary of the moduli
space) in Sec. 6.4. As an illustration of possible applications we consider in
Sec. 6.5 billiards in rectangular polygons.

Section 7 Volume of the Moduli Space

In Sec. 7.1 we consider very special flat surfaces, so called square-tiled surfaces
which play a role of integer points in the moduli space. In Sec. 7.2 we present
the technique of A. Eskin and A. Okounkov who have found an asymptotic
formula for the number of square-tiled surfaces glued from a bounded number
of squares and applied these results to evaluation of volumes of moduli spaces.

As usual, Sec. 7 is independent of others; however, the notion of a square-
tiled surface appears later in the discussion of Veech surfaces in Sec. 9.5–9.8.

Section 8. Crash Course in Teichmüller Theory

We proceed in Sec. 8 with a very brief overview of some elementary background
in Teichmüller theory. Namely, we discuss in Sec. 8.1 the extremal quasicon-
formal map and formulate the Teichmüller theorem, which we use in Sec. 8.2
we to define the distance between complex structures (Teichmüller metric).
We finally explain why the action of the diagonal subgroup in SL(2; R) on the
space of flat surfaces should be interpreted as the Teichmüller geodesic flow .

Section 9. Main Conjecture and Recent Results

In this last section we discuss one of the central problems in the area – a con-
jectural structure of all orbits of GL+(2, R). The main hope is that the closure
of any such orbit is a nice complex subvariety, and that in this sense the moduli
spaces of holomorphic 1-forms and the moduli spaces of quadratic differentials
resemble homogeneous spaces under an action of a unipotent group. In this
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section we also present a brief survey of some very recent results related to
this conjecture obtained by K. Calta, C. McMullen and others.

We start in Sec. 9.1 with a geometric description of the GL+(2, R)-action
in Sec. 9.1 and show why the projections of the orbits (so-called Teichmüller
discs) to the moduli space Mg of complex structures should be considered as
complex geodesics. In Sec. 9.2 we present some results telling that analogous
“complex geodesics” in a homogeneous space have a very nice behavior. It is
known that the moduli spaces are not homogeneous spaces. Nevertheless, in
Sec. 9.3 we announce one of the main hopes in this field telling that in the
context of the closures of “complex geodesics” the moduli spaces behave as if
they were.

We continue with a discussion of two extremal examples of GL+(2, R)-
invariant submanifolds. In Sec. 9.4 we describe the “largest” ones: the con-
nected components of the strata. In Sec. 9.5 we consider flat surfaces S (called
Veech surfaces) with the “smallest” possible orbits: the ones which are closed.
Since recently the list of known Veech surfaces was very short. However,
K. Calta and C. McMullen have discovered an infinite family of Veech surfaces
in genus two and have classified them. Developing these results C. McMullen
has proved the main conjecture in genus two. These results of K. Calta and
C. McMullen are discussed in Sec. 9.7. Finally, we consider in Sec. 9.8 the
classification of Teichmüller discs in H(2) due to P. Hubert, S. Lelièvre and
to C. McMullen.

Section 10. Open Problems

In this section we collect open problems dispersed through the text.

Appendix A. Ergodic Theorem

In appendix A we suggest a two-pages exposition of some key facts and con-
structions in ergodic theory.

Appendix B. Multiplicative Ergodic Theorem

Finally, in appendix B we discuss the Multiplicative Ergodic Theorem which
is mentioned in Sec. 4 and used in Sec. 5.

We start with some elementary linear-algebraic motivations in Sec. B.1
which we apply in Sec. B.2 to the simplest case of a “linear” map of a multi-
dimensional torus. This examples give us intuition necessary to formulate in
Sec. B.3 the multiplicative ergodic theorem. Morally, we associate to an ergodic
dynamical system a matrix of mean differential (or of mean monodromy in
some cases). We complete this section with a discussion of some basic proper-
ties of Lyapunov exponents playing a role of logarithms of eigenvalues of the
“mean differential” (“mean monodromy”) of the dynamical system.
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2 Eclectic Motivations

In this section we show how flat surfaces appear in different guises: we con-
sider billiards in polygons, and, in particular, billiards in rational polygons. In
Sec. 2.1 we show that consideration of billiard trajectories is equivalent to the
consideration of geodesics on the corresponding flat surface. As another moti-
vation we show in Sec. 2.2 how the electron transport on Fermi-surfaces leads
to the study of foliation defined by a closed 1-form on a surface. In Sec. 2.3 we
show, that under some conditions on the closed 1-form such foliation can be
“straightened up” in an appropriate flat metric. Similarly, a Hamiltonian flow
defined by the corresponding multivalued Hamiltonian on a surface follows
geodesics in an appropriate flat metric.

2.1 Billiards in Polygons

Billiards in General Polygons

Consider a polygonal billiard table and an ideal billiard ball which reflects
from the walls of the table by the “optical” rule: the angle of incidence equals
the angle after the reflection. We assume that the mass of our ideal ball is
concentrated at one point; there is no friction, no spin.
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We mostly consider regular trajectories, which do not pass through the
corners of the polygon. However, one can also study trajectories emitted from
one corner and trapped after several reflections in some other (or the same)
corner. Such trajectories are called the generalized diagonals.

To simplify the problem let us start our consideration with billiards in
triangles. A triangular billiard table is defined by angles α, β, γ (proportional
rescaling of the triangle does not change the dynamics of the billiard). Since
α + β + γ = π the family of triangular billiard tables is described by two real
parameters.

It is difficult to believe that the following Problem is open for many
decades.

Problem (Billiard in a Polygon).

1. Describe the behavior of a generic regular billiard trajectory in a generic
triangle, in particular, prove (or disprove) that the billiard flow is ergodic2;

2. Does any (almost any) billiard table has at least one regular periodic tra-
jectory? If the answer is affirmative, does this trajectory survive under
deformations of the billiard table?

3. If a periodic trajectory exists, are there many periodic trajectories like
that? Namely, find the asymptotics for the number of periodic trajectories
of length shorter than L as the bound L goes to infinity.

It is easy to find a special closed regular trajectory in an acute triangle: see
the left picture at Fig. 4 presenting the Fagnano trajectory . This periodic tra-
jectory is known for at least two centuries. However, it is not known whether
any (or at least almost any) obtuse triangle has a periodic billiard trajectory.

Fig. 4. Fagnano trajectory and Fox–Kershner construction

Obtuse triangles with the angles α ≤ β < γ can be parameterized by a
point of a “simplex” ∆ defined as α+β < π/2, α, β > 0. For some obtuse tri-
angles the existence of a regular periodic trajectory is known. Moreover, some

2 On behalf of the Center for Dynamics and Geometry of Penn State University,
A. Katok promised a prize of 10.000 euros for a solution of this problem.
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of these periodic trajectories, called stable periodic trajectories, survive under
small deformations of the triangle, which proves existence of periodic trajecto-
ries for some regions in the parameter space ∆ (see the works of G. Galperin,
A. M. Stepin, Ya. Vorobets and A. Zemliakov [GaStVb1], [GaStVb2], [GaZe],
[Vb1]). It remains to prove that such regions cover the entire parameter space
∆. Currently R. Schwartz is in progress of extensive computer search of sta-
ble periodic trajectories hoping to cover ∆ with corresponding computer-
generated regions.

Now, following Fox and Kershner [FxKr], let us see how billiards in poly-
gons lead naturally to geodesics on flat surfaces.

Place two copies of a polygonal billiard table one atop the other. Launch
a billiard trajectory on one of the copies and let it jump from one copy to
the other after each reflection (see the right picture at Fig. 4). Identifying the
boundaries of the two copies of the polygon we get a connected path ρ on
the corresponding topological sphere. Projecting this path to any of the two
“polygonal hemispheres” we get the initial billiard trajectory.

It remains to note that our topological sphere is endowed with a flat metric
(coming from the polygon). Analogously to the flat metric on the surface of a
cube which is nonsingular on the edges of the cube (see Sec. 1.1 and Fig. 1), the
flat metric on our sphere is nonsingular on the “equator” obtained from the
identified boundaries of the two equal “polygonal hemispheres”. Moreover, let
x be a point where the path ρ crosses the “equator”. Unfolding a neighborhood
of a point x on the “equator” we see that the corresponding fragment of the
path ρ unfolds to a straight segment in the flat metric. In other words, the
path ρ is a geodesic in the corresponding flat metric.

The resulting flat metric is not very flat : it has nontrivial linear holonomy.
The conical singularities of the flat metric correspond to the vertices of the
polygon; the cone angle of a singularity is twice the angle at the corresponding
vertex of the polygon.

We have proved that every geodesic on our flat sphere projects to a billiard
trajectory and every billiard trajectory lifts to a geodesic. This is why General
Problem from Sec. 1.1 is so closely related to Problem 2.1.

Two Beads on a Rod and Billiard in a Triangle

It would be unfair not to mention that billiards in polygons attracted a lot of
attention as (what initially seemed to be) a simple model of a Boltzman gas.
To give a flavor of this correspondence we consider a system of two elastic
beads confined to a rod placed between two walls, see Fig. 5. (Up to the best
of my knowledge this construction originates in lectures of Ya. G. Sinai [Sin].)

The beads have different masses m1 and m2 they collide between them-
selves, and also with the walls. Assuming that the size of the beads is negli-
gible we can describe the configuration space of our system using coordinates
0 < x1 ≤ x2 ≤ a of the beads, where a is the distance between the walls.
Rescaling the coordinates as



Flat Surfaces 453

x2 =   m2 x2

x1 =   m1 x1

m1 m2

x1 x2 0
x

Fig. 5. Gas of two molecules in a one-dimensional chamber

{
x̃1 =

√
m1x1

x̃2 =
√

m2x2

we see that the configuration space in the new coordinates is given by a right
triangle ∆, see Fig. 5. Consider now a trajectory of our dynamical system. We
leave to the reader the pleasure to prove the following elementary Lemma:

Lemma. In coordinates (x̃1, x̃2) trajectories of the system of two beads on a
rod correspond to billiard trajectories in the triangle ∆.

Billiards in Rational Polygons

We have seen that taking two copies of a polygon we can reduce the study of
a billiard in a general polygon to the study of geodesics on the corresponding
flat surface. However, the resulting flat surface has nontrivial linear holonomy,
it is not “very flat”.

Nevertheless, a more restricted class of billiards, namely, billiards in ratio-
nal polygons, lead to “very flat” (translation) surfaces.

A polygon is called rational if all its angles are rational multiples of π.
A billiard trajectory emitted in some direction will change direction after the
first reflection, then will change direction once more after the second reflection,
etc. However, for any given billiard trajectory in a rational billiard the set
of possible directions is finite, which make billiards in rational polygons so
different from general ones.

As a basic example consider a billiard in a rectangle. In this case a generic
trajectory at any moment goes in one of four possible directions. Developing
the idea with the general polygon we can take four (instead of two) copies
of our billiard table (one copy for each direction). As soon as our trajectory
hits the wall and changes the direction we make it jump to the corresponding
copy of the billiard – the one representing the corresponding direction.

By construction each side of every copy of the billiard is identified with
exactly one side of another copy of the billiard. Upon these identifications the
four copies of the billiard produce a closed surface and the unfolded billiard
trajectory produces a connected line on this surface. We suggest to the reader



454 Anton Zorich

Fig. 6. Billiard in a rectangle corresponds to directional flow on a flat torus. Billiard
in a right triangle (π/8, 3π/8, π/2) leads to directional flow on a flat surface obtained
from the regular octagon.

to check that the resulting surface is a torus and the unfolded trajectory is a
geodesic on this flat torus, see Fig. 6.

A similar unfolding construction (often called Katok–Zemliakov construc-
tion) works for a billiard in any rational polygon. Say, for a billiard in a right
triangle with angles (π/8, 3π/8, π/2) one has to take 16 copies (corresponding
to 16 possible directions of a given billiard trajectory). Appropriate identifi-
cations of these 16 copies produce a regular octagon with identified opposite
sides (see Fig. 6). We know from Sec. 1.2 and from Fig. 3 that the correspond-
ing flat surface is a “very flat” surface of genus two having a single conical
singularity with the cone angle 6π.

Exercise. What is the genus of the surface obtained by Katok–Zemliakov
construction from an isosceles triangle (3π/8, 3π/8, π/4)? How many coni-
cal points does it have? What are the cone angles at these points? Hint: this
surface can not be glued from a regular octagon.

It is quite common to unfold a rational billiard in two steps. We first unfold
the billiard table to a polygon, and then identify the appropriate pairs of sides
of the resulting polygon. Note that the polygon obtained in this intermediate
step is not canonical.

Show that a generic billiard trajectory in the right triangle with angles
(π/2, π/5, 3π/10) has 20 directions. Show that both polygons at Fig. 7 can
be obtained by Katok–Zemliakov construction from 20 copies of this triangle.
Verify that after identification of parallel sides of these polygons we obtain
isometric very flat surfaces (see also [HuSdt5]). What genus, and what conical
points do they have? What are the cone angles at these points?
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Fig. 7. We can unfold the billiard in the right triangle (π/2, π/5, 3π/10) into
different polygons. However, the resulting very flat surfaces are the same (see
also [HuSdt5]).

Note that in comparison with the initial construction, where we had only
two copies of the billiard table we get a more complicated surface. However,
what we gain is that in this new construction our flat surface is actually “very
flat”: it has trivial linear holonomy. It has a lot of consequences; say, due to a
Theorem of H. Masur [Ma4] it is possible to find a regular periodic geodesic
on any “very flat” surface. If the flat surface was constructed from a billiard,
the corresponding closed geodesic projects to a regular periodic trajectory of
the corresponding billiard which solves part of Problem 2.1 for billiards in
rational polygons.

We did not intend to present in this section any comprehensive information
about billiards, our goal was just to give a motivation for the study of flat
surfaces. A reader interested in billiards can get a good idea on the subject
from a very nice book of S. Tabachnikov [T]. Details about billiards in polygons
(especially rational polygons) can be found in the surveys of E. Gutkin [Gu1],
P. Hubert and T. Schmidt [HuSdt5], H. Masur and S. Tabachnikov [MaT] and
J. Smillie [S].

2.2 Electron Transport on Fermi-Surfaces

Consider a periodic surface M̃2 in R
3 (i.e. a surface invariant under trans-

lations by any integer vector in Z
3). Such a surface can be constructed in a

fundamental domain of a cubic lattice, see Fig. 8, and then reproduced re-
peatedly in the lattice. Choose now an affine plane in R

3 and consider an
intersection line of the surface by the plane. This intersection line might have
some closed components and it may also have some unbounded components.
The question is how does an unbounded component propagate in R

3?
The study of this subject was suggested by S. P. Novikov about 1980

(see [N]) as a mathematical formulation of the corresponding problem concern-
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Fig. 8. Riemann surface of genus 3 embedded into a torus T
3

ing electron transport in metals. A periodic surface represents a Fermi-surface,
affine plane is a plane orthogonal to a magnetic field, and the intersection line
is a trajectory of an electron in the so-called inverse lattice.

Fig. 9. Fermi surfaces of tin, iron and gold correspond to Riemann surfaces of high
genera. (Reproduced from [AzLK] which cites [AGLP] and [WYa] as the source)

It was known since extensive experimental research in the 50s and 60s
that Fermi-surfaces may have fairly complicated shape, see Fig. 9; it was also
known that open (i.e. unbounded) trajectories exist, see Fig. 10, however, up
to the beginning of the 80s there were no general results in this area.

In particular, it was not known whether open trajectories follow (in a large
scale) the same direction, whether there might be some scattering (trajectory
comes from infinity in one direction and then after some scattering goes to
infinity in some other direction, whether the trajectories may even exhibit
some chaotic behavior?

Let us see now how this problem is related to flat surfaces.
First note that passing to a quotient R

3/Z
3 = T

3 we get a closed orientable
surface M2 ⊂ T

3 from the initial periodic surface M̃2. Say, identifying the
opposite sides of a unit cube at Fig. 8 we get a closed surface M2 of genus
g = 3.
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Fig. 10. Stereographic projection of the magnetic field directions (shaded regions
and continuous curves) which give rise to open trajectories for some Fermi-surfaces
(experimental results in [AzLK]).

We are interested in plane sections of the initial periodic surface M̃2. This
plane sections can be viewed as level curves of a linear function f(x, y, z) =
ax + by + cz restricted to M̃2.

Consider now a closed differential 1-form ω̃ = a dx + b dy + c dz in R
3

and its restriction to M̃2. A closed 1-form defines a codimension-one foliation
on a manifold: locally one can represent a closed one-form as a differential
of a function, ω̃ = df ; the foliation is defined by the levels of the function
f . We prefer to use the 1-form ω̃ = a dx + b dy + c dz to the linear function
f(x, y, z) = ax+ by + cz because we cannot push the function f(x, y, z) into a
torus T

3 while the 1-form ω = a dx+b dy+c dz is well-defined in T
3. Moreover,

after passing to a quotient over the lattice R
3 → R

3/Z
3 the plane sections of

M̃2 project to the leaves of the foliation defined by restriction of the closed
1-form ω in T

3 to the surface M2.
Thus, our initial problem can be reformulated as follows.

Problem (Novikov’s Problem on Electron Transport). Consider a fo-
liation defined by a linear closed 1-form ω = a dx + b dy + c dz on a closed
surface M2 ⊂ T

3 embedded into a three-dimensional torus. How do the leaves
of this foliation get unfolded, when we unfold the torus T

3 to its universal
cover R

3?

The foliation defined by a closed 1-form on a surface is a subject of discus-
sion of the next section. We shall see that under some natural conditions such
a foliation can be “straightened up” to a geodesic foliation in an appropriate
flat metric.

The way in which a geodesic on a flat surface gets unfolded in the universal
Abelian cover is discussed in detail in Sec. 4.

To be honest, we should admit that 1-forms as in Problem 2.2 usually
do not satisfy these conditions. However, a surface as in Problem 2.2 can
be decomposed into several components, which (after some surgery) already
satisfy the necessary requirements.



458 Anton Zorich

References for Details

There is a lot of progress in this area, basically due to S. Novikov’s school,
and especially to I. Dynnikov, and in many cases Problem 2.2 is solved.

In [Zo1] the author proved that for a given Fermi-surface and for an open
dense set of directions of planes any open trajectory is bounded by a pair of
parallel lines inside the corresponding plane.

In a series of papers I. Dynnikov applied a different approach: he fixed the
direction of the plane and deformed a Fermi-surface inside a family of level
surfaces of a periodic function in R

3. He proved that for all but at most one
level any open trajectory is also bounded between two lines.

However, I. Dynnikov has constructed a series of highly elaborated exam-
ples showing that in some cases an open trajectory can “fill” the plane. In
particular, the following question is still open. Consider the set of directions
of those hyperplanes which give “nontypical” open trajectories. Is it true that
this set has measure zero in the space RP2 of all possible directions? What
can be said about Hausdorff dimension of this set?

For more details we address the reader to papers [D1], [D2] and [NM].

2.3 Flows on Surfaces and Surface Foliations

Consider a closed 1-form on a closed orientable surface. Locally a closed 1-
form ω can be represented as the differential of a function ω = df . The level
curves of the function f locally define the leaves of the closed 1-form ω. (The
fact that the function f is defined only up to a constant does not affect the
structure of the level curves.) We get a foliation on a surface.

In this section we present a necessary and sufficient condition which tells
when one can find an appropriate flat metric such that the foliation defined
by the closed 1-form becomes a foliation of parallel geodesics going in some
fixed direction on the surface. This criterion was given in different context by
different authors: [Clb], [Kat1], [HbMa]. We present here one more formulation
of the criterion. Morally, it says that the foliation defined by a closed 1-form
ω can be “straightened up” in an appropriate flat metric if and only if the
form ω does not have closed leaves homologous to zero. In the remaining part
of this section we present a rigorous formulation of this statement.

Note that a closed 1-form ω on a closed surface necessarily has some critical
points: the points where the function f serving as a “local antiderivative”
ω = df has critical points.

The first obstruction for “straightening” is the presence of minima and
maxima: such critical points should be forbidden. Suppose now that the closed
1-form has only isolated critical points and all of them are “saddles” (i.e. ω
does not have minima and maxima). Say, a form defined in local coordinates
as df , where f = x3+y3 has a saddle point in the origin (0, 0) of our coordinate
chart, see Fig. 11.



Flat Surfaces 459

Fig. 11. Horizontal foliation in a neighborhood of a saddle point. Topological
(nonmetric) picture

There are several singular leaves of the foliation landing at each saddle;
say, a saddle point from Fig. 11 has six prongs (separatrices) representing
the critical leaves. Sometimes a critical leaf emitted from one saddle can land
to another (or even to the same) saddle point. In this case we say that the
foliation has a saddle connection.

Note that the foliation defined by a closed 1-form on an oriented surface
gets natural orientation (defined by grad(f) and by the orientation of the
surface). Now we are ready to present a rigorous formulation of the criterion.

Theorem. Consider a foliation defined on a closed orientable surface by a
closed 1-form ω. Assume that ω does not have neither minima nor maxima but
only isolated saddle points. The foliation defined by ω can be represented as a
geodesic foliation in an appropriate flat metric if and only if any cycle obtained
as a union of closed paths following in the positive direction a sequence of
saddle connections is not homologous to zero.

In particular, if there are no saddle connections at all (provided there are
no minima and maxima) it can always be straightened up. (In slightly different
terms it was proved in [Kat1] and in [HbMa].)

Note that saddle points of the closed 1-form ω correspond to conical points
of the resulting flat metric.

One can consider a closed 1-form ω as a multivalued Hamiltonian and con-
sider corresponding Hamiltonian flow along the leaves of the foliation defined
by ω. On the torus T

2 is was studied by V. I. Arnold [Ald2] and by K. Khanin
and Ya. G. Sinai [KhSin].

3 Families of Flat Surfaces and Moduli Spaces of
Abelian Differentials

In this section we present the generalities on flat surfaces. We start in Sec. 3.1
with an elementary construction of a flat surface from a polygonal pattern.
This construction explicitly shows that any flat surface can be deformed in-
side an appropriate family of flat surfaces. As a model example we consider
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in Sec. 3.2 the family of flat tori. In Sec. 3.3 we show that a flat structure
naturally determines a complex structure on the surface and a holomorphic
one-form. Reciprocally, a holomorphic one-form naturally determines a flat
structure. The dictionary establishing correspondence between geometric lan-
guage (in terms of the flat metrics) and complex-analytic language (in terms
of holomorphic one-forms) is very important for the entire presentation; it
makes Sec. 3.3 more charged than an average one. In Sec. 3.4 we continue
with establishing correspondence between families of flat surfaces and strata
of moduli spaces of holomorphic one-forms. In Sec. 3.5 we describe the action
of the linear group SL(2, R) on flat surfaces – another key issue of this theory.

We complete Sec. 3 with an attempt to present the following general prin-
ciple in the study of flat surfaces. In order to get some information about an
individual flat surface it is often very convenient to find (the closure of) the
orbit of the corresponding element in the family of flat surfaces under the
action of the group SL(2, R) (or, sometimes, under the action of its diagonal
subgroup). In many cases the structure of this orbit gives a comprehensive
information about the initial flat surface; moreover, this information might
be not accessible by a direct approach. These ideas are expressed in Sec. 3.6.
This general principle is illustrated in Sec. 3.7 presenting Masur’s criterion of
unique ergodicity of the directional flow on a flat surface. (A reader not famil-
iar with ergodic theorem can either skip this last section or read an elementary
presentation of ergodicity in Appendix A.)

3.1 Families of Flat Surfaces

In this section we present a construction which allows to obtain a large variety
of flat surfaces, and, moreover, allows to continuously deform the resulting flat
structure. Later on we shall see that this construction is even more general
than it may seem at the beginning: it allows to get almost all flat surfaces in
any family of flat surfaces sharing the same geometry (i.e. genus, number and
types of conical singularities). The construction is strongly motivated by an
analogous construction in the paper of H. Masur [Ma3].

Consider a collection of vectors v1, . . . ,vn in R
2 and construct from these

vectors a broken line in a natural way: a j-th edge of the broken line is
represented by the vector vj . Construct another broken line starting at the
same point as the initial one by taking the same vectors but this time in the
order vπ(1), . . . , vπ(n), where π is some permutation of n elements.

By construction the two broken lines share the same endpoints; suppose
that they bound a polygon as in Fig. 12. Identifying the pairs of sides cor-
responding to the same vectors vj , j = 1, . . . , n, by parallel translations we
obtain a flat surface.

The polygon in our construction depends continuously on the vectors vi.
This means that the topology of the resulting flat surface (its genus g, the
number m and the types of the resulting conical singularities) do not change
under small deformations of the vectors vi. Say, we suggest to the reader to
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Fig. 12. Identifying corresponding pairs of sides of this polygon by parallel trans-
lations we obtain a flat surface.

check that the flat surface obtained from the polygon presented in Fig. 12 has
genus two and a single conical singularity with cone angle 6π.

3.2 Toy Example: Family of Flat Tori

In the previous section we have seen that a flat structure can be deformed.
This allows to consider a flat surface as an element of a family of flat surfaces
sharing a common geometry (genus, number of conical points). In this section
we study the simplest example of such family: we study the family of flat tori.
This time we consider the family of flat surfaces globally. We shall see that
it has a natural structure of a noncompact complex-analytic manifold (to be
more honest – orbifold). This “baby family” of flat surfaces, actually, exhibits
all principal features of any other family of flat surfaces, except that the family
of flat tori constitutes a homogeneous space endowed with a nice hyperbolic
metric, while general families of flat surfaces do not have the structure of a
homogeneous space.

To simplify consideration of flat tori as much as possible we make two
exceptions from the usual way in which we consider flat surfaces. Temporarily
(only in this section) we forget about the choice of the direction to North: in
this section two isometric flat tori define the same element of the family of all
flat tori. Another exception concerns normalization. Almost everywhere below
we consider the area of any flat surface to be normalized to one (which can be
achieved by a simple homothety). In this section it would be more convenient
for us to apply homothety in the way that the shortest closed geodesic on our
flat torus would have length 1. Find the closed geodesic which is next after the
shortest one in the length spectrum. Measure the angle φ, where 0 ≤ φ ≤ π
between these two geodesics; measure the length r of the second geodesic and
mark a point with polar coordinates (r, φ) on the upper half-plane. This point
encodes our torus.
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neighborhood
of a cusp

Fig. 13. Space of flat tori

Reciprocally, any point of the upper half-plane defines a flat torus in the
following way. (Following the tradition we consider the upper half-plane as
a complex one.) A point x + iy defines a parallelogram generated by vectors
v1 = (1, 0) and v2 = (x + iy), see Fig. 13. Identifying the opposite sides of
the parallelogram we get a flat torus.

To make this correspondence bijective we have to be sure that the vector
v1 represents the shortest closed geodesic. This means that the point (x +
iy) representing v2 cannot be inside the unit disc. The condition that v2

represents the geodesic which is next after the shortest one in the length
spectrum implies that −1/2 ≤ x ≤ 1/2, see Fig. 13. Having mentioned these
two hints we suggest to the reader to prove the following Lemma.

Lemma 1. The family of flat tori is parametrized by the shadowed fundamen-
tal domain from Fig. 13, where the parts of the boundary of the fundamental
domain symmetric with respect to the vertical axis (0, iy) are identified.

Note that topologically we obtain a sphere punctured at one point: the
resulting surface has a cusp. Tori represented by points close to the cusp are
“disproportional”: they are very narrow and very long. In other words they
have an abnormally short geodesic.

Note also that there are two special points on our modular curve: they
correspond to points with coordinates (0 + i) and ±1/2 + i

√
3/2. The corre-

sponding tori has extra symmetry, they can be represented by a square and by
a regular hexagon with identified opposite sides correspondingly. The surface
glued from the fundamental domains has “corners” at these two points.

There is an alternative more algebraic approach to our problem. Actually,
the fundamental domain constructed above is known as a modular curve, it
parameterizes the space of lattices of area one (which is isomorphic to the
space of flat tori). It can be seen as a double quotient

\SL(2, R)/
SO(2, R) SL(2, Z) = H/

SL(2, Z)
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3.3 Dictionary of Complex-Analytic Language

We have seen in Sec. 3.1 how to construct a flat surfaces from a polygon as
on Fig. 12.

Note that the polygon is embedded into a complex plane C, where the
embedding is defined up to a parallel translation. (A rotation of the polygon
changes the vertical direction and hence, according to Convention 1 it changes
the corresponding flat surface.)

Consider the natural coordinate z in the complex plane. In this coordinate
the parallel translations which we use to identify the sides of the polygon are
represented as

z′ = z + const

Since this correspondence is holomorphic, it means that our flat surface S with
punctured conical points inherits the complex structure. It is an exercise in
complex analysis to check that the complex structure extends to the punctured
points.

Consider now a holomorphic 1-form dz in the initial complex plane. When
we pass to the surface S the coordinate z is not globally defined anymore.
However, since the changes of local coordinates are defined by the rule (3.3) we
see that dz = dz′. Thus, the holomorphic 1-form dz on C defines a holomorphic
1-form ω on S which in local coordinates has the form ω = dz. Another
exercise in complex analysis shows that the form ω has zeroes exactly at
those points of S where the flat structure has conical singularities.

In an appropriate local coordinate w in a neighborhood of zero (different
from the initial local coordinate z) a holomorphic 1-form can be represented
as wd dw, where d is called the degree of zero. The form ω has a zero of degree
d at a conical point with cone angle 2π(d + 1).

Recall the formula for the sum of degrees of zeroes of a holomorphic 1-form
on a Riemann surface of genus g:

m∑
j=1

dj = 2g − 2

This relation can be interpreted as the formula of Gauss–Bonnet for the flat
metric.

Vectors vj representing the sides of the polygon can be considered as
complex numbers. Let vj be joining vertices Pj and Pj+1 of the polygon.
Denote by ρj the resulting path on S joining the points Pj , Pj+1 ∈ S. Our
interpretation of vj as of a complex number implies the following obvious
relation:

vj =
∫ Pj+1

Pj

dz =
∫

ρj

ω (1)

Note that the path ρj represents a relative cycle: an element of the relative
homology group H1(S, {P1, . . . , Pm}; Z) of the surface S relative to the finite
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collection of conical points {P1, . . . , Pm}. Relation (1) means that vj repre-
sents a period of ω: an integral of ω over a relative cycle ρj .

Note also that the flat area of the surface S equals the area of the original
polygon, which can be measured as an integral of dx ∧ dy over the polygon.
Since in the complex coordinate z we have dx ∧ dy = i

2dz ∧ dz̄ we get the
following formula for the flat area of S:

area(S) =
i

2

∫
S

ω ∧ ω̄ =
i

2

g∑
j=1

(AjB̄j − ĀjBj) (2)

Here we also used the Riemann bilinear relation which expresses the integral∫
S

ω ∧ ω̄ in terms of absolute periods Aj , Bj of ω, where the absolute periods
Aj , Bj are the integrals of ω with respect to some symplectic basis of cycles.

An individual flat surface defines a pair: (complex structure, holomorphic
1-form). A family of flat surfaces (where the flat surfaces are as usual endowed
with a choice of the vertical direction) corresponds to a stratum H(d1, . . . , dm)
in the moduli space of holomorphic 1-forms. Points of the stratum are rep-
resented by pairs (point in the moduli space of complex structures, holomor-
phic 1-form in the corresponding complex structure having zeroes of degrees
d1, . . . , dm).

The notion “stratum” has the following origin. The moduli space of pairs
(holomorphic 1-form, complex structure) forms a natural vector bundle over
the moduli space Mg of complex structures. A fiber of this vector bundle
is a vector space C

g of holomorphic 1-forms in a given complex structure.
We already mentioned that the sum of degrees of zeroes of a holomorphic
1-form on a Riemann surface of genus g equals 2g − 2. Thus, the total space
Hg of our vector bundle is stratified by subspaces of those forms which have
zeroes of degrees exactly d1, . . . , dm, where d1 + · · · + dm = 2g − 2. Say, for
g = 2 we have only two partitions of number 2, so we get two strata H(2)
and H(1, 1). For g = 3 we have five partitions, and correspondingly five strata
H(4),H(3, 1),H(2, 2),H(2, 1, 1),H(1, 1, 1, 1).

H(d1, . . . , dm) ⊂ Hg

↓
Mg

(3)

Every stratum H(d1, . . . , dm) is a complex-analytic orbifold of dimension

dimC H(d1, . . . , dm) = 2g + m − 1 (4)

Note, that an individual stratum H(d1, . . . , dm) does not form a fiber bundle
over Mg. For example, according to our formula, dimC H(2g − 2) = 2g, while
dimC Mg = 3g − 3.

We showed how the geometric structures related to a flat surface define
their complex-analytic counterparts. Actually, this correspondence goes in two
directions. We suggest to the reader to make the inverse translation: to start
with complex-analytic structure and to see how it defines the geometric one.
This correspondence can be summarized in the following dictionary.
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Table 1. Correspondence of geometric and complex-analytic notions

Geometric language Complex-analytic language

flat structure (including a choice complex structure + a choice
of the vertical direction) of a holomorphic 1-form ω

conical point zero of degree d
with a cone angle 2π(d + 1) of the holomorphic 1-form ω

(in local coordinates ω = wd dw)

side vj of a polygon relative period
∫ Pj+1

Pj
ω =

∫
vj

ω

of the 1-form ω

area of the flat surface S i
2

∫
S

ω ∧ ω̄ =

= i
2

∑g

j=1
(AjB̄j − ĀjBj)

family of flat surfaces sharing the same stratum H(d1, . . . , dm) in the
types 2π(d1 + 1), . . . , 2π(dm + 1) moduli space of Abelian differentials

of cone angles

coordinates in the family: coordinates in H(d1, . . . , dm) :
vectors vi collection of relative periods of ω,

defining the polygon i.e. cohomology class
[ω] ∈ H1(S, {P1, . . . , Pm}; C)

3.4 Volume Element in the Moduli Space of Holomorphic
One-Forms

In the previous section we have considered vectors v1, . . . ,vn determining
the polygon from which we glue a flat surface S as on Fig. 12. We have
identified these vectors vj ∈ R

2 ∼ C with complex numbers and claimed
(without proof) that under this identification v1, . . . ,vn provide us with
local coordinates in the corresponding family of flat surfaces. We identify
every such family with a stratum H(d1, . . . , dm) in the moduli space of holo-
morphic 1-forms. In complex-analytic language we have locally identified a
neighborhood of a “point” (complex structure, holomorphic 1-form ω) in
the corresponding stratum with a neighborhood of the cohomology class
[ω] ∈ H1(S, {P1, . . . , Pm}; C).

Note that the cohomology space H1(S, {P1, . . . , Pm}; C) contains a nat-
ural integer lattice H1(S, {P1, . . . , Pm}; Z⊕√−1 Z). Consider a linear volume
element dν in the vector space H1(S, {P1, . . . , Pm}; C) normalized in such a
way that the volume of the fundamental domain in the “cubic” lattice

H1(S, {P1, . . . , Pm}; Z ⊕√−1 Z) ⊂ H1(S, {P1, . . . , Pm}; C)

is equal to one. In other terms
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dν =
1
J

1
(2
√−1)n

dv1dv̄1 . . . dvndv̄n,

where J is the determinant of a change of the basis {v1, . . . ,vn} considered
as a basis in the first relative homology to some “symplectic” basis in the first
relative homology.

Consider now the real hypersurface

H1(d1, . . . , dm) ⊂ H(d1, . . . , dm)

defined by the equation area(S) = 1. Taking into consideration formula (2)
for the function area(S) we see that the hypersurface H1(d1, . . . , dm) defined
as area(S) = 1 can be interpreted as a “unit hyperboloid” defined in local
coordinates as a level of the indefinite quadratic form (2) .

The volume element dν can be naturally restricted to a hyperplane defined
as a level hypersurface of a function. We denote the corresponding volume
element on H1(d1, . . . , dm) by dν1.

Theorem (H. Masur. W. A. Veech). The total volume
∫
H1(d1,...,dm)

dν1

of every stratum is finite.

The values of these volumes were computed only recently by A. Eskin
and A. Okounkov [EOk], twenty years after the Theorem above was proved
in [Ma3], [Ve3] and [Ve8]. We discuss this computation in Sec. 7.

3.5 Action of SL(2, R) on the Moduli Space

In this section we discuss a property of flat surfaces which is, probably, the
most important in our study: we show that the linear group acts on every
family of flat surfaces, and, moreover, acts ergodically (see Append. A for
discussion of the notion of ergodicity). This enables us to apply tools from
dynamical systems and from ergodic theory.

Consider a flat surface S and consider a polygonal pattern obtained by
unwrapping it along some geodesic cuts. For example, one can assume that
our flat surface S is glued from a polygon Π ⊂ R

2 as on Fig. 12. Consider a
linear transformation g ∈ GL+(2, R) of the plane R

2. It changes the shape of
the polygon. However, the sides of the new polygon gΠ are again arranged
into pairs, where the sides in each pair are parallel and have equal length
(different from initial one), see Fig. 14. Thus, identifying the sides in each
pair by a parallel translation we obtain a new flat surface gS.

It is easy to check that the surface gS does not depend on the way in
which S was unwrapped to a polygonal pattern Π. It is clear that all topolog-
ical characteristics of the new flat surface gS (like genus, number and types
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Fig. 14. Action of the linear group on flat surfaces

of conical singularities) are the same as those of the initial flat surface S.
Hence, we get a continuous action of the group GL+(2, R) on each stratum
H(d1, . . . , dm).

Considering the subgroup SL(2, R) of area preserving linear transforma-
tions we get the action of SL(2, R) on the “unit hyperboloid” H1(d1, . . . , dm).

Considering the diagonal subgroup
(

et 0
0 e−t

)
⊂ SL(2, R) we get a continuous

action of this one-parameter subgroup on each stratum H(d1, . . . , dm). This
action induces a natural flow on the stratum, which is called the Teichmüller
geodesic flow .

Key Theorem (H. Masur. W. A. Veech). The action of the groups

SL(2, R) and
(

et 0
0 e−t

)
preserves the measure dν1. Both actions are ergodic

with respect to this measure on each connected component of every stratum
H1(d1, . . . , dm).

This theorem might seem quite surprising. Consider almost any flat surface
S as in Fig. 12. “Almost any flat surface” is understood as “corresponding to
a set of parameters v1, . . . ,v4 of full measure; here the vectors vi define the
polygon Π from Fig. 12.

Now start contracting the polygon Π it in the vertical direction and ex-
panding it in the horizontal direction with the same coefficient et. The theorem
says, in particular, that for an appropriate t ∈ R the deformed polygon will
produce a flat surface gtS which would be arbitrary close to the flat surface
S0 obtained from the regular octagon as on Fig. 3 since a trajectory of al-
most any point under an ergodic flow is everywhere dense (and even “well
distributed”). However, it is absolutely clear that acting on our initial poly-
gon Π from Fig. 12 with expansion-contraction we never get close to a regular
octagon... Is there a contradiction?..

There is no contradiction since the statement of the theorem concerns flat
surfaces and not polygons. In practice this means that we can apply expansion-
contraction to the polygon Π, which does not change too much the shape of
the polygon, but radically changes the flat structure. Then we can change
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the way in which we unwrap the flat surface gtS (see Fig. 15). This radically
changes the shape of the polygon, but does not change at all the flat structure!

−→ =

Fig. 15. The first modification of the polygon changes the flat structure while the
second one just changes the way in which we unwrap the flat surface

3.6 General Philosophy

Now we are ready to describe informally the basic idea of our approach to the
study of flat surfaces. Of course it is not universal; however, in many cases it
appears to be surprisingly powerful.

Suppose that we need some information about geometry or dynamics of an
individual flat surface S. Consider the element S in the corresponding family of
flat surfaces H(d1, . . . , dm). Denote by C(S) = GL+(2, R)S ⊂ H(d1, . . . , dm)
the closure of the GL+(2, R)-orbit of S in H(d1, . . . , dm). In numerous cases
knowledge about the structure of C(S) gives a comprehensive information about
geometry and dynamics of the initial flat surface S. Moreover, some delicate
numerical characteristics of S can be expressed as averages of simpler char-
acteristics over C(S).

The remaining part of this survey is an attempt to show some implementa-
tions of this general philosophy. The first two illustrations would be presented
in the next section.

We have to confess that we do not tell all the truth in the formulation
above. Actually, there is a hope that this philosophy extends much further.
A closure of an orbit of an abstract dynamical system might have extremely
complicated structure. According to the most optimistic hopes, the closure
C(S) of the GL+(2, R)-orbit of any flat surface S is a nice complex-analytic
variety. Moreover, according to the most daring conjecture it would be possible
to classify all these GL+(2, R)-invariant subvarieties. For genus two the latter
statements were recently proved by C. McMullen (see [McM2] and [McM3])
and partly by K. Calta [Clt].
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We discuss this hope in more details in Sec. 9, in particular, in Sec. 9.3.
We complete this section by a Theorem which supports the hope for some
nice and simple description of orbit closures.

Theorem (M. Kontsevich). Suppose that a closure C(S) in H(d1, . . . , dm)
of a GL+(2, R)-orbit of some flat surface S is a complex-analytic subvariety.
Then in cohomological coordinates H1(S, {P1, . . . , Pm}; C) it is represented by
an affine subspace.

3.7 Implementation of General Philosophy

In this section we present two illustrations showing how the “general philos-
ophy” works in practice.

Consider a directional flow on a flat surface S. It is called minimal when the
closure of any trajectory gives the entire surface. When a directional flow on a
flat torus is minimal, it is necessarily ergodic, in particular, any trajectory in
average spends in any subset U ⊂ T

2 a time proportional to the area (measure)
of the subset U . Surprisingly, for surfaces of higher genera a directional flow
can be minimal but not ergodic! Sometimes it is possible to find some special
direction with the following properties. The flow in this direction is minimal.
However, the flat surface S might be decomposed into a disjoint union of
several subsets Vi of positive measure in such a way that some trajectories
of the directional flow prefer one subset to the others. In other words, the
average time spent by a trajectory in the subset Vi is not proportional to
the area of Vi anymore. (The original ideas of such examples appear in [Ve1],
[Kat1], [Sat] [Kea2]; see also [MaT] and especially [Ma7] for a very accessible
presentation of such examples.)

Suppose that we managed to find a direction on the initial surface S0 such
that the flow in this direction is minimal but not ergodic (with respect to
the natural Lebesgue measure). Let us apply a rotation to S0 which would
make the corresponding direction vertical. Consider the resulting flat surface
S (see Convention 1 in Sec. 1.2). Consider the corresponding “point” S ∈
H(d1, . . . , dm) and the orbit {gtS}t∈R of S under the action of the diagonal

subgroup gt =
(

et 0
0 e−t

)
.

Recall that the stratum (or, more precisely, the corresponding “unit hyper-
boloid”) H1(d1, . . . , dm) is never compact, it always contains “cusps”: regions
where the corresponding flat surfaces have very short saddle connections or
very short closed geodesics (see Sec. 3.2).

Theorem (H. Masur). Consider a flat surface S. If the vertical flow is
minimal but not ergodic with respect to the natural Lebesgue measure on the
flat surface then the trajectory gtS of the Teichmüller geodesic flow is diver-
gent, i.e. it eventually leaves any fixed compact subset K ⊂ H1(d1, . . . , dm) in
the stratum.
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Actually, this theorem has an even stronger form.
A stratum H1(d1, . . . , dm) has “cusps” of two different origins. A flat sur-

face may have two distinct zeroes get very close to each other. In this case S
has a short saddle connection (or, what is the same, a short relative period).
However, the corresponding Riemann surface is far from being degenerate.
The cusps of this type correspond to “simple noncompactness”: any stratum
H1(d1, . . . , dm) is adjacent to all “smaller” strata H1(d1 +d2, d3, . . . , dm), . . . .

Another type of degeneration of a flat surface is the appearance of a short
closed geodesic. In this case the underlying Riemann surface is close to a
degenerate one; the cusps of this second type correspond to “essential non-
compactness”.

To formulate a stronger version of the above Theorem consider the natural
projection of the stratum H(d1, . . . , dm) to the moduli space Mg of complex
structures (see (3) in Sec. 3.3). Consider the image of the orbit {gtS}t∈R in
Mg under this natural projection. By the reasons which we explain in Sec. 8
it is natural to call this image a Teichmüller geodesic.

Theorem (H. Masur). Consider a flat surface S. If the vertical flow is
minimal but not ergodic with respect to the natural Lebesgue measure on the
flat surface then the “Teichmüller geodesic” gtS is divergent, i.e. it eventu-
ally leaves any fixed compact subset K ⊂ M in the moduli space of complex
structures and never visits it again.

This statement (in a slightly different formulation) is usually called Ma-
sur’s criterion of unique ergodicity (see Sec. A for discussion of the notion
unique ergodicity).

As a second illustrations of the “general philosophy” we present a combi-
nation of Veech criterion and of a Theorem of J. Smillie.

Recall that closed regular geodesics on a flat surface appear in families of
parallel closed geodesics. When the flat surface is a flat torus, any such fam-
ily covers all the torus. However, for surfaces of higher genera such families
usually cover a cylinder filled with parallel closed geodesic of equal length.
Each boundary of such a cylinder contains a conical point. Usually a geodesic
emitted in the same direction from a point outside of the cylinder is dense in
the complement to the cylinder or at least in some nontrivial part of the com-
plement. However, in some rare cases, it may happen that the entire surface
decomposes into several cylinders filled with parallel closed geodesics going
in some fixed direction. This is the case for the vertical or for the horizontal
direction on the flat surface glued from a regular octagon, see Fig. 3 (please
check). Such direction is called completely periodic.

Theorem (J. Smillie; W. A. Veech). Consider a flat surface S. If its
GL+(2, R)-orbit is closed in H(d1, . . . , dm) then a directional flow in any di-
rection on S is either completely periodic or uniquely ergodic.

(see Sec. A for the notion of unique ergodicity). Note that unique ergodicity
implies, in particular, that any orbit which is not a saddle connection, (i.e.
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which does not hit the singularity both in forward and in backward direction)
is everywhere dense. We shall return to this Theorem in Sec. 9.5 where we
discuss Veech surfaces.

4 How Do Generic Geodesics Wind Around
Flat Surfaces

In this section we study geodesics on a flat surface S going in generic directions
on S. Such geodesics are dense on S; moreover, it is possible to show that they
wind around S in a relatively regular manner. Namely, it is possible to find a
cycle c ∈ H1(S; R) such that in some sense a long piece of geodesic pretends
to wind around S repeatedly following this asymptotic cycle c.

In Sec. 4.1 we study the model case of the torus and give a rigorous de-
finition of the asymptotic cycle. Then we study the asymptotic cycles on
general flat surfaces. In Sec. 4.2 we study “further terms of approximation”.
The asymptotic cycle describes the way in which a geodesic winds around the
surface in average. In Sec. 4.2 we present an empirical description of the de-
viation from average. The corresponding rigorous statements are formulated
in Sec. 4.3. Some ideas of the proof of this statement are presented in Sec. 5.

4.1 Asymptotic Cycle

Asymptotic Cycle on a Torus

As usual we start from the model case of the torus. We assume that our
flat torus is glued from a square in the natural way. Consider an irrational
direction on the torus; any geodesic going in this direction is dense in the
torus.

Fix a point x0 on the torus and emit a geodesic in the chosen direction.
Wait till it winds for some time around the torus and gets close to the initial
point x0. Join the endpoints of the resulting piece of geodesic by a short path.
We get a closed loop on the torus which defines a cycle c1 in the first homology
group H1(T2; Z) of the torus. Now let the initial geodesic wind around the
torus for some longer time; wait till it get close enough to the initial point x0

and join the endpoints of the longer piece of geodesic by a short path. We get
a new cycle c2 ∈ H1(T2; Z). Considering longer and longer geodesic segments
we get a sequence of cycles ci ∈ H1(T2; Z).

For example, we can choose a short segment X going through x0 orthogo-
nal (or just transversal) to the direction of the geodesic. Each time when the
geodesic crosses X we join the crossing point with the point x0 along X ob-
taining a closed loop. Consecutive return points x1, x2, . . . define a sequence
of cycles c1, c2, . . . , see Fig. 16.

For the torus case we can naturally identify the universal covering space
R

2 → T
2 with the first homology group H1(T2; R) � R

2. Our irrational
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Fig. 16. A sequence of cycles approximating a dense geodesic on a torus

geodesic unfolds to an irrational straight line V1 in R
2 and the sequence of

cycles c1, c2, . . . becomes a sequence of integer vectors v1,v2, · · · ∈ Z
2 ⊂ R

2

approximating V1, see Fig. 16.
In particular, it is not surprising that there exists the limit

lim
n→∞

cn

‖cn‖ = c (1)

Under our identification H1(T2; R) � R
2 the cycle c represents a unit vector

in direction V1.
Let the area of the torus be normalized to one. Let the interval X, which

we use to construct the sequence c1, c2, . . . , be orthogonal to the direction of
the geodesic. Denote by |X| its length. The following limit also exists and is
proportional to the previous one:

lim
n→∞

1
n

cn =
1
|X| · c (2)

The cycles obtained as limits (1) and (2) are called asymptotic cycles. They
show how the corresponding irrational geodesic winds around the torus in
average. It is easy to see that they do not depend on the starting point x.

The notion “asymptotic cycle” was introduced by S. Schwartzman [Schw].

Asymptotic Cycle on a Surface of Higher Genus

We can apply the same construction to a geodesic on a flat surface S of
higher genus. Having a geodesic segment X ⊂ S and some point x ∈ X we
emit from x a geodesic orthogonal to X. From time to time the geodesic
would intersect X. Denote the corresponding points as x1, x2, . . . . Closing up
the corresponding pieces of the geodesic by joining the endpoints x0, xj with
a path going along X we again get a sequence of cycles c1, c2, . . . .

Proposition 1. For any flat surface S of area one and for almost any di-
rection α on it any geodesic going in direction α is dense on S and has an
asymptotic cycle which depends only on α.

In other words, for almost any direction the limit

lim
n→∞

1
n

cn =
1
|X| · c
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exists and the corresponding asymptotic cycle c does not depend on the starting
point x0 ∈ S.

This proposition is an elementary corollary from the following theorem of
S. Kerckhoff, H. Masur and J. Smillie [KMaS] (which is another Key Theorem
in this area).

Theorem (S. Kerckhoff, H. Masur, J. Smillie). For any flat surface S
the directional flow in almost any direction is ergodic.

In this case the asymptotic cycle has the same dynamical interpretation
as for the torus: it shows how a geodesic going in the chosen direction winds
around the surface S in average.

Remark. Note that the asymptotic cycle c ∈ H1(S, R) also has a topological
interpretation. Assume for simplicity that c corresponds to the vertical direc-
tion. Let ω be the holomorphic 1-form corresponding to the flat structure on
S (see Sec. 3.3). Then the closed 1-form ω0 = Re(ω) defines the vertical folia-
tion and c = D[ω0] is Poincaré dual to the cohomology class of ω0. Choosing
other ergodic directions on the flat surface S we get asymptotic cycles in the
two-dimensional subspace 〈D[ω0], D[ω1]〉R ⊂ H1(S, R) spanned by homology
classes dual to cocycles ω0 = Re(ω) and ω1 = Im(ω).

4.2 Deviation from Asymptotic Cycle

We have seen in the previous section that a sequence of cycles c1, c2, . . . ap-
proximating long pieces of an “irrational” geodesic on a flat torus T

2 and on
a flat surface S of higher genus exhibit similar behavior: their norm grows
(approximately) linearly in n and their direction approaches the direction of
the asymptotic cycle c. Note, however, that for the torus the cycles cn live
in the two-dimensional space H1(T2; R) � R

2, while for the surface of higher
genus g ≥ 2 the cycles live in the larger space H1(S; R) � R

2g. In particular,
they have “more room” for deviation from the asymptotic direction.

Namely, observing the right part of Fig. 16 we see that all vectors cn

follow the line V1 spanned by the asymptotic cycle c rather close: the norm
of projection of cn to the line orthogonal to V1 is uniformly bounded (with
respect to n and to the choice of the starting point x0).

The situation is different for surfaces of higher genera. Choose a hyperplane
S ⊥ c in H1(S, R) as a screen orthogonal (transversal) to the asymptotic cycle
c and consider a projection to this screen parallel to c. Projections of cycles
cn would not be uniformly bounded anymore. There is no contradiction since
if the norms of these projections grow sublinearly, then the directions of the
cycles cn still tend to direction of the asymptotic cycle c.

Let us observe how the projections are distributed in the screen S. Fig-
ure 17 shows results of numerical experiments where we take a projection of
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Fig. 17. Projection of a broken line joining the endpoints of c1, c2, ..., c100000 to a
screen orthogonal to the asymptotic cycle. Genus g = 3

a broken line joining the endpoints of c1, c2, . . . , c100000 and we take a two-
dimensional screen orthogonal to c to make the picture more explicit.

We see that the distribution of projections of cycles cn in the screen S is
anisotropic: the projections accumulate along some line. This means that in
the original space R

2g the vectors cn deviate from the asymptotic direction V1

not arbitrarily but along some two-dimensional subspace V2 ⊃ V1, see Fig. 18.
Moreover, measuring the norms of the projections proj(cn) to the screen

S orthogonal to L1 = 〈c〉R, we get

Mg
2

direction of the
asymptotic cycle

asymptotic
plane L2

H1(M ;    )     H1(M ;    ) =    2g  ~

ν2

ν3

Fig. 18. Deviation from the asymptotic direction
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lim sup
n→∞

log ‖proj(cn)‖
log n

= ν2 < 1

In other words the vector cn is located approximately in the subspace V2, and
the distance from its endpoint to the line V1 ⊂ V2 is bounded by const · |cn‖ν2 ,
see Fig. 18.

Consider now a new screen S2 ⊥ V2 orthogonal to the plane V2. Now the
screen S2 has codimension two in H1(S, R) � R

2g. Considering the projections
of cn to S2 we eliminate the asymptotic directions V1 and V2 and we see how
do the vectors cn deviate from V2. On the screen S2 we see the same picture
as in Fig. 17: the projections are located along a one-dimensional subspace.

Coming back to the ambient space H1(S, R) � R
2g, this means that in

the first term of approximation all vectors cn are aligned along the one-
dimensional subspace V1 spanned by the asymptotic cycle. In the second term
of approximation, they can deviate from V1, but the deviation occurs mostly
in the two-dimensional subspace V2, and has order ‖c‖ν2 where ν2 < 1. In the
third term of approximation we see that the vector cn may deviate from the
plane V2, but the deviation occurs mostly in a three-dimensional space V3 and
has order ‖c‖ν3 where ν3 < ν2.

Going on we get further terms of approximation. However, getting to a
subspace Vg which has half the dimension of the ambient space we shall see
that, in a sense, there is no more deviation from Vg: the distance from any cn

to Vg is uniformly bounded.
Note that the intersection form endows the space H1(S, R) � R

2g with
a natural symplectic structure. It can be checked that the resulting g-
dimensional subspace Vg is a Lagrangian subspace for this symplectic form.

4.3 Asymptotic Flag and “Dynamical Hodge Decomposition”

A rigorous formulation of phenomena described in the previous section is given
by the following Theorem proved3 by the author in [Zo3] and [Zo4].

Following Convention 1 we always consider a flat surface together with
a choice of direction which by convention is called the vertical direction, or
direction to the North. Using an appropriate homothety we normalize the area
of S to one, so that S ∈ H1(d1, . . . , dm).

We chose a point x0 ∈ S and a horizontal segment X passing through x0;
by |X| we denote the length of X. We consider a geodesic ray γ emitted from
x0 in the vertical direction. (If x0 is a saddle point, there are several outgoing
vertical geodesic rays; choose any of them.) Each time when γ intersects X we
join the point xn of intersection and the starting point x0 along X producing
a closed path. We denote the homology class of the corresponding loop by cn.

3 Actually, the theorem was initially proved under certain hypothesis on the Lya-
punov exponents of the Teichmüller geodesic flow. These conjectures were proved
later by G. Forni and in the most complete form by A. Avila and M. Viana; see
the end of this section and especially Sec. 5.8
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Let ω be the holomorphic 1-form representing S; let g be genus of S.
Choose some Euclidean metric in H1(S; R) � R

2g which would allow to mea-
sure a distance from a vector to a subspace. Let by convention log(0) = −∞.

Theorem. For almost any flat surface S in any stratum H1(d1, . . . , dm) there
exists a flag of subspaces

V1 ⊂ V2 ⊂ · · · ⊂ Vg ⊂ H1(S; R)

in the first homology group of the surface with the following properties.
Choose any starting point x0 ∈ X in the horizontal segment X. Consider

the corresponding sequence c1, c2, . . . of cycles.
— The following limit exists

|X| lim
n→∞

1
n

cn = c,

where the nonzero asymptotic cycle c ∈ H1(M2
g ; R) is Poincaré dual to the

cohomology class of ω0 = Re[ω], and the one-dimensional subspace V1 = 〈c〉R

is spanned by c.
— For any j = 1, . . . , g − 1 one has

lim sup
n→∞

log |dist(cn,Vj)|
log n

= νj+1

and
|dist(cn,Vg)| ≤ const,

where the constant depends only on S and on the choice of the Euclidean
structure in the homology space.

The numbers 2, 1 + ν2, . . . , 1 + νg are the top g Lyapunov exponents of the
Teichmüller geodesic flow on the corresponding connected component of the
stratum H(d1, . . . , dm); in particular, they do not depend on the individual
generic flat surface S in the connected component.

A reader who is not familiar with Lyapunov exponents can either read
about them in Appendix B or just consider the numbers νj as some abstract
constants which depend only on the connected component Hcomp(d1, . . . , dm)
containing the flat surface S.

It should be stressed, that the theorem above was initially formulated
in [Zo4] as a conditional statement: under the conjecture that νg > 0 there
exist a Lagrangian subspace Vg such that the cycles are in a bounded distance
from Vg; under the further conjecture that all the exponents νj , for j =
1, 2, . . . , g, are distinct, there is a complete Lagrangian flag (i.e. the dimensions
of the subspaces Vj , where j = 1, 2, . . . , g, rise each time by one). These
two conjectures were later proved by G. Forni [For1] and by A. Avila and
M. Viana [AvVi]. We discuss their theorems in Sec. 5.8.
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Another remark concerns the choice of the horizontal segment X. By con-
vention it is chosen in such way that the trajectories emitted in the vertical
direction (in direction to the North) from the endpoints of X hit the conical
points before the first return to X. Usually we just place the left endpoint of
X at the conical point.

Omitting this condition and considering a continuous family of horizon-
tal subintervals Xt of variable length (say, moving continuously one of the
endpoints), the theorem stays valid for a subset of Xt of full measure.

5 Renormalization for Interval Exchange
Transformations. Rauzy–Veech Induction

In this section we elaborate a powerful time acceleration machine which allows
to study the asymptotic cycles described in Sec. 4. Following the spirit of this
survey we put emphasis on geometric ideas and omit proofs. This section can
be considered as a geometric counterpart of the article of J.-C. Yoccoz [Y] in
the current volume.

I use this opportunity to thank M. Kontsevich for numerous ideas and
conjectures which were absolutely crucial for my impact in this theory: without
numerous discussions with M. Kontsevich papers [Zo2] and [Zo3], probably,
would be never written.

5.1 First Return Maps and Interval Exchange Transformations

Our goal is to study cycles obtained from long pieces of “irrational” geodesic
on a flat surface by joining their endpoints along a transversal segment X.
To perform this study we elaborate some simple machine which generates the
cycles, and then we accelerate this machine to obtain very long cycles in a
rather short time.

Consider all geodesics emitted from a transverse segment X in the same
generic direction and let each of them come back to X for the first time. We
get a first return map T : X → X which is interesting by itself and which
deserves a separate discussion. Its properties play a crucial role in our study.
(See Appendix A for general properties of the first return map.)

As usual let us start with a model case of a flat torus. Take a meridian
of the torus as a transversal X and emit from X a directional flow. Every
geodesic comes back to X inducing the first return map T : X → X, which in
this case isometrically rotates the meridian X along itself by an angle which
depends on the direction of the flow, see Fig. 19.

Assume that our flat torus T
2 is glued from a unit square. Let us replace

now a meridian of the torus by a generic geodesic segment X orthogonal to the
direction of the flow. From every point of X we emit a geodesic in direction
orthogonal to X and wait till it hits X for the first time. We again obtain
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Fig. 19. The first return map of a meridian to itself induced by a directional flow
is just a twist

a first return map T : X → X, but this time the map T is slightly more
complicated.

To study this map it is convenient to unfold the torus into a plane. The
map T is presented at Fig. 20. It chops X into three pieces and then shuffles
them sending the left subinterval to the right, the right subinterval to the left
and keeping the middle one in the middle but shifting it a bit. The map T
gives an example of an interval exchange transformation.

Note that when the direction of the flow is irrational, the geodesics emit-
ted from X again cover the entire torus T

2 before coming back to X. The
torus is get ripped into three rectangles based on the three subintervals in
which T chops X. The corresponding building of three rectangles gives a new
fundamental domain representing the torus: one can see at Fig. 20 that it tiles
the plane. Initially we glued our flat torus from a square; the building under
consideration gives another way to unwrap T

2 into a polygon. We recommend
to the reader to check that identifying the two pairs of corresponding vertical

Fig. 20. Directional flow on a torus. The first return map of a segment to itself is
an interval exchange transformation of three subintervals
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sides of the building and gluing the top horizontal sides of the rectangles to
the bottom of X as prescribed by the interval exchange transformation T we
get the initial torus.

Consider now a flat surface of genus higher than one. Say, consider a flat
surface of genus g = 2 as on Fig. 21. We suggest to the reader to check
that this flat surface has a single conical singularity with a cone angle 6π
(see Fig. 2). To study a directional flow choose as before a geodesic segment
X ⊂ S orthogonal to the direction of the flow and consider the first return map
T : X → X induced by the flow; see Fig. 21. We see that X is chopped into
a larger number of subintervals (in comparison with the torus case), namely,
for our choice of X it is chopped into four subintervals.

Now we observe a new phenomenon: trajectories emitted from some points
of X hit the conical point and our directional flow splits at this point. Since
in our particular case the cone angle at the conical point is 6π = 3 · 2π there
are three trajectories in direction v which hit it. The corresponding points at
which X is chopped are marked with bold dots. The remaining discontinuity
point of X corresponds to a trajectory which hits the endpoint of X.

Our construction with a segment X transversal to the flow and with tra-
jectories of the flow emitted from X and followed till their first return to X
trims a braid from the flow. Conical points play the role of a comb which
splits the flow into several locks and then trims them in a different order.
Note, however, that if we follow the flow till the second return to X it will
pass through the comb twice, and thus will be generically split already into
seven locks. (If you are interested in details, think why this second return has
seven and not eight locks and what sort of genericity we need).

Similarly, the interval exchange transformation T of the base interval X
can be compared to a shuffling machine. Imagine that X represents a stock of
cards. We split the stock into n parts of fixed widths and shuffle the parts in
a different order (given by some permutation π of n elements). At the second
iteration we again split the new stock in the parts of the same widths as
before and shuffle the parts according to the same permutation π, etc. Note,
that even if the permutation π is such that π2 = id, say, π = (4, 3, 2, 1), the
second iteration T 2 is not an identical transformation provided the widths
λ1, . . . , λ4 are not symmetric: for a generic choice of λ1, . . . , λ4 the interval
exchange transformation T 2 has 6 discontinuities (and hence 7 subintervals
under exchange).

Exercise. Consider an interval exchange transformation T (λ, π) corresponding
to the permutation π = (4, 3, 2, 1). Choose some generic values of the lengths
λ1, . . . , λ4 of subintervals and construct T 2 and T 3.

5.2 Evaluation of the Asymptotic Cycle Using an Interval
Exchange Transformation

Now we can return to our original problem. We want to study long pieces
of leaves of the vertical foliation. Fix a horizontal segment X and emit a
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v1

v2
v3

v4

v4

v3
v2

v1

Fig. 21. The first return map T : X → X of a geodesic segment X defined
by a directional flow decomposes the surface into four rectangles “zippered” along
singular trajectories

vertical trajectory from some point x ∈ X. When the trajectory intersects X
for the first time join the corresponding point T (x) to the original point x
along X to obtain a closed loop. Here T : X → X denotes the first return
map to the transversal X induced by the vertical flow. Denote by c(x, 1) the
corresponding cycle in H1(S; Z). Following the vertical trajectory further on
we shall return to X once again. Joining x and the point T (T (x)) of the second
return to X along X we obtain the second cycle c(x, 2). We want to describe
the cycle c(x,N) obtained after a very large number N of returns.

Actually, we prefer to close up a piece of trajectory going from x ∈ X to the
first return point T (x) ∈ X in a slightly different way. Instead of completing
the path joining the endpoints it is more convenient to close this piece of
trajectory joining both points x and T (x) to the left endpoint of X along X
(see Fig. 22). This modified path defines the same homology cycle c(x, 1) as
the closed path for which the points x and T (x) are joined directly.

Consider now the “first return cycle” c(x, 1) as a function c(x) = c(x, 1) of
the starting point x ∈ X. Let the interval exchange transformation T : X → X
decompose X into n subintervals X1 � · · · � Xn. It is easy to see that the
function c(x) is piecewise constant: looking at Fig. 22 one can immediately
verify that if two points x1 and x2 are not separated by a discontinuity point
(i.e. if they belong to the same subinterval Xj) they determine homologous
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(and even homotopic) cycles c(x1) = c(x2). Each subinterval Xj determines
its own cycle c(Xj).

R4 R3 R2 R1

x

c(X3)

c(X4)

c(x, 2) = c(X3) + c(X4)

Fig. 22. Decomposition of a long cycle into the sum of basic cycles. (We have
unfolded the flat surface along vertical trajectory emitted from the point x)

The vertical trajectory emitted from a point x ∈ X returns to X at
the points T (x), T 2(x), . . . , TN (x). It is easy to see that the cycle c(x, 2)
corresponding to the second return can be represented as a sum c(x, 2) =
c(x) + c(T (x)), see Fig. 22. Similarly the cycle c(x,N) obtained by closing
up a long piece of vertical trajectory emitted from x ∈ X and followed up to
N -th return to X can be represented as a sum

c(x,N) = c(x) + c(T (x)) + · · · + c(TN−1(x)) (1)

According to the fundamental Theorem of S. Kerckhoff, H. Masur and
J. Smillie [KMaS], for any flat surface the directional flow in almost any di-
rection is ergodic, and even uniquely ergodic. Hence, the same is true for the
corresponding interval exchange transformation. Applying the ergodic theo-
rem (see Appendix A) to the sum (1) and taking into consideration that c(x)
is a piecewise-constant function we get

c(x,N) ∼ N · 1
|X|

∫
X

c(x) dx = N · 1
|X|

(
λ1c(X1) + · · · + λnc(Xn)

)

where c(Xj) denotes the “first return cycle” for the points x in the subinterval
Xj , see Fig. 22. This gives an explicit formula for the asymptotic cycle

c = lim
N→∞

c(x,N)
N

=
1
|X|

(
λ1c(X1) + · · · + λnc(Xn)

)
(2)

Note that the asymptotic cycle does not depend on the starting point x ∈ X.
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Exercise. Show that the paths v1, . . . ,v4 (see Fig. 21) represent a basis of
cycles of the corresponding flat surface S of genus g = 2. Show that the first
return cycles c(Xj) determine another basis of cycles and that one can pass
from one basis to the other using the following relations (see Fig. 21):

c(X1) = v1 − v4 c(X2) = v1 − v3 − v4

c(X3) = 2v1 + v2 − v4 c(X4) = v1 + v2 + v3 − v4

Express the asymptotic cycle in the basis vj in terms of the lengths λj and
then in terms of the angle by which the regular octagon is turned with respect
to the standard presentation. Locally the vertical foliation goes to the North.
And globally?

5.3 Time Acceleration Machine (Renormalization):
Conceptual Description

In the previous section we have seen why all trajectories of a typical directional
flow wind around the surface following the same asymptotic cycle. We have
also found an effective way to evaluate this asymptotic cycle: we have seen
that it is sufficient to find an interval exchange transformation T : X → X
induced on any transverse segment X as the first return map of the directional
flow, and then to determine the “first return cycles” c(Xj), see Fig. 22. The
linear combination of the cycles c(Xj) taken with weights proportional to the
lengths λj = |Xj | of subintervals gives the asymptotic cycle, see (2).

Let us proceed now with a more delicate question of deviation of a tra-
jectory of the directional flow from the asymptotic direction. Without loss of
generality we may assume that the directional flow under consideration is the
vertical flow. We know that a very long cycle c(x,N) corresponding to a large
number N of returns of the trajectory to the horizontal segment X stretches
in the direction approaching the direction of the asymptotic cycle c. We want
to describe how c(x,N) deviates from this direction (see Sec. 4.2 and Sec. 4.3).

We have already seen that as soon as we have evaluated the “first return
cycles” c(Xj), complete information about cycles representing long pieces of
trajectories of the directional flow is encoded in the corresponding trajectory
x, T (x), . . . , TN−1(x) of the interval exchange transformation; see (1).

An interval exchange transformations gives an example of a parabolic dy-
namical system which is neither completely regular (like rotation of a circle)
nor completely chaotic (like geodesic flow on a compact manifold of constant
negative curvature, which is a typical example of a hyperbolic system). In some
aspects interval exchange transformations are closer to rotations of a circle:
say, as it was proved by A. Katok, an interval exchange transformation is
never mixing [Kat2] (though, as it was very recently proved by A. Avila and
G. Forni in [AvFor], generically it is weakly mixing). However, the behavior of
deviation from the ergodic mean resembles the behavior of a chaotic system.
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Our principal tool in the study of interval exchange transformations ex-
ploits certain self-similarity of these maps. Choosing a shorter horizontal in-
terval X ′ we make the vertical flow wind for a long time before the first
return to X ′. However, the new first return map in a sense would not be
more complicated than the initial one: it would be again an interval exchange
transformation T ′ : X ′ → X ′ of the same (or almost the same) number of
subintervals.

To check the latter statement let us study the nature of the points of
discontinuity of the first return map T : X → X. An interior point x ∈ X is
a point of discontinuity either if the forward vertical trajectory of x hits one
of the endpoints of X (as on Fig. 20) or if the forward vertical trajectory of x
hits the conical point before coming back to X (see Fig. 21). A conical point
having the cone angle 2π(d+1) has d+1 incoming vertical trajectories which
land to this conical point. (Say, the flat surface represented on Fig. 21 has
a single conical point with the cone angle 6π; hence this conical point has 3
incoming vertical trajectories.) Following them at the backward direction till
the first intersection with X we find d + 1 points of discontinuity on X (see
Fig. 21). Thus, all conical points taken together produce

∑
j(dj +1) points of

discontinuity on X.
Generically two more points of discontinuity come from the backward tra-

jectories of the endpoints of X. However, in order to get as small number of
discontinuity points as possible we can choose X in such way that either back-
ward or forward trajectory of each of the two endpoints hits some conical point
before coming back to X. This eliminates these two additional discontinuity
points.

Convention 2. From now on we shall always choose any horizontal subinterval
X in such way that the interval exchange transformation T : X → X induced
by the first return of the vertical flow to X has the minimal possible number

n =
∑

j

(dj + 1) + 1 = 2g + (number of conical points) − 1

of subintervals under exchange.

In the formula above we used the Gauss–Bonnet formula telling that∑
j dj = 2g − 2, where g is the genus of the surface.
Following Convention 2 we shall usually place the left endpoint of the

horizontal interval X at the conical singularity. This leaves a discrete choice
for the position of the right endpoint.

Renormalization

We apply the following strategy in our study of cycles c(x,N). Choose some
horizontal segment X satisfying Convention 2. Consider vertical trajectories,
which hit conical points. Follow them in backward direction till the first in-
tersection with X. Consider the resulting decomposition X = X1 � · · · � Xn,
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the corresponding interval exchange transformation T : X → X and the “first
return cycles” c(Xj).

Consider a smaller subinterval X ′ ⊂ X satisfying Convention 2. Apply
the above procedure to X ′; let X ′ = X ′

1 � · · · � X ′
n be the corresponding

decomposition of X ′. We get a new partition of our flat surface into a collection
of n rectangles based over subintervals X ′

1 � · · · � X ′
n.

By construction the vertical trajectories of any two points x0, x ∈ X ′
k

follow the same high and narrow rectangle R′
k of the new building up to

their first return to X ′. This implies that the corresponding new “first return
cycles” c′(x0) = c′(x) are the same and equal to c′(X ′

k).
Both vertical trajectories of x0, x ∈ X ′

k intersect the initial interval X
many times before first return to X ′. However, since these trajectories stay
together, they visit the same intervals Xjk

in the same order j0, j1, . . . , jl (the
length l = l(k) of this trajectory depends on the subinterval X ′

k).
This means that we can construct an n × n-matrix Bjk indicating how

many times a vertical trajectory emitted from a point x ∈ X ′
k have visited

subinterval Xj before the first return to X ′. (By convention the starting point
counts, while the first return point does not.) Here X = X1 � · · · � Xn is the
partition of the initial “long” horizontal interval X and X ′ = X ′

1 � · · · � X ′
n

is the partition of the new “short” subinterval X ′.
Having computed this integer matrix B we can represent new “first return

cycles” c′(X ′
k) in terms of the initial “first return cycles” c(Xj) as

c′(X ′
k) = B1kc(X1) + · · · + Bnkc(Xn) (3)

Moreover, it is easy to see that the lengths λ′
k = |X ′

k| of subintervals of the new
partition are related to the lengths |Xj | of subintervals of the initial partition
by a similar relation

λj = Bj1λ
′
1 + · · · + Bjnλ′

n. (4)

Note that to evaluate matrix B we, actually, do not need to use the vertical
flow: the matrix B is completely determined by the initial interval exchange
transformation T : X → X and by the position of the subinterval X ′ ⊂ X.

What we gain with this construction is the following. To consider a cycle
c(x,N) representing a long piece of leaf of the vertical foliation we followed
the trajectory x, T (x), . . . , TN (x) of the initial interval exchange transforma-
tion T : X → X and applied formula (1). Passing to a shorter horizontal
interval X ′ ⊂ X we can follow the trajectory x, T ′(x), . . . , (T ′)N ′

(x) of the
new interval exchange transformation T ′ : X ′ → X ′ (provided x ∈ X ′). Since
the subinterval X ′ is much shorter than X we cover the initial piece of tra-
jectory of the vertical flow in a smaller number N ′ of steps. In other words,
passing from T to T ′ we accelerate the time: it is easy to see that the tra-
jectory x, T ′(x), . . . , (T ′)N ′

(x) follows the trajectory x, T (x), . . . , TN (x) but
jumps over many iterations of T at a time.

Of course this approach would be non efficient if the new first return map
T ′ : X ′ → X ′ would be much more complicated than the initial one. But we
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know that passing from T to T ′ we stay within a family of interval exchange
transformations of the fixed number n of subintervals, and, moreover, that the
new “first return cycles” and the lengths of the new subintervals are expressed
in terms of the initial ones by means of the n × n-matrix B, which depends
only on the choice of X ′ ⊂ X and which can be easily computed.

Our strategy can be formalized as follows. In the next two sections we
describe a simple explicit algorithm (generalizing Euclidean algorithm) called
Rauzy–Veech induction which canonically associates to an interval exchange
transformation T : X → X some specific subinterval X ′ ⊂ X and, hence, a
new interval exchange transformation T ′ : X ′ → X ′. This algorithm can be
considered as a map from the space of all interval exchange transformations of
a given number n of subintervals to itself. Applying recursively this algorithm
we construct a sequence of subintervals X = X(0) ⊃ X(1) ⊃ X(2) ⊃ . . . and
a sequence of matrices B = B(X(0)), B(X(1)), . . . describing transitions form
interval exchange transformation T (r) : X(r) → X(r) to interval exchange
transformation T (r+1) : X(r+1) → X(r+1). Rewriting equations (3) and (4) in
a matrix form we get:

⎛
⎜⎝

c(X(r+1)
1 )
. . .

c(X(r+1)
n )

⎞
⎟⎠ =

(
B(X(r))

)T

·

⎛
⎜⎝

c(X(r)
1 )

. . .

c(X(r)
n )

⎞
⎟⎠

(5)⎛
⎝λ1(X(r+1))

. . .
λn(X(r+1))

⎞
⎠ =

(
B(X(r))

)−1

·
⎛
⎝λ1(X(r))

. . .
λn(X(r))

⎞
⎠

Taking a product B(s) = B(X(0)) ·B(X(1)) · · · · ·B(X(s−1)) we can imme-
diately express the “first return cycles” to a microscopic subinterval X(s) in
terms of the initial “first return cycles” to X by a linear expression analogous
to (5). Note, however, that before coming back to this microscopic subinter-
val X(s) the vertical flow has to travel for enormously long time. The first
return cycle to this very short subinterval X(s) represents the cycle c(x,N)
corresponding to very long trajectory x, T (x), ..., TN (x) of the initial interval
exchange transformation with N ∼ exp(const · s). In other words, our renor-
malization procedure plays a role of a time acceleration machine: instead of
following patiently the trajectory x, T (x), ..., TN (x) of the initial interval ex-
change transformation for the exponential time N ∼ exp(const · s) we obtain
the cycle c(x,N) applying only s steps of renormalization!

One can argue that in this way we can describe only very special parts of
vertical trajectories: those which start and end at the same microscopically
small subinterval X(s) ⊂ X. This can be overdone by the following technique.
Consider an enormously long trajectory x, T (x), . . . , TN (x) which starts and
finishes at some generic points of X. One can choose s(N) in such way that the
trajectory would get to X(s) relatively soon (in comparison with its length N);
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then would return back to X(s) many times; and would reach the last point
TN (x) relatively fast after the last visit to X(s). That means that essentially
(up to negligibly short starting part and ending part) one can assume that the
entire trajectory starts at X(s) and ends at X(s) (returning to this subinterval
many times).

This simple idea can be developed and rigorously arranged (see [Zo4] for
details). To avoid overloading of this survey with technicalities we consider
only a simplified problem giving a comprehensive description of the first return
cycles to X(s). The nature of the asymptotic flag is especially transparent in
this case.

5.4 Euclidean Algorithm as a Renormalization Procedure in
Genus One

To illustrate the idea of renormalization we start with the “elementary” case,
when the Riemann surface is a torus, the foliation is a standard irrational
foliation, and the initial transversal X is a meridian. We have seen at Fig. 19
that in this case the first return map T : X → X is just a rotation of a circle.

Consider rotation of a circle T : S1 → S1 by an angle α. Let the length of
the circle be normalized to one. Consider trajectory x, Tx, T 2x, . . . of a point
x (see Fig. 23). Denote the length of the arc (x, Tx) by λ = α/(2π).

x

T 5x

T 10x

TxT 6x

T 2x

T 7x

T 3x

T 8x

T 4x
T 9x

α

X ′

X1

X2

Fig. 23. Renormalization for rotation of a circle leads to Euclidean algorithm and
to Gauss measure

Cutting the circle at the point x we get an interval X; the rotation of
the circle generates a map of the interval X to itself which we denote by
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the same symbol T : X → X. Unbend X isometrically to get a horizontal
interval of unit length in such way that the counterclockwise orientation of
the circle gives the standard positive orientation of the horizontal interval.
The map T acts on X as follows: it cuts the unit interval X into two pieces
X1 � X2 of lengths |X1| = 1 − λ and |X2| = λ and interchanges the pieces
preserving the orientation, see Fig. 23. In other words, the map T is an interval
exchange transformation of two subintervals. (To avoid confusion we stress
that X2 = [T−1x, x] and not X = [x, Tx].)

Suppose now that we are looking at X in the microscope which shows
only the subinterval X ′ = [x, Tx[ (corresponding to the sector of angle α at
Fig. 23). Consider the trajectory x, Tx, T 2x, . . . of the point x which is the left
extremity of X1. For the particular rotation represented at Fig. 23 the points
Tx, T 2x, T 3x, T 4x are outside of the sector of our vision; the next point of the
trajectory which we see in X ′ is the point T 5x. This is the first return point
T ′x = T 5x to the subinterval X ′. Following the trajectory T 5x, T 6x, ... further
on we would not see several more points and then we shall see T 10x = T ′(T ′x).
This is the second return to the subinterval X ′.

Note that the distance between x and T ′x = T 5x is the same as the
distance between T ′x = T 5x and T ′(T ′x) = T 10x; it equals (1 − {1/λ}) · λ,
where { } denotes the fractional part of a real number. It is easy to see that
T ′ : X ′ → X ′ is again an interval exchange transformation of two subintervals
X ′

1 �X ′
2. The lengths of subintervals are |X ′

1| = {1/λ} · λ and (1−{1/λ}) · λ.
After identification of the endpoints the segment X ′ becomes a circle and the
map T ′ becomes a rotation of the circle T ′. Having started with a rotation T
in a counterclockwise direction by the angle α = 2π · λ we get a rotation T ′

in a clockwise direction by the angle α′ = 2π ·
{

1
λ

}
(please verify).

One should not think that T ′ = T 5 identically. It is true for the points of
first subinterval, T ′|X′

1
= T 5. However, for the points of the second subinterval

X ′
2 we have T ′|X′

2
= T 4. In other words, for the points of the sector α, which

are close to the extremity Tx, four iterations of T bring them back to the
sector. Thus, the matrix B(X ′) of number of visits to subintervals has the
form (

B11 B12

B21 B22

)
=

(
4 3
1 1

)

(please draw X1 �X2 and X ′
1 �X ′

2 and verify). We remind that Bjk indicates
how many times a vertical trajectory emitted from a point x ∈ X ′

k have visited
subinterval Xj before the first return to X ′, where by convention the starting
point counts, while the first return point does not.

Thus we get a renormalization procedure as described in the previous
section: confine the map T to a smaller subinterval X ′; consider the resulting
first return map T ′; rescale X ′ to have unit length. Having started with an
interval exchange transformation T of two intervals of lengths (1−λ, λ), where
λ ∈ (0, 1) we get (after rescaling) an interval exchange transformation T ′ of
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two intervals of lengths {1/λ}, 1 − {1/λ}. Or, in terms of rotations, having
started with a counterclockwise rotation by the angle α = 2πλ we get a

clockwise rotation by the angle α′ = 2π ·
{

1
λ

}
.

One can recognize Euclidean algorithm in our renormalization procedure.
Consider the “space of rotations”, where rotations are parametrized by the
angle 2πλ, λ ∈ [0; 1[. The map

g : λ �→
{

1
λ

}
(6)

can be considered as a map from “the space of rotations” to itself, or what
is the same, a map from “the space of interval exchange transformations of
two subintervals” to itself. The map g is ergodic with respect to the invariant
probability measure

dµ =
1

log 2
· dλ

(λ + 1)
(7)

on the parameter space λ ∈ [0; 1[ which is called the Gauss measure. This
map is intimately related with the development of λ into a continued fraction

λ =
1

n1 +
1

n2 +
1

n3 +
1

. . .

We shall see another renormalization procedure related to map (6) in the
next sections, in particular, in Sec. 5.9.

5.5 Rauzy–Veech Induction

In the previous section we have seen an example of a renormalization pro-
cedure for interval exchange transformations of two intervals. In this section
we consider a similar renormalization procedure which now works for interval
exchanges of any number of subintervals. As we have seen in the previous sec-
tion, we do not need to keep information about the flat surface to describe the
renormalization algorithm. Nevertheless, we prefer to keep track of zippered
rectangles decomposition of the surface corresponding to the sequence of the
horizontal subintervals X = X(0) ⊃ X(1) ⊃ . . . in order to preserve geometric
spirit of the algorithm.

Consider a flat surface S; choose a horizontal interval X satisfying Conven-
tion 2; consider the corresponding decomposition of the surface into zippered
rectangles as on Fig. 21. Let X1�· · ·�Xn be the corresponding decomposition
of the horizontal segment X in the base; let λj = |Xj | denote the widths of
subintervals.



Flat Surfaces 489

Convention 3. We associate to a decomposition of a flat surface into rectangles
a permutation π in such way that the top horizontal segments of the rectangles
are glued to the bottom side of the interval X in the order π−1(1), . . . , π−1(n).

Example. In the example presented at Fig. 21 the four rectangles R1, . . . , R4

appear at the bottom side of X in the order R3, R1, R4, R2, so we associate
to this way of gluing a permutation

(
1 2 3 4
3 1 4 2

)
= (3, 1, 4, 2)−1 = (2, 4, 1, 3) = π

Exercise. Show that intersection indices c(Xi) ◦ c(Xj) of the “first return
cycles” (see Sec. 5.2) are given by the following skew-symmetric matrix Ω(π)
defined by the permutation π:

Ωij(π) =

⎧⎪⎨
⎪⎩

1 if i < j and π−1(i) > π−1j

−1 if i > j and π−1(i) < π−1j

0 otherwise
(8)

Evaluate Ω(π) for the permutation in the Example above and compare the
result with a direct calculation for the cycles c(Xj), j = 1, . . . , 4, computed
in the Exercise at the end of Sec. 5.2.

Compare now the width λn of the rightmost rectangle Rn with the width
λπ−1(n) of the rectangle which is glued to the rightmost position at the bottom
of X. As a new subinterval X ′ ⊂ X consider the subinterval X ′, which has the
same left extremity as X, but which is shorter than X by min(λn, λπ−1(n)).

The situation when λn > λπ−1(n) is represented at Fig. 24; the situation
when λn < λπ−1(n) is represented at Fig. 25.

By construction the first return map T ′ : X → X ′ has the same number n
of subintervals in its decomposition. Observing Fig. 24 and 24 one can see that
in the first case, when λn > λπ−1(n), the new decomposition X ′

1 � · · · � X ′
n is

obtained from the original decomposition X1�· · ·�Xn by shortening the last
interval by λπ−1(n) from the right. In the second case, when λn < λπ−1(n), the
new decomposition X ′

1 � · · · �X ′
n is obtained from the original decomposition

X1 � · · · � Xn by eliminating the last subinterval Xn and by partitioning the
subinterval Xπ−1(n) into two ones of lengths λπ−1(n) −λn and λn correspond-
ingly.

The order in which the rectangles of the new building are glued to the
bottom of the interval X ′ changes. The new permutation π′ can be described
as follows. Consider the initial permutation π as a pair of orderings of a
finite set: a “top” ordering 1, 2, . . . , n (corresponding to the ordering of the
rectangles along the top side of the base interval X) and a “bottom” ordering
π−1(1), . . . , π−1(m) (corresponding to the ordering of the rectangles along the
bottom side of the base interval X). In the first case, when λn > λπ−1(n), the
new permutation π′ corresponds to the modification of the bottom ordering
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R1 R2 R3 R4

R4 R3 R2 R1

R′
1 R′

2 R′
3 R′

4

R′
4 R′

1 R′
3 R′

2

Fig. 24. Type I modification: the rightmost rectangle R4 on top of X is wider than
the rectangle R1 = Rπ−1(4) glued to the rightmost position at the bottom of X.

by cyclically moving one step forward those letters occurring after the image
of the last letter in the bottom line, i.e., after the letter n. In the second case,
when λn < λπ−1(n), the new permutation π′ corresponds to the modification of
the top ordering by cyclically moving one step forward those letters occurring
after the image of the last letter in the top line, i.e., after the letter π−1(n).

Example. For the initial buildings at both Figures 24 and 25 the permutation
π corresponding to the initial interval exchange transformation T : X → X is
the same and equals

π =
(

1 2 3 4
4 3 2 1

)

Our modification produces permutation
(

1 2 3 4
4 3 → 2 → 1

)
=

(
1 2 3 4
4 1 3 2

)
= π′

in the first case (when λn > λπ−1(n)) and permutation
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R1 R2 R3 R4

R4 R3 R2 R1

R′
1 R′

2 R′
3 R′

4

R′
2 R′

4 R′
3 R′

1

Fig. 25. Type II modification: the rightmost rectangle R4 on top of X is narrower
than the rectangle R1 = Rπ−1(4) glued to the rightmost position at the bottom of
X.

(
1 2 → 3 → 4
4 3 2 1

)
=

(
1 4 2 3
4 3 2 1

)
∼

(
1 2 3 4
2 4 3 1

)
= π′

in the second case (when λn < λπ−1(n)).

Note that in the second case (when λn < λπ−1(n)) passing to the new
decomposition X ′

1 � · · · � X ′
n we have to change the initial enumeration of

the subintervals though physically all subintervals but one stay unchanged.
Another choice would be to assign “names” to subintervals once and forever.
Under the first choice the permutations(

1 4 2 3
4 3 2 1

)
and

(
1 2 3 4
2 4 3 1

)

coincide; under the latter choice they become different permutations. The
article [Y] in the current volume adopts the second convention.

Similarly to the case of interval exchange transformations of two intervals
the induction procedure described above can be described entirely in terms of
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interval exchange transformations T : X → X and T ′ : X ′ → X ′. Historically
it was proposed by G. Razy [Ra] in these latter form and then was interpreted
by W. Veech [Ve3] in terms of zippered rectangles. (Actually, the zippered
rectangles decomposition has appeared and was first studied in [Ve3].)

5.6 Multiplicative Cocycle on the Space of Interval Exchanges

The renormalization procedure constructed in Sec. 5.4 gives a map g from the
space of rotations of a circle to itself, or, in other terms, from the space of
interval exchange transformations of two subintervals to itself. The permuta-
tion π corresponding to an interval exchange transformations of two intervals
X1�X2 is always equal to π = (2, 1), so such interval exchange transformation
can be parametrized by a single real parameter λ ∈ (0, 1), where λ = |X1|.
Here we assume that the total length |X1| + |X2| = |X| of the interval X is
normalized as |X| = 1.

An interval exchange transformation of n subintervals X = X1 � · · · �Xn

is parametrized by a collection λ1, . . . , λn of positive numbers representing
the lengths of subintervals and by a permutation π ∈ Sn. Assuming that the
total length of the interval X is normalized as |X| = 1 we see that the space
of interval exchange transformations is parametrized by a finite collection of
(n−1)-dimensional simplices ∆n−1 = {(λ1, . . . , λn) | λ1+· · ·+λn = 1;λj > 0},
where each simplex corresponds to some fixed permutation π.

As a collection of permutations one can consider all permutations obtained
from a given one by applying recursively the modifications described at the end
of the previous section. Such collection of permutations is called a Rauzy class
R ⊂ Sn. Figure 26 illustrates the Rauzy class of the permutation (4, 3, 2, 1),
where the arrows indicated modifications of the first and of the second type.

(3241) (4321) (4132)(2431)

(3142)

(4213)

(2413)

II I

I I

I

II

I
IIII

II

II II

II

Fig. 26. Rauzy class of permutation (4, 3, 2, 1)

The renormalization procedure described in the previous section (com-
bined with rescaling of the resulting interval X ′ to the unit length) defines a
map

T : ∆n−1 × R → ∆n−1 × R
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for each space of interval exchange transformations to itself. The following
Theorem of W. A. Veech (see [Ve3]) is crucial in this story.

Key Theorem (W. A. Veech). The map T is ergodic with respect to ab-
solutely continuous invariant measure.

Remark. It is easy to see that the Rauzy class presented at Fig. 26 does
not depend on the starting permutation. Actually, the same is true for any
Rauzy class. Moreover, for almost any flat surface S ∈ Hcomp(d1, . . . , dm)
in any connected component of any stratum a finite set of all permutations
realizable by first return maps to all possible horizontal segments X satisfying
Convention 2 does not depend on the surface S. This set is a disjoint union
of a finite collection of corresponding Rauzy classes R1, . . . ,Rj , where j is
the number of distinct entries di1 < di2 < · · · < dij

. The union Rex = R1 �
· · · �Rj is called the extended Rauzy class; it depends only on the connected
component Hcomp(d1, . . . , dm). In particular, connected components of the
strata are characterized by the extended Rauzy classes, where the latter ones
can be described in purely combinatorial terms.

With the Theorem above we have almost accomplished our scheme for a
renormalization procedure. There is only one trouble with the map T : the
measure mentioned in the Theorem is infinite (the total measure of the space
of interval exchange transformations is infinite). This technical problem can
be fixed by the following trick. We shall modify the renormalization algorithm
described in the previous section by making several modifications of the zip-
pered rectangle at a time. At a single step of the new algorithm G we apply
several steps of the previous one T . Namely, we keep going as soon as we ap-
ply consecutive transformations T of the same type I or of the same type II.
Conceptually it does not change the renormalization procedure, but now the
renormalization develops faster than before. The following example illustrates
the correspondence between the renormalization procedures T and G:

(λ, π) I−→ T (λ, π) I−→ T 2(λ, π) I−→ T 3(λ, π) II−→ T 4(λ, π) II−→ T 5(λ, π) I−→ · · ·
|| || ||

(λ, π) −−−−−−−−−−−−−−−−−−→ G(λ, π) −−−−−−−−−−→ G2(λ, π) → · · ·

The accelerated procedure G was introduced in [Zo2], where the following
Theorem was proved.

Theorem. The map G is ergodic with respect to absolutely continuous invari-
ant probability measure on each space of zippered rectangles.

Now, when we have elaborated almost all necessary tools we are ready to
give an idea of the proof of the Theorem from Sec. 4.3 concerning asymptotic
flag. The last element which is missing is some analysis of the matrices B(λ, π)
in (5).
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Multiplicative Cocycle

In our interpretation of a renormalization procedure as a map on the space of
interval exchange transformations we have to consider matrix B as a matrix-
valued function B(λ, π) on the space ∆n−1 ×R of interval exchange transfor-
mations. Our goal (as it was outlined in Sec. 5.3) is to describe the properties
of the products B(s) = B(X(0)) ·B(X(1)) · · · · ·B(X(s)) of matrices correspond-
ing to successive steps of renormalization.

We shall keep the same notation B(λ, π) for matrices corresponding to
our fast renormalization procedure G(λ, π). Consider the product B(s)(λ, π)
of values of B(·) taken along the orbit (λ, π),G(λ, π), . . . ,Gs(λ, π) of length s
of the map G:

B(s)(λ, π) = B(λ, π) · B(G(λ, π)) · · · · · B(Gs(λ, π))

Such B(s)(λ, π) is called a multiplicative cocycle over the map G:

B(p+q)(λ, π) = B(p)(λ, π) · B(q)(Gp(λ, π))

Using ergodicity of G we can apply multiplicative ergodic theorem (see Ap-
pendix B) to describe properties of B(s). Morally, the multiplicative ergodic
theorem tells that for large values of s the matrix B(s)(λ, π) should be con-
sidered as a matrix conjugate to the s-th power of some constant matrix. (See
Appendix B for a rigorous formulation.) The logarithms of eigenvalues of this
constant matrix are called Lyapunov exponents of the multiplicative cocycle.

Recall that matrix BT (λ, π) was defined as a matrix representing the new
“first return cycles” in terms of the old ones, see (5). Actually, it can be also
interpreted as a matrix representing a change of a basis in the first relative co-
homology [Re ω] = (λ1, . . . , λn) ∈ H1(S, {conical singularities}; R). It is easy
to check that it respects the (degenerate) symplectic form: the intersection
form (8). Note that symplectic matrices have certain symmetry of eigenval-
ues. In particular, it follows from the general theory that the corresponding
Lyapunov exponents have the following symmetry:

θ1 > θ2 ≥ θ3 ≥ · · · ≥ θg ≥ 0 = 0 = · · · = 0︸ ︷︷ ︸
number of conical points−1

≥ −θg ≥ · · · ≥ −θ2 > −θ1

Note that the first return cycles actually belong to the absolute homology
group H1(S; Z) ⊂ H1(S; R) � R

2g. Passing to this 2g-dimensional space we
get matrices which already preserve a nondegenerate symplectic form. They
define the following subcollection

θ1 > θ2 ≥ θ3 ≥ · · · ≥ θg ≥ −θg ≥ · · · ≥ −θ3 > −θ2 > −θ1

of Lyapunov exponents.
The rest is an elementary linear algebra. We want to describe how do the

large powers s of a symplectic matrix with eigenvalues
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exp(θ1) > exp(θ2) ≥ · · · ≥ exp(θg) ≥ exp(−θg) ≥ · · · ≥ exp(−θ2) ≥ exp(−θ1)

act on a 2g-dimensional symplectic space.
We know that the Lyapunov exponent θg ≥ 0 is nonnegative. Assume4

that it is actually strictly positive: θg > 0. Then for half of dimensions our
linear map is expanding and for half of dimensions it is contracting. In par-
ticular, under the assumption that θg > 0 we conclude that the linear map
B(s)(λ, π) projects all homology space to a Lagrangian subspace (spanned by
eigenvectors corresponding to positive Lyapunov exponents).

Assuming that the spectrum of Lyapunov exponents is simple, that is
assuming that

θ1 > θ2 > θ3 > · · · > θg

we get the entire picture of deviation. A generic vector in the homology space
stretches along the principal eigenvector (the one corresponding to the eigen-
value θ1) with a factor exp(sθ1); it expands along the next eigenvector with
a factor exp(sθ2), etc, up to the order g; its deviation from the Lagrangian
subspace spanned by the first g eigenvectors tends to zero. Hence, the norm l
of the image of a generic vector under s-th power of our linear map is of the
order l ∼ exp(sθ1); its deviation from the subspace V1, which is spanned by

the top eigenvector, is of the order exp(sθ2) = l
θ2
θ1 ; its deviation from the sub-

space V2 spanned by the two top eigenvectors is of the order exp(sθ3) = l
θ3
θ1 ,

etc; there is no deviation from the Lagrangian subspace spanned by the top
g eigenvectors. In particular, the exponent νj responsible for deviation from
the subspace Vj−1 from the Theorem in Sec. 4.3 is obtained by normalization
of the Lyapunov exponent θj by the leading Lyapunov exponent θ1:

νj =
θj

θ1
. (9)

This completes the proof of the Theorem in the case when the vertical
trajectory starts and ends at the same microscopic horizontal interval (in
other words, when the piece of trajectory is “almost closed”). Applying some
additional (relatively involved) ergodic machinery one can complete the proof
of the Theorem for arbitrary long pieces of vertical trajectories; see [Zo4] for
a complete proof.

I would like to stress that the original Theorem proved in [Zo4] is condi-
tional: the statement about Lagrangian subspace was proved modulo conjec-
ture that θg > 0; the statement about a complete Lagrangian flag was proved
modulo conjectural simplicity of the spectrum of Lyapunov exponents.

Positivity θg > 0 was proved by G. Forni in [For1], and simplicity of the
spectrum was recently proved by A. Avila and M. Viana [AvVi]; see more
details in Sec. 5.8. As it was shown in [Zo2] the proof of the strict inequality
θ1 > θ2 immediately follows from results of W. A. Veech.

4 Actually, this assumption is a highly nontrivial Theorem of G. Forni [For1]; see
below, see also Sec. 5.8



496 Anton Zorich

Exercise. In analogy with what was done in Sec. 5.4 consider the Rauzy–Veech
induction in the torus case applying it to interval exchange transformations
of two subintervals. We have seen that in this case the space of interval ex-
change transformations is just an interval (0, 1). Find an explicit formulae for
the Rauzy–Veech renormalization map T : (0, 1) → (0, 1) and for the “fast”
renormalization map G : (0, 1) → (0, 1). Explain why the invariant measure
is infinite for the map T . Find a relation between G and the Gauss map

g : x �→
{

1
x

}
. Let

ps

qs
=

1

n1 +
1

n2 +
1

· · · + 1
ns

be the s-th best rational approximation of a real number x ∈ (0, 1). In the
torus case the spectrum of Lyapunov exponents reduces to a single pair θ1 >
−θ1. Show that for almost all x ∈ (0, 1) the Lyapunov exponent θ1 (called in
number theory the Lévy constant, see [Lv]) is responsible for the growth rate
of the denominator of the continued fraction expansion of x:

lim
s→∞

log qs

s
= θ1 =

π2

12 log 2

5.7 Space of Zippered Rectangles and Teichmüller geodesic flow

We have proved the Theorem about an asymptotic Lagrangian flag of sub-
spaces responsible for deviation of the cycles c(x,N) from asymptotic direc-
tion. We have also proved that the exponents νj responsible for the quan-
titative description of the deviation are expressed in terms of the Lyapunov
exponents of the multiplicative cocycle corresponding to our renormalization
procedure: νj = θj/θ1.

There remains a natural question why should we choose this particular
renormalization procedure and not a different one. One more natural question
is what is the relation between renormalization procedure and the flow induced

by the action of the diagonal subgroup
(

exp(t) 0
0 exp(−t)

)
on the space of flat

surfaces which we agreed to call the Teichmüller geodesic flow ; this relation
was announced in Sec. 4.3. This section answers to these questions which are,
actually, closely related.

In our presentation we follow the fundamental paper [Ve3] of W. A. Veech;
the material at the end of the section is based on the paper [Zo2] developing
the initial paper [Ve3].
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Space of Zippered Rectangles

We have seen that locally a flat surface S can be parametrized by a collection of
relative periods of the holomorphic 1-form ω representing the flat surface, i.e.
we can choose a small domain containing [ω] in the relative cohomology group
H1(S, {P1, . . . , Pm}; C) as a coordinate chart in the corresponding stratum
H(d1, . . . , dm).

Decomposition of a flat surface into zippered rectangles gives another sys-
tem of local coordinates in the stratum. Namely, choose a horizontal segment
X satisfying Convention 2 from Sec. 5.3 and consider the corresponding de-
composition of S into zippered rectangles. Let λ1, . . . , λn be the widths of the
rectangles, h1, . . . , hn their heights, and a1, . . . , am be the altitudes responsi-
ble for the position of singularities (we zip the neighboring rectangles Rj and
Rj+1 from the bottom up to the altitude aj and then the rectangles split at
the singularity, see Figures 21, 24, 25). There is one more parameter describ-
ing a decomposition of a flat surface into zippered rectangles: a permutation
π ∈ Sn. This latter parameter is discrete.

The vertical parameters hj , ak and are not independent: they satisfy some
linear equations and inequalities. Varying the continuous parameters λ, h, a
respecting the linear relations between parameters h and a we get a new
set of coordinates in the stratum. These coordinates were introduced and
studied by W. A. Veech in [Ve3]. In particular, it was proved that for any
(λ, π) ∈ ∆n−1 × R in the space of interval exchange transformations there
is an n-dimensional open cone of solutions (h, a). In other words, having any
interval exchange transformation T : X → X one can always construct a flat
surface S and a horizontal segment X ⊂ S inside it such that the first return
of the vertical flow to X gives the initial interval exchange transformations.
Moreover, there is a n-dimensional family of such flat surfaces – suspensions
over the interval exchange transformation T : X → X (see [Ma3], [Ve3]).

Is there a canonical decomposition of a flat surface into zippered rectan-
gles? A choice of horizontal segment X ⊂ S completely determines a decom-
position of a generic surface S into zippered rectangles, so our question is
equivalent to the problem of a canonical choice of a horizontal segment X
satisfying Convention 2. The choice which we propose is almost canonical; it
leaves an arbitrariness of finite order which is the same for almost all S in the
stratum. Here is the choice. Let us place the left extremity of the horizontal
segment X at one of the conical singularities, and let us choose the length
|X| of the segment in such way that X would be the shortest possible interval
satisfying Convention 2 and condition |X| ≥ 1.

In practice the interval X can be constructed as follows: start with a
sufficiently long horizontal interval having its left extremity at a conical point
and satisfying Convention 2. Apply the “slow” Rauzy–Veech algorithm as long
as the resulting subinterval has length at least 1. For almost all flat surfaces
after finite number of steps we obtain the desired interval X.
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The surface S has finite number of conical singularities; each conical sin-
gularity has finite number of horizontal prongs, so we get arbitrariness of
finite order. Thus, the resulting space of zippered rectangles can be essentially
viewed as a (ramified) covering over the corresponding connected component
Hcomp(d1, . . . , dm) of the stratum. Passing to a codimension one subspace Ω
defined by the condition λ ·h = 1 we get a space of zippered rectangles of area
one covering the space Hcomp

1 (d1, . . . , dm) of flat surfaces of area one. Consider
a codimension-one subspace Υ ⊂ Ω of zippered rectangles which have unit
area, and which have the base X of length one, |X| = λ1 + · · ·+ λn = 1. The
space Υ has a natural structure of a fiber bundle over the space ∆n−1 × R
of interval exchange transformations: we associate to a zippered rectangle
(λ, h, a, π) ∈ Υ the interval exchange transformation (λ, π).

We would like to emphasize an interpretation of Ω as a fundamental do-
main in the space of all zippered rectangles of area one. As a fundamental
domain Ω is defined by the additional condition on the base: X is the shortest
possible interval satisfying Convention 2 such that |X| ≥ 1. In this interpreta-
tion Υ is the boundary of the fundamental domain. Starting with an arbitrary
zippered rectangle representation satisfying Convention 2 we can apply sev-
eral steps of Rauzy–Veech algorithm (see Fig. 24 and Fig. 25), which does
not change the surface S. After several iterations we get to the fundamental
domain Ω.

We would use the same notation for Ω considered as a fundamental domain
and for Ω considered as a quotient, when two boundary components of Ω are
identified by the modification of zippered rectangles as on Fig. 24 and Fig. 25.

Teichmüller Geodesic Flow and its First Return Map to a Cross-section

Zippered rectangles coordinates are extremely convenient when working with
the Teichmüller geodesic flow, which we identify with the action of the di-

agonal subgroup gt =
(

exp(t) 0
0 exp(−t)

)
. Namely, gt expands the horizontal

parameters λ by the factor exp(t) and contracts the vertical parameters h, a
by the same factor.

Consider a zippered rectangle S = (λ, h, a, π) ∈ Υ with the base X of unit
length. Applying gt to S with t continuously increasing from t = 0 we shall
eventually make the length of the base of the deformed zippered rectangle
gtS = (exp(t)λ, exp(−t)h, exp(−t)a;π) too long and thus we shall get outside
of the fundamental domain Ω. It is not difficult to determine an exact time
t0 when it will happen. We get to the boundary of the fundamental domain
Ω at the time

t0(S) = − log
(
1 − min(λn, λπ−1(n))

)
. (10)

The time t0 is chosen in such way that applying to the zippered rectangle
gt0S one step of the Rauzy–Veech induction (see Fig. 24 and Fig. 25) we
get a new zippered rectangle with the base X ′ of unit length. To verify for-
mula (10) for t0 it is sufficient to note that expansion-contraction commutes
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with Rauzy–Veech induction. Thus, to evaluate t0 we can first apply one step
of the Rauzy–Veech induction and then apply expansion-contraction for an
appropriate time, which would bring us back to Υ , i.e. which would make the
length of the base of the new building of zippered rectangles equal to one.

In other words, starting at a point S ∈ Υ and following the flow for the
time t0(S) we get to the boundary of the fundamental domain in the space
of zippered rectangles and we have to instantly jump back to the point of Υ
identified with gt0S. One can recognize in this construction the first return
map S : Υ → Υ defined by the flow gt on the section Υ : at the time t0(S)
the flow gt emitted from a point S ∈ Υ returns back to the codimension-one
subspace Υ transversal to the flow.

Morally one should consider the map S as a map on some subspace of flat
surfaces. Note, that S is not applicable to points of flat surfaces, it associates
to a flat surface taken as a whole another flat surface taken as a whole.

We see now that the Rauzy–Veech renormalization procedure S : Υ → Υ
performed on the level of zippered rectangles is nothing but discrete version
of the Teichmüller geodesic flow. Namely S is the first return map of the
Teichmüller geodesic flow to a section Υ . By construction the Rauzy–Veech
induction T : ∆n−1 × R → ∆n−1 × R on the space of interval exchange
transformations is just a projection of S. In other words, the following diagram

Υ (R) S−−−−→ Υ (R)⏐⏐�
⏐⏐�

∆n−1 × R
T−−−−→ ∆n−1 × R

is commutative, and the invariant measure on the space ∆n−1 ×R of interval
exchange transformations is a push forward of the natural invariant measure
on the space Υ of zippered rectangles.

Choice of a Section

Now we can return to the questions addressed at the beginning of this section.
Ignoring an algorithmic aspect of the choice of renormalization procedure we
see that conceptually, it is defined by a section of the Teichmüller geodesic
flow. In particular, the “fast” renormalization procedure G : ∆n−1 × R →
∆n−1 × R defined in the previous section corresponds to a choice of a sub-
section Υ ′ ⊂ Υ . Luckily it has a simple algorithmic representation in terms of
modification of the interval exchange transformation T (λ, π), and, moreover,
it has a simple description in terms of coordinates λ, h, a, π in the space of
zippered rectangles given by an extra condition for the parameter an.

Recall that parameters aj are responsible for the position of singularities:
we zip the neighboring rectangles Rj and Rj+1 from the bottom up to the
altitude aj , see Fig. 21. In particular, by construction all aj for j = 1, . . . , n−1
are positive. Parameter an is, however, different from the others: the rectangle



500 Anton Zorich

Rn is the rightmost rectangle in the collection. If there is a conical singular-
ity located at the right side of this rightmost rectangle (see, for example,
the zippered rectangle decomposition of the flat surface on the top part of
Fig. 24), then parameter am is positive; it indicates as usual at what height
is located the singularity. However, the right side of the rightmost rectangle
might contain no singularity. This means that the singularity is located on
the corresponding vertical trajectory below the zero level of the base X. The
rectangle which is glued to X from below at the rightmost position is the
rectangle Rπ−1(n); the singularity is located on the right side of this rectangle
(see, for example, the zippered rectangle decomposition of the flat surface on
the bottom part of Fig. 24). In this case we let an be negative indicating how
low we have to descend along downward vertical trajectory emitted from the
right endpoint of X to hit the singularity.

The subsection Υ ′ is defined by the following extra condition

Υ ′ = { (λ, h, a, π) ∈ Υ | an > 0 when λn > λπ−1(n)}�
�{ (λ, h, a, π) ∈ Υ | an < 0 when λn < λπ−1(n)}

Exercise. Check which zippered rectangles at Figures 21, 24, 25 satisfy the
condition an · (λn − λπ−1(n)) > 0 and which do not.

It can be verified (see [Zo2]) that the section Υ ′ is still a fiber bundle over
the space of zippered rectangles and that the corresponding first return map
S ′ : Υ ′ → Υ ′ projects to the map G:

Υ ′(R) S′
−−−−→ Υ ′(R)⏐⏐�

⏐⏐�
∆n−1 × R

G−−−−→ ∆n−1 × R

(11)

Exercise. Verify that the definition of the renormalization procedure G as
a projection of the first return map of the Teichmüller geodesic flow to Υ ′

matches the intrinsic definition of G given in Sec. 5.6.

Different choices of the section also explain why the invariant measure
on the space of interval exchange transformations ∆n−1 × R was infinite for
the Rauzy–Veech induction T while is finite for the “fast” renormalization
procedure G. As a model case consider a directional flow on a torus and two
different sections to this flow. Taking as a section the line Y represented on
the left picture of Fig. 27 we get a section of infinite measure though the
measure of the torus is finite and the flow is very nice. Taking as a section a
finite piece Y ′ ⊂ Y as on the right side of Fig. 27 we get a section of finite
measure.

Similarly, the component Hcomp
1 (d1, . . . , dm) of the stratum has finite vol-

ume and hence the space of zippered rectangles Ω which is a finite covering
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Fig. 27. The section Y on the left picture has infinite measure though the measure
of the space is finite. The subsection Y ′ ⊂ Y on the right picture has finite measure.
In both cases the first return map of the ergodic flow to the section is ergodic, but
the mean return time to the left subsection is zero

over Hcomp
1 (d1, . . . , dm) also has finite volume. However, the initial section Υ

has infinite “hyperarea” while section Υ ′ already has finite “hyperarea”.
We complete this section with a several comments concerning Lyapunov

exponents. Though these comments are too brief to give a comprehensive
proof of the relation between exponents νj responsible for the deviation and
the Lyapunov exponents of the Teichmüller geodesic flow, they present the
key idea, which can be completed by an elementary calculation.

It is clear that the Lyapunov exponents of the Teichmüller geodesic flow
gt on the stratum Hcomp

1 (d1, . . . , dm) coincide with the Lyapunov exponents
on its finite covering Ω. The Lyapunov exponents of the flow gt differ from
the Lyapunov exponents of the first return map S ′ to the section Υ ′ only by a
scaling factor representing the “hyperarea” of Υ ′. The map G on the space of
zippered rectangles coincides with the restriction of the map S ′ on the zippered
rectangles restricted to horizontal parameters λ and discrete parameter π.
Thus, the Lyapunov exponents of G form a subcollection of the Lyapunov
exponents of S ′ corresponding to the subspace of horizontal parameters λ. It
remains to note that the Lyapunov exponents of the map G are related to
the Lyapunov exponents of the cocycle B(λ, π) just by the scaling factor, and
that we have already expressed the exponents νj responsible for the deviation
in terms of the Lyapunov exponents of the multiplicative cocycle B, see (9).
Matching all the elements of this chain together we get a representation of the
exponents νj in terms of the Lyapunov exponents of the Teichmüller geodesic
flow given in Sec. 4.3.

Zippered rectangles and Lyapunov exponents: more serious reading. More de-
tails on Rauzy classes R, zippered rectangles, Lyapunov exponents of the
Teichmüller geodesic flow and their relation might be found in original papers
of G. Rauzy [Ra], W. Veech [Ve3], [Ve6] and the author [Zo2], [Zo4].

5.8 Spectrum of Lyapunov Exponents (after M. Kontsevich,
G. Forni, A. Avila and M. Viana)

It should be mentioned that the statement that the subspace Vg, such that
|dist(c(x,N),Vg)| ≤ const for any N , has dimension exactly g was formulated
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in the original paper [Zo4] as a conditional statement. It was based on the
conjecture that the Lyapunov exponent νg is strictly positive. This conjecture
was later proved by G. Forni in [For1].

Theorem (G. Forni). For any connected component Hcomp(d1, . . . , dm) of
any stratum of Abelian differentials the first g Lyapunov exponents of the
Teichmüller geodesic flow are strictly greater than 1:

1 + νg > 1

As an indication why this positivity is not something which should be
taken for granted we would like to give some precision about related results
of G. Forni.

The Lyapunov exponents of the Teichmüller geodesic flow play the role
of (logarithms of) eigenvalues of a virtual “average monodromy of the tan-
gent bundle along the flow”. Instead of considering the tangent bundle to
H(d1, . . . , dm) one can consider another vector bundle intimately related
to the tangent bundle. This vector bundle has the space H1(S; R) as a
fiber. Since we know how to identify the lattices H1(S; Z) ⊂ H1(S; R) and
H1(S′; Z) ⊂ H1(S′; R) in the fibers over two flat surfaces S and S′ which
are close to each other in H(d1, . . . , dm), we know how to transport the fiber
H1(S; R) over the “point” S in the base H(d1, . . . , dm) to the fiber H1(S′; R)
over the “point” S′. In other words, we have a canonical connection (called
Gauss–Manin connection) in the vector bundle. Hence we can again study the
“average monodromy of the fiber along the flow”. It is not difficult to show that
the corresponding Lyapunov exponents are related to the Lyapunov exponents
of the Teichmüller flow. Namely, the new collection of Lyapunov exponents
has the form:

1 ≥ ν2 ≥ · · · ≥ νg ≥ −νg ≥ · · · ≥ −ν2 ≥ −1

In particular, the collection of Lyapunov exponents of the Teichmüller geodesic
flow can be obtained as follows: take two copies of the collection above; add
+1 to all the entries in one copy; add −1 to all entries in another copy; take
the union of the resulting collections. The theorem of G. Forni tells that for
any connected component of any stratum we have νg > 0.

Consider now some SL(2, R)-invariant subvariety N ⊂ H(d1, . . . , dm).
Consider the restriction of the vector bundle with the fiber H1(S; R) to N . We
can compute the “average monodromy of the fiber along the Teichmüller flow”
restricted to N . It gives a new collection of Lyapunov exponents. Since the
“holonomy” preserves the natural symplectic form in the fiber, the collection
will be again symmetric:

1 ≥ ν′
2 ≥ · · · ≥ ν′

g ≥ −ν′
g ≥ · · · ≥ −ν′

2 ≥ −1

G. Forni has showed [For2] that there are examples of invariant subvarieties N
such that all ν′

j , j = 2, . . . , g, are equal to zero! Moreover, G. Forni explicitly
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describes the locus where the monodromy does not change the fiber (or it
exterior powers) too much, and where one may get multiplicities of Lyapunov
exponents.

Another conditional statement in the original paper [Zo4] concerns strict
inclusions V1 ⊂ V2 ⊂ · · · ⊂ Vg ⊂ H1(S; R). It was based on the other conjec-
ture claiming that the Lyapunov exponents have simple spectrum. The first
strict inequality ν1 > ν2 is an elementary corollary of general results of Veech;
see [Zo3]. The other strict inequalities are much more difficult to prove. Very
recently A. Avila and M. Viana [AvVi] have announced a proof of simplicity
of the spectrum (12) for any connected component of any stratum proving
the conjecture which was open for a decade.

Theorem (A. Avila, M.Viana). For any connected component of any stra-
tum Hcomp(d1, . . . , dm) of Abelian differentials the first g Lyapunov exponents
are distinct:

1 + ν1 > 1 + ν2 > · · · > 1 + νg (12)

Sum of the Lyapunov exponents

Currently there are no methods of calculation of Lyapunov exponents for
general dynamical systems. The Teichmüller geodesic flow does not make an
exception: there is some knowledge of approximate values of the numbers νj

obtained by computer simulations for numerous low-dimensional strata, but
there is no approach leading to explicit evaluation of these numbers with
exception for some very special cases.

Nevertheless, for any connected component of any stratum (and, more
generally, for any GL+(2; R)-invariant suborbifold) it is possible to evaluate
the sum of the Lyapunov exponents ν1 + . . . νg, where g is the genus. The
formula for this sum was discovered by M. Kontsevich in [Kon]; it is given in
terms of the following natural structures on the strata H(d1, . . . , dm).

There is a natural action of C
∗ on every stratum of the moduli space of

holomorphic 1-forms: we can multiply a holomorphic form ω by a complex
number. Let us denote by H(2)(d1, . . . , dm) the quotient of H(d1, . . . , dm) over
C

∗. The space H(2)(d1, . . . , dm) can be viewed as the space of flat surfaces of
unit area without choice of distinguished direction.

There are two natural holomorphic vector bundles over H(2)(d1, . . . , dm).
The first one is the C

∗-bundle H(d1, . . . , dm) → H(2)(d1, . . . , dm). The second
one is the C

g-bundle, which fiber is composed of all holomorphic 1-forms in the
complex structure corresponding to a flat surface S ∈ H(2)(d1, . . . , dm). Both
bundles have natural curvatures; we denote by γ1 and γ2 the corresponding
closed curvature 2-forms.

Finally, there is a natural closed codimension two form β on every stra-
tum H(2)(d1, . . . , dm). To construct β consider the natural volume form Ω
on H(d1, . . . , dm). Four generators of the Lie algebra gl(2; R) define four
distinguished vectors in the tangent space TSH(d1, . . . , dm) at any “point”
S ∈ H(d1, . . . , dm). Plugging these four vectors in the first four arguments of
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the volume form Ω we get a closed codimension four form on H(d1, . . . , dm). It
is easy to check that this form can be pushed forward along the C

∗-fibers of the
bundle H(d1, . . . , dm) → H(2)(d1, . . . , dm) resulting in the closed codimension
two form on the base of this fiber bundle.

Theorem (M. Kontsevich). For any connected component of any stratum
the sum of the first g Lyapunov exponents can be expressed as

ν1 + · · · + νg =

∫
β ∧ γ2∫
β ∧ γ1

,

where the integration is performed over the corresponding connected compo-
nent of H(2)(d1, . . . , dm).

As it was shown by G. Forni, this formula can be generalized for other
GL+(2; R)-invariant submanifolds.

The proof is based on two observations. The first one generalizes the fact
that dynamics of the geodesic flow on the hyperbolic plane is in some sense
equivalent to dynamics of random walk. One can replace Teichmüller geodesics
by geodesic broken lines consisting of geodesic segments of unit length. Having
a broken line containing n geodesic segments with the endpoint at the point
Sn we emit from Sn a new geodesic in a random direction and stop at the
distance one from Sn at the new point Sn+1. This generalization suggested
by M. Kontsevich was formalized and justified by G. Forni.

Consider the vector bundle over the moduli space of holomorphic 1-forms
with the fiber H1(S; R) over the “point” S. We are interested in the sum ν1 +
· · ·+ νg of Lyapunov exponents representing mean monodromy of this vector
bundle along random walk. It follows from standard arguments concerning
Lyapunov exponents that this sum corresponds to the top Lyapunov exponent
of the exterior power of order g of the initial vector bundle. In other words,
we want to measure the average growth rate of the norm of a g-dimensional
subspace in H1(S; R) when we transport it along trajectories of the random
walk using the Gauss–Manin connection.

Fix a Lagrangian subspace L in the fiber H1(S0; R) over a “point” Sn.
Consider the set of points located at the Teichmüller distance 1 from Sn.
Transport L to each point Sn+1 of this “unit sphere” along the corresponding
geodesic segment joining Sn with Sn+1; measure the logarithm of the change
of the norm of L; take the average over the “unit sphere”. The key observation
of M. Kontsevich in [Kon] is that for an appropriate choice of the norm this
average growth rate is the same for all Lagrangian subspaces L in H1(S0; R)
and depends only on the point Sn. A calculation based on this observation
gives the formula above.

Actually, formula above can be rewritten in a much more explicit form
(which is a work in progress). The values of the sum given by this more
explicit formula perfectly match numerical simulations. The table below gives
the values of the sums of Lyapunov exponents for some low-dimensional strata;
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this computation uses the results of A. Eskin and A. Okounkov [EOk] for the
volumes of the strata.

Conjectural values of ν1 + · · · + νg for some strata

H(2) H(1, 1) . . . H(4, 1, 1) . . . H(1, 1, 1, 1, 1, 1) H(1, 1, 1, 1, 1, 1, 1, 1)

4
3

3
2

. . .
1137
550

. . .
839
377

235 761
93 428

In particular, since ν1 = 1 this information gives the exact value of the
only nontrivial Lyapunov exponent ν2 for the strata in genus two. Some extra
arguments show that ν2 = 1/3 for the stratum H(2) and for any GL+(2;R)-
invariant submanifold in it; ν2 = 1/2 for the stratum H(1, 1) and for any
GL+(2;R)-invariant submanifold in it.

5.9 Encoding a Continued Fraction by a Cutting Sequence of a
Geodesic

We have seen that renormalization for a rotation of a circle (or equivalently for
an interval exchange transformation of two subintervals) leads to the Euclid-
ean algorithm which can be considered in this guise as a particular case of the
fast Rauzy–Veech induction.

The multiplicative cocycle

B(s) =
(

1 n1

0 1

)
·
(

1 0
n2 1

)
· · ·

(
1 n2k−1

0 1

)
·
(

1 0
n2k 1

)
· · ·

considered in section 5.6 corresponds to the decomposition of a real number
x ∈ (0, 1) into continued fraction, x = [0;n1, n2, . . . ],

x =
1

n1 +
1

n2 +
1

. . .

A flat surface which realizes an interval exchange transformation of two
subintervals is a flat torus. The the moduli space of flat tori can be naturally
identified with SL(2, R)/SL(2, Z) which in its turn can be naturally identified
with the unit tangent bundle to the modular surface H

2/SL(2, Z) see Sec. 3.2.
Moreover, the Teichmüller metric on the space of tori coincides with the hy-
perbolic metric on H

2, and the Teichmüller geodesic flow on the moduli space
of flat tori coincides with the geodesic flow on the modular surface.
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Hence, the construction from the previous section suggests that the Euclid-
ean algorithm corresponds to the following geometric procedure. There should
be a section Υ in the (covering of) the unit tangent bundle to the modular
surface and its subsection Υ ′ ⊂ Υ such that the trajectory of the geodesic
flow emitted from a point of Υ ′ returns to Υ ′ after n1 intersections with Υ ,
then after n2 intersections with Υ , etc. In other words there is a natural way
to code a continued fraction by a sequence of intersections (so called “cutting
sequence”) of the corresponding geodesic with some sections Υ ′ ⊂ Υ .

Actually, a geometric coding of a continued fraction by a cutting sequence
of a geodesics on a surface is known since the works of J. Nielsen and E. Artin
in 20s and 30s. The study of the geometric coding was developed in the 80s
and 90s by C. Series, R. Adler, L. Flatto and other authors. We refer to the
expository paper [Ser] of C. Series for detailed description of the following
geometric coding algorithm.

Consider a tiling of the upper half plane with isometric hyperbolic triangles
as at Fig. 29. A fundamental domain of the tiling is a triangle with vertices
at 0, 1 and ∞; the corresponding quotient surface is a triple cover over the
standard modular surface (see Fig. 47). This triangulation of H

2 by ideal
triangles is also known as Farey tessellation.

Consider a real number x ∈ (0, 1). Consider any geodesic γ landing to the
real axis at x such that γ intersects with the imaginary axis; let iy be the
point of intersection. Let us follow the geodesic γ starting from iy in direction
of x. Each time when we cross a triangle of our tiling let us note by the symbol
L the situation when we have a single vertex on the left and two vertices on
the right (see Fig 28) and by the symbol R the symmetric situation.

simple vertex
on the Left

simple vertex
on the Right

Fig. 28. Coding rule: when we cross a triangle leaving one vertex on the left and
two on the right we write symbol L; when there is one vertex on the right and two
on the left we write symbol R

Example. Following the geodesic γ presented at Fig. 29 from some iy to x =
(
√

85 − 5)/10) ≈ 0.421954 we get a sequence R,R,L, L,R,L, L,R,R,L, . . .
which we abbreviate as R2L2R1L2R2L1 . . . .

Theorem (C. Series). Let x ∈ (0, 1) be irrational. Let γ be a geodesic emit-
ted from some iy and landing at x; let Rn1Ln2Rn3Ln4 . . . be the corresponding
cutting sequence. Then x = [0;n1, n2, n3, n4, . . . ].
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iy

x0 1

Fig. 29. (After C. Series.) The cutting sequence defined by this geodesic starts with
R, R, L, L, R, L, L, R, R, L, . . . which we abbreviate as R2L2R1L2R2L1 . . . . The real
number x ∈ (0, 1) at which lands the geodesic has continued fraction expansion
x = [0; 2, 2, 1, 2, 2, 1, . . . ]

Geometric symbolic coding: more serious reading. I can strongly recommend
a paper of P. Arnoux [Arn] which clearly and rigorously explains the idea
of suspension in the spirit of diagram (11) handling the particular case of
Euclidean algorithm and of geodesic flow on the Poincaré upper half-plane. As
a survey on geometric coding we can recommend the survey of C. Series [Ser]
(as well as other surveys in this collection on related subjects).

6 Closed Geodesics and Saddle Connections
on Flat Surfaces

Emitting a geodesic in an irrational direction on a flat torus we get an irra-
tional winding line; emitting it in a rational direction we get a closed geodesic.
Similarly, for a flat surface of higher genus a countable dense set of directions
corresponds to closed geodesics.

In this section we study how many closed regular geodesics of bounded
length live on a generic flat surface S. We consider also saddle connections
(i.e. geodesic segments joining pairs of conical singularities) and count them.

We explain a curious phenomenon concerning saddle connections and
closed geodesics on flat surfaces: they often appear in pairs, triples, etc of
parallel saddle connections (correspondingly closed geodesics) of equal length.

When all saddle connections (closed geodesics) in such configuration be-
come short the corresponding flat surface starts to degenerate and gets close
to the boundary of the moduli space. Thus, a description of possible configu-
rations of parallel saddle connections (closed geodesics) gives us a description
of the multidimensional “cusps” of the strata.
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6.1 Counting Closed Geodesics and Saddle Connections

Closed Regular Geodesics Versus Irrational Winding Lines

Consider a flat torus obtained by identifying pairs of opposite sides of a unit
square. A geodesic emitted in an irrational direction (one with irrational slope)
is an irrational winding line; it is dense in the torus. A geodesic emitted in a
rational direction is closed; all parallel geodesic are also closed, so directional
flow in a rational direction fills the torus with parallel periodic trajectories.
The set of rational directions has measure zero in the set of all possible direc-
tions. In this sense directions representing irrational winding lines are typical
and directions representing closed geodesic – nontypical.

The situation with flat surfaces of higher genera g ≥ 2 is similar in many
aspects, though more complicated in details. For example , for any flat surfaces
S almost all directions are “irrational”; any geodesic emitted in an irrational
direction is dense in the surface. Actually, even stronger statement is true:

Theorem (S. Kerckhoff, H. Masur, J. Smillie). For any flat surface
directional flow in almost any direction is uniquely ergodic.

For the torus the condition that directional flow is minimal (that is any
trajectory going in this direction is dense in the torus) is equivalent to the
condition that the flow is uniquely ergodic (the natural Lebesgue measure
induced by the flat structure is the only finite measure invariant under direc-
tional flow; see Appendix A for details). Surprisingly a directional flow on a
surface of higher genus (already for g = 2) might be minimal but not uniquely
ergodic! Namely, for some directions which give rise to a minimal directional
flow it might be possible to divide the surface into two parts (of nonzero mea-
sure) in such way that some trajectories would mostly stay in one part while
other trajectories would mostly stay in the other.

Closed geodesics on flat surfaces of higher genera also have some similar-
ities with ones on the torus. Suppose that we have a regular closed geodesic
passing through a point x0 ∈ S. Emitting a geodesic from a nearby point x in
the same direction we obtain a parallel closed geodesic of the same length as
the initial one. Thus, closed geodesics also appear in families of parallel closed
geodesics. However, in the torus case every such family fills the entire torus
while a family of parallel regular closed geodesics on a flat surfaces of higher
genus fills only part of the surface. Namely, it fills a flat cylinder having a
conical singularity on each of its boundaries.

Exercise. Find several periodic directions on the flat surface from Fig. 12.
Find corresponding families of parallel closed geodesics. Verify that each of
the surfaces from Fig. 44 decomposes under the vertical flow into three cylin-
ders (of different circumference) filled with periodic trajectories. Find these
cylinders.
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Counting Problem

Take an arbitrary loop on a torus. Imagine that it is made from a stretched
elastic cord. Letting it contract we get a closed regular geodesic (may be
winding several times along itself). Now repeat the experiment with a more
complicated flat surface. If the initial loop was very simple (or if we are ex-
tremely lucky) we again obtain a regular closed geodesic. However, in general
we obtain a closed broken line of geodesic segments with vertices at a collection
of conical points.

Similarly letting contract an elastic cord joining a pair of conical singular-
ities we usually obtain a broken line composed from several geodesic segments
joining conical singularities. In this sense torus is very different from a general
flat surface.

A geodesic segment joining two conical singularities and having no conical
points in its interior is called saddle connection. The case when boundaries of
a saddle connection coincide is not excluded: a saddle connection might join
a conical point to itself.

Convention 4. In this paper we consider only saddle connections and closed
regular geodesics. We never consider broken lines formed by several geodesic
segments.

Now we are ready to formulate the Counting Problem. Everywhere in this
section we normalize the area of flat surfaces to one.

Counting Problem. Fix a flat surface S. Let Nsc(S,L) be the number of
saddle connections on S of length at most L. Let Ncg(S,L) be the number of
maximal cylinders filled with closed regular geodesics of length at most L on
S. Find asymptotics of Nsc(S,L) and Ncg(S,L) as L → ∞.

It was proved by H. Masur (see [Ma5] and [Ma6]) that for any flat surface
S counting functions N(S,L) grow quadratically in L. Namely, there exist
constants 0 < const1(S) < const2(S) < ∞ such that

const1(S) ≤ N(S,L)/L2 ≤ const2(S)

for L sufficiently large. Recently Ya. Vorobets has obtained in [Vb2] uniform
estimates for the constants const1(S) and const2(S) which depend only on
the genus of S.

Passing from all flat surfaces to almost all surfaces in a given connected
component of a given stratum one gets a much more precise result; see [EMa].

Theorem (A. Eskin and H. Masur). For almost all flat surfaces S in a
given connected component of a stratum H(d1, . . . , dm) the counting functions
Nsc(S,L) and Ncg(S,L) have exact quadratic asymptotics

lim
L→∞

Nsc(S,L)
πL2

= constsc lim
L→∞

Ncg(S,L)
πL2

= constcg (1)
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where Siegel–Veech constants constsc and constcg are the same for almost all
flat surfaces in the component Hcomp

1 (d1, . . . , dm).

We multiply denominator by π to follow a conventional normalization.

Phenomenon of Higher Multiplicities

Let us discuss now the following problem. Suppose that we have a regular
closed geodesic on a flat surface S. Memorize its direction, say, let it be the
North-West direction. (Recall that by Convention 1 in Sec. 1.2 we can place a
compass at any point of the surface and it will tell us what is the direction to
the North.) Consider the maximal cylinder filled with closed regular geodesics
parallel to ours. Take a point x outside this cylinder and emit a geodesic from
x in the North-West direction. There are two questions.
– How big is the chance to get a closed geodesic?
– How big is the chance to get a closed geodesic of the same length as the
initial one?

Intuitively it is clear that the answer to the first question is: “the chances
are low” and to the second one “the chances are even lower”. This makes the
following Theorem (see [EMaZo]) somehow counterintuitive:

Theorem (A. Eskin, H. Masur, A. Zorich). For almost all flat sur-
faces S from any stratum different from H1(2g−2) or H1(d1, d2) the function
Ntwo cyl(S,L) counting the number of families of parallel regular closed geo-
desics filling two distinct maximal cylinders has exact quadratic asymptotics

lim
L→∞

Ntwo cyl(S,L)
πL2

= consttwo cyl

where Siegel–Veech constants consttwo cyl > 0 depends only on the connected
component of the stratum.

For almost all flat surface S in any stratum one cannot find a single pair
of parallel regular closed geodesics on S of different length.

There is general formula for the Siegel–Veech constant consttwo cyl and for
similar constants which gives explicit numerical answers for all strata in low
genera. Recall that the principal stratum H(1, . . . , 1) is the only stratum of fill
dimension in Hg; it is the stratum of holomorphic 1-forms with simple zeros
(or, what is the same, of flat surfaces with conical angles 4π at all cone points).
Numerical values of the Siegel–Veech constants for the principal stratum are
presented in Table 6.1.

Comparing these values we see, that our intuition was not quite misleading.
Morally, in genus g = 4 a closed regular geodesic belongs to a one-cylinder
family with “probability” 97.1%, to a two-cylinder family with “probabil-
ity” 2.8% and to a three-cylinder family with “probability” only 0.1% (where
“probabilities” are calculated proportionally to Siegel–Veech constants).
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g = 1 g = 2 g = 3 g = 4

single 1

2
· 1

ζ(2)
≈ 0.304

5

2
· 1

ζ(2)
≈ 1.52

36

7
· 1

ζ(2)
≈ 3.13

3150

377
· 1

ζ(2)
≈ 5.08

cylinder

two − − 3

14
· 1

ζ(2)
≈ 0.13

90

377
· 1

ζ(2)
≈ 0.145

cylinders

three − − − 5

754
· 1

ζ(2)
≈ 0.00403

cylinders

Table 2. Siegel–Veech constants constn cyl for the principal stratum H1(1, . . . , 1)

In theorem above we discussed closed regular geodesics. A similar phenom-
enon is true for saddle connections. Recall that the cone angle at a conical
point on a flat surface is an integer multiple of 2π. Thus, at a point with a cone
angle 2πn every direction is presented n times. Suppose that we have found
a saddle connection of length going from conical point P1 to conical point
P2. Memorize its direction (say, the North-West direction) and its length l.
Then with a “nonzero probability” (understood in the same sense as above)
emitting a geodesic from P1 in one of the remaining n − 1 North-West direc-
tions we make it hit P2 at the distance l. More rigorously, the Siegel–Veech
constant counting configurations of two parallel saddle connections of equal
length joining P1 to P2 is nonzero.

The explicit formula for any Siegel–Veech constant from [EMaZo] can be
morally described as the follows. Up to some combinatorial factor responsible
for dimensions, multiplicities of zeroes and possible symmetries any Siegel–
Veech constant can be obtained as a limit

c(C) = lim
ε→0

1
πε2

Vol(“ε-neighborhood of the cusp C ”)
VolHcomp

1 (d1, . . . , dm)
(2)

where C is a particular configuration of saddle connections or closed geodesics.
Say, as a configuration C one can consider a configuration of two maximal

cylinders filled with parallel closed regular geodesics of equal lengths. The
ε-neighborhood of the corresponding cusp is the subset of those flat surfaces
S ∈ Hcomp

1 (d1, . . . , dm) which have at least one pair of cylinders filled with
parallel closed geodesics of length shorter than ε.

As another example one can consider a configuration of three parallel
saddle connections of equal lengths on S ∈ H1(1, 1, 4, 8) joining zero P1 of
degree 4 (having cone angle 10π) to zero P2 of degree 8 (having cone angle
18π) separated by angles 2π, 2π, 6π at P1 and by angles 6π, 10π, 2π at P2. The
ε-neighborhood Hε

1(1, 1, 4, 8) ⊂ H1(1, 1, 4, 8) of the corresponding cusp is the
subset of those flat surfaces in H1(1, 1, 4, 8) which have at least one triple of
saddle connections as described above of length shorter than ε.
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We explain the origin of the key formula (2) in the next section. In sec-
tion 6.4 we give an explanation of appearance of higher multiplicities.

Other counting problems (after Ya. Vorobets)

Having a flat surface S of unit area we have studied above the number of max-
imal cylinders Ncg(S,L) filled with closed regular geodesics of length at most
L on S. (In this setting when we get in some direction several parallel maxi-
mal cylinders of equal perimeter, we count each of them.) In the paper [Vb2]
Ya. Vorobets considered other counting problems.

In particular, among all maximal periodic cylinders of length at most L
(as above) he counted the number Ncg,σ(S,L) of those ones, which have area
greater than σ. He also counted the total sum Narea(S,L) of areas of all
maximal cylinders of perimeter at most L and the number Nx(S,L) of regular
periodic geodesics of length at most L passing trough a given point x ∈ S.

Ya. Vorobets has also studied how the maximal cylinders filled with closed
geodesics are distributed with respect to their direction and their area. He
considered the induced families of probability measures on the circle S1, on the
unit interval [0, 1] and on their product S1×[0; 1]. Given a subset U ⊂ S1, V ⊂
[0; 1], W ⊂ S1× [0; 1] the corresponding measures dirL(U), arL(V ), pairL(W )
tell the proportion of cylinders of bounded perimeter having direction in U ,
area in V , or the pair (direction, area) in W correspondingly.

Using the general approach of A. Eskin and H. Masur, Ya. Vorobets has
proved in [Vb2] existence of exact quadratic asymptotics for the counting
functions introduced above. He has computed the corresponding Siegel–Veech
constants in terms of the Siegel–Veech constant constcg in (1) and found the
asymptotic distributions of directions and areas of the cylinders:

Theorem (Ya. Vorobets). For almost any flat surface S of unit area in
any connected component of any stratum Hcomp

1 (d1, . . . , dm) and for almost
any point x of S one has

lim
L→∞

Ncg,σ(S,L)
πL2

= ccg,σ lim
L→∞

Narea(S,L)
πL2

= carea lim
L→∞

Nx(S,L)
πL2

= cx,

where ccg,σ = (1 − σ)2g−3+m · constcg and carea = cx =
constcg

2g − 2 + m
.

For almost any flat surface S of unit area one has the following week
convergence of measures:

dirL → ϕ arL → ρ pairL → ϕ × ρ,

where ϕ is the uniform probability measure on the circle and ρ is the probability
measure on the unit interval [0; 1] with the density (2g−3+m)(1−x)2g−4+mdx.
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Directional flow: more serious reading. Theorem of S. Kerckhoff, H. Masur
and J. Smillie is proved in [KMaS]. An example of minimal but not uniquely
ergodic interval exchange transformations is constructed by W. Veech in [Ve1]
(using different terminology); an independent example (also using different
terminology) was constructed at the same time by V. I. Oseledets. For flows
such examples are constructed in the paper of A. Katok [Kat1] and developed
by E. Sataev in [Sat]. Another example was discovered by M. Keane [Kea2].
For alternative approach to the study of unique ergodicity of interval ex-
change transformations see the paper of M. Boshernitzan [Ber2]. A very nice
construction of minimal but not uniquely ergodic interval exchange transfor-
mations (in a language which is very close to the language of this paper) can
be found in the survey of H. Masur and S. Tabachnikov [MaT] or in the survey
of H. Masur [Ma7].

6.2 Siegel–Veech Formula

We start from a slight formalization of our counting problem. As usual we
start with a model case of the flat torus. As usual we assume that our flat
torus is glued from a unit square. We count closed regular geodesics on T

2 of
a bounded length. To mimic count of saddle connections we mark two points
P1 �= P2 on T

2 and count geodesic segments of bounded length joining P1 and
P2.

Our formalization consists in the following construction. Consider an aux-
iliary Euclidian plane R

2. Having found a regular closed geodesic on T
2 we

note its direction α and length l and draw a vector in R
2 in direction α hav-

ing length l. We apply a similar construction to “saddle connections”. The
endpoints of corresponding vectors form two discrete subsets in R

2 which we
denote by Vcg and Vsc.

It is easy to see that for the torus case a generic choice of P1 and P2

generates a set Vsc which is just a shifted square lattice, see Fig. 30. The
set Vcg is a subset of primitive elements of the square lattice, see Fig. 30.
Since we count only regular closed geodesics which do not turn many times
around themselves we cannot obtain elements of the form (kn1, kn2) with
k, n1, n2 ∈ Z.

The corresponding counting functions Nsc(T2, L) and Nsc(T2, L) corre-
spond to the number of element of Vsc and Vcg correspondingly which get to
a disc of radius L centered in the origin. Both functions have exact quadratic
asymptotics. Denoting by χL(v), where v ∈ R

2 the indicator function of such
disc we get

Nsc(T2, L) =
∑

v∈Vsc
χL(v) ∼ 1 · πL2 (3)

Ncg(T2, L) =
∑

v∈Vcg
χL(v) ∼ 1

ζ(2)
· πL2
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Fig. 30. Sets Vsc and Vcg for the flat torus

The coefficients in quadratic asymptotics define the corresponding Siegel–

Veech constants constsc = 1 and constcg =
1

ζ(2)
=

6
π2

. (Note that here we

count every geodesic twice: once with one orientation and the other one with
the opposite orientation. This explains why in this normalization we obtain
the value of constcg twice as much as constcg for genus one in Table 6.1.)

Consider now a more general flat surface S. Fix the geometric type of con-
figuration C of saddle connections or closed geodesics. By definition all saddle
connections (closed geodesics) in C are parallel and have equal length. Thus,
similar to the torus case, every time we see a collection of saddle connections
(closed geodesics) of geometric type C we can associate to such collection a
vector in R

2. We again obtain a discrete set V (S) ⊂ R
2.

Now fix C and apply this construction to every flat surface S in the stratum
H1(d1, . . . , dm). Consider the following operator f �→ f̂ generalizing (3) from
functions with compact support on R

2 to functions on H1(d1, . . . , dm):

f̂(S) =
∑
v∈V

f(v)

Lemma (W. Veech). The functional

f �→
∫
Hcomp

1 (d1,...,dm)

f̂(S)dν1

is SL(2, R)-invariant.

Having proved convergence of the integral above the Lemma follows imme-
diately from invariance of the measure dν1 under the action of SL(2, R) and
from the fact that V (gS) = gV (s) for any flat surface S and any g ∈ SL(2, R).

Now note that there very few SL(2, R)-invariant functionals on functions
with compact support in R

2. Actually, there are two such functionals, and the
other ones are linear combinations of these two. These two functionals are the
value of f(0) at the origin and the integral

∫
R2 f(x, y)dx dy. It is possible to
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see that the value f(0) at the origin is irrelevant for the functional from the
Lemma above. Hence it is proportional to

∫
R2 f(x, y)dx dy.

Theorem (W. Veech). For any function f : R
2 → R with compact support

one has

1
VolHcomp

1 (d1, . . . , dm)

∫
Hcomp

1 (d1,...,dm)

f̂(S)dν1 = C

∫
R2

f(x, y)dx dy (4)

Here the constant C in (4) does not depend on f ; it depends only on the
connected component Hcomp

1 (d1, . . . , dm) and on the geometric type C of the
chosen configuration.

Note that it is an exact equality. In particular, choosing as f = χL the
indicator function of a disc of radius L we see that for any given L ∈ R+

the average number of saddle connections not longer than L on flat surfaces
S ∈ Hcomp

1 (d1, . . . , dm) is exactly C · πL2, where C does not depend on L.
It would be convenient to introduce a special notation for such f̂ . Let

f̂L(S) =
∑
v∈V

χL(v)

The Theorem of Eskin and Masur [EMa] cited above tells that for large values
of L one gets f̂L(S) ∼ c(C)πL2 for almost all individual flat surfaces S ∈
Hcomp

1 (d1, . . . , dm) and that the corresponding constant c(C) coincides with
the constant C above.

Formula (4) can be applied to f̂L for any value of L. In particular, in-
stead of considering large L we can choose a very small value L = ε. The
corresponding function f̂ε(S) counts how many collections of parallel ε-short
saddle connections (closed geodesics) of the type C we can find on the flat
surface S.

Usually there are no such saddle connections (closed geodesics), so for most
flat surfaces f̂ε(S) = 0. For some surfaces there is exactly one collection like
this. We denote the corresponding subset by Hε,thick

1 (C) ⊂ H1(d1, . . . , dm).
Finally, for the surfaces from the remaining (very small) subset Hε,thin

1 (C)
one has several collections of short saddle connections (closed geodesics) of
the type C. Thus,

f̂ε(S) =

⎧⎪⎨
⎪⎩

0 for most of the surfaces S

1 for S ∈ Hε,thick
1 (C)

> 1 for S ∈ Hε,thin
1 (C)

and we can rewrite (4) for f̂ε as
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c(C) · πε2 = c(C)
∫

R2
χε(x, y)dx dy

=
1

VolHcomp
1 (d1, . . . , dm)

∫
Hcomp

1 (d1,...,dm)

f̂ε(S) dν1

=
1

VolHcomp
1 (d1, . . . , dm)

∫
Hε,thick

1 (C)

1 dν1

+
1

VolHcomp
1 (d1, . . . , dm)

∫
Hε,thin

1 (C)

f̂ε(S) dν1

It can be shown that though f̂ε(S) might be large on Hε,thin
1 (C) the mea-

sure of this subset is so small (it is of the order ε4 that the last integral above
is negligible in comparison with the previous one; namely it is o(ε2). (This is a
highly nontrivial result of Eskin and Masur [EMa].) Taking into consideration
that ∫

Hε,thick
1 (C)

1 dν1 = VolHε,thick
1 (C) = VolHε

1(C) + o(ε2)

we can rewrite the chain of equalities above as

c(C) · πε2 = VolHε
1(C) + o(ε2)

which is equivalent to (2).

Baby Case: Closed Geodesics on the Torus

As an elementary application we can prove that proportion of primitive lattice
points among all lattice points is 1/ζ(2). In other words, applying (2) we can
prove asymptotic formula (3) for the number of primitive lattice points in a
disc of large radius L. As we have seen at Fig. 30 this number equals to the
number Ncg(T2, L) of families of oriented closed geodesics of length bounded
by L on the standard torus T

2.
We want to apply (2) to prove the following formula for the corresponding

Siegel–Veech constant c+
cg (where superscript + indicates that we are counting

oriented geodesics on T
2).

c+
cg = lim

L→∞
Ncg(T2, L)

πL2
=

1
ζ(2)

=
6
π2

Note that the moduli space H1(0) of flat tori is a total space of a unit
tangent bundle to the modular surface (see Sec. 3.2, Fig. 13; see also (1) in
Sec. 9.1 for geometric details). Modular surface can be considered as a space
of flat tori of unit area without choice of direction to the North.

Measure on this circle bundle disintegrates to the product measure on
the fiber and the hyperbolic measure on the modular curve. In particular,
Vol(H1(0)) = π ·π/3, where π/3 is the hyperbolic area of the modular surface.
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Similarly, Vol(Hε
1(0)) = π · Area(Cusp(ε)), where Cusp(ε) is a subset of

the modular surface corresponding to those flat tori of unit area which have
a geodesic shorter than ε (see Fig. 13).

Showing that Area(Cusp(ε)) ≈ ε2 we apply (2) to get

ccg = lim
ε→0

=
1

πε2

Area(Cusp(ε))
Area(Modular surface)

=
1

πε2

ε2 + o(ε2)
π/3

=
1

2ζ(2)
.

Note that the Siegel–Veech constant ccg corresponds to counting nonoriented
closed geodesics on T

2. Thus, finally we obtain the desired value c+
cg = 2ccg.

In the next section we give an idea of how one can compute VolHε
1(C) in the

simplest case, In Sec. 6.4 we describe the phenomenon of higher multiplicities
and discuss the structure of typical cusps of the moduli spaces H(d1, . . . , dm).

6.3 Simplest Cusps of the Moduli Space

In this section we consider the simplest “cusp” C on a stratum H(d1, . . . , dm)
and evaluate VolHε

1(C) for this cusp. Namely, we assume that the flat surface
has at least two distinct conical points P1 �= P2; let 2π(d1 + 1), 2π(d1 + 1) be
corresponding cone angles. As a configuration C we consider a configuration
when we have a single saddle connection ρ joining P1 to P2 and no other
saddle connections on S parallel to ρ. In our calculation we assume that the
conical points on every S ∈ H(d1, . . . , dm) have names; we count only saddle
connections joining P1 to P2.

Consider some S ∈ Hε,thick
1 (C) ⊂ H(d1, . . . , dm), that is a flat surface S

having a single saddle connection joining P1 to P2 which is not longer than ε
and having no other short saddle connections or closed geodesics.

We are going to show that there is a canonical way to shrink the saddle
connection on S ∈ Hε,thick

1 (C) coalescing two conical points into one. We shall
see that, morally, this provides us with an (almost) fiber bundle

Hε,thick
1 (d1, d2, d3, . . . , dm)⏐⏐�D̃2

ε

H1(d1 + d2, d3, . . . , dm)

(5)

where D̃2
ε is a ramified cover of order (d1+d2+1) over a standard metric disc of

radius ε. Moreover, we shall see that the measure on Hε,thick
1 (d1, d2, d3, . . . , dm)

disintegrates into a product of the standard measure on D̃2
ε and the natural

measure on H1(d1 + d2, d3, . . . , dm). The latter would imply the following
simple answer to our problem:

Vol(“ε-neighborhood of the cusp C”)
= VolHε

1(C) = VolHε
1(d1, d2, d3, . . . , dm) ≈

≈ (d1 + d2 + 1) · πε2 · VolH1(d1 + d2, d3, . . . , dm) (6)
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Instead of contracting an isolated short saddle connection to a point we
prefer to create it breaking a conical point P ′ ∈ S′ of degree d1 + d2 on a
surface S′ ∈ H1(d1 + d2, d3, . . . , dm) into two conical points of degrees d1

and d2 joined by a short saddle connections. We shall see that this surgery is
invertible, and thus we shall get a coalescing construction. In the remaining
part of this section we describe this surgery following [EMaZo].

Breaking up a Conical Point into Two

We assume that the initial surface S′ ∈ H1(d1 + d2, d3, . . . , dm) does not have
any short saddle connections or short closed geodesics.

Consider a metric disc of a small radius ε centered at the point P ′, i.e.
the set of points Q′ of the surface S′ such that Euclidean distance from Q′

to the point P ′ is less than or equal to ε. We suppose that ε > 0 is chosen
small enough, so that the ε-disc does not contain any other conical points
of the metric; we assume also, that the disc which we defined in the metric
sense is homeomorphic to a topological disc. Then, metrically our disc has a
structure of a regular cone with a cone angle 2π(d1 + d2 + 1); here d1 + d2

is the multiplicity of the zero P ′. Now cut the chosen disc (cone) out of the
surface. We shall modify the flat metric inside it preserving the metric at the
boundary, and then paste the modified disc (cone) back into the surface.

2δ

ε+δ ε−δ

ε−δ ε+δ

2δε+δ ε+δ

ε−δ ε−δ

ε−δ ε−δ

Fig. 31. Breaking up a conical point into two (after [EMaZo]).

Our cone can be glued from 2(ki + 1) copies of standard metric half-discs
of the radius ε, see the picture at the top of Fig. 31. Choose some small δ,
where 0 < δ < ε and change the way of gluing the half-discs as indicated on
the bottom picture of Fig. 31. As patterns we still use the standard metric
half-discs, but we move slightly the marked points on their diameters. Now we
use two special half-discs; they have two marked points on the diameter at the
distance δ from the center of the half disc. Each of the remaining 2ki half-discs



Flat Surfaces 519

has a single marked point at the distance δ from the center of the half-disc.
We are alternating the half-discs with the marked point moved to the right
and to the left from the center. The picture shows that all the lengths along
identifications are matching; gluing the half-discs in this latter way we obtain
a topological disc with a flat metric; now the flat metric has two cone-type
singularities with the cone angles 2π(d1 + 1) and 2π(d2 + 1).

Note that a small tubular neighborhood of the boundary of the initial cone
is isometric to the corresponding tubular neighborhood of the boundary of the
resulting object. Thus we can paste it back into the surface. Pasting it back
we can turn it by any angle ϕ, where 0 ≤ ϕ < 2π(d1 + d2 + 1).

We described how to break up a zero of multiplicity d1 + d2 of an Abelian
differential into two zeroes of multiplicities d1, d2. The construction is local;
it is parameterized by the two free real parameters (actually, by one complex
parameter): by the small distance 2δ between the newborn zeroes, and by
the direction ϕ of the short geodesic segment joining the two newborn zeroes.
In particular, as a parameter space for this construction one can choose a
ramified covering of degree d1 + d2 + 1 over a standard metric disc of radius
ε.

6.4 Multiple Isometric Geodesics and Principal Boundary of the
Moduli Space

In this section we give an explanation of the phenomenon of higher multiplic-
ities, we consider typical degenerations of flat surfaces and we discuss how
can one use configurations of parallel saddle connections or closed geodesics
to determine the orbit of a flat surface S.

Multiple Isometric Saddle Connections

Consider a collection of saddle connections and closed geodesics representing
a basis of relative homology H1(S, {P1, . . . , Pm}; Z) on a flat surface S. Re-
call, that any geodesic on S goes in some constant direction. Recall also that
by Convention 1 any flat surface is endowed with a distinguished direction
to the North, so we can place a compass at any point of S and determine
in which direction goes our geodesic. Thus, every closed geodesic or saddle
connection determines a vector vj ∈ R

2 � C which goes in the same direc-
tion and have the same length as the corresponding geodesic element. Finally
recall that collection of planar vectors {v1, . . . ,v2g+m−1} considered as com-
plex numbers provide us with a local coordinate system in H(d1, . . . , dm). In
complex-analytic language these coordinates are the relative periods of holo-
morphic 1-form representing the flat surface S, namely vj =

∫
ρj

ω, where ρj

is the corresponding geodesic element (saddle connection or closed geodesic).
We say that two geodesic elements γ1, γ2 (saddle connections or closed

geodesics) are homologous on a flat surface S if they determine the same
homology classes in H1(S, {P1, . . . , Pm}; Z). In other words, γ1 is homologous
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to γ2 if cutting S by γ1 and γ2 we break the surface S into two pieces. For
example, the saddle connections γ1, γ2, γ3 on the right surface at the bottom
of Fig. 32 are homologous.

The following elementary observation is very important for the sequel.
Since the holomorphic 1-form ω representing S is closed, homologous geodesic
elements γ1, γ2 define the same period:

∫
γ1

ω = v =
∫

γ2

ω

We intensively used the following result of H. Masur and J. Smillie [MaS]
in our considerations in the previous section.

Theorem (H. Masur, J. Smillie). There is a constant M such that for
all ε, κ > 0 the subset Hε

1(d1, . . . , dm) of H1(d1, . . . , dm) consisting of those
flat surfaces, which have a saddle connection of length at most ε, has volume
at most Mε2.

The volume of the set of flat surfaces with a saddle connection of length
at most ε and a nonhomologous saddle connection with length at most κ is at
most Mε2κ2.

Morally, this Theorem says that a subset corresponding to one complex
parameter with norm at most ε has measure of order ε2, and a subset cor-
responding to two complex parameter with norm at most ε has measure of
order ε4. In particular, this theorem implies that VolHε,thin

1 (d1, . . . , dm) is of
the order ε4.

In the previous section we considered the subset of flat surfaces S ∈
Hε

1(d1, d2, d3, . . . , dm) having a single short saddle connection joining ze-
roes of degrees d1 and d2. We associated to such surface S a new surface
S′ ∈ Hε

1(d1 + d2, d3, . . . , dm) in the smaller stratum. Note that, morally, sur-
faces S and S′ have the same periods with a reservation that S has one more
period than S′: the extra small period represented by our short saddle con-
nection.

Metrically surfaces S and S′ are almost the same: having a surface S we
know how to contract our short saddle connection to a point; having a surface
S′ and an abstract short period v ∈ C � R

2 we know how to break the corre-
sponding zero on S′ into two zeroes joined by a single short saddle connection
realizing period v. (In the latter construction we have some additional discrete
freedom: we can break the zeroes in direction v in d1 + d2 +1 different ways.)

Our construction does not work when we have two nonhomologous short
geodesic elements on the surface S. But we do not care since according to the
Theorem of H, Masur and J. Smillie the subset Hε,thin

1 (d1, . . . , dm) of such
surfaces has very small measure (of the order ε4).

Now consider a slightly more general surgery represented by Fig. 32. We
take three distinct flat surfaces, we break a zero on each of them as it was
done in the previous section. We do it coherently using the same direction
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and the same distance δ on each surface (left part of Fig. 32). Then we slit
each surface along the newborn saddle connection and glue the surfaces in a
close compound surface as indicated on the right part of Fig. 32.

S′
3

S′
2

S′
1

S′
3

S′
2

S′
1

S′
3

S′
2

γ1γ2

γ3

Fig. 32. Multiple homologous saddle connections; topological picture

The resulting surface has three short parallel saddle connections of equal
length. By construction they are homologous: cutting along any two of them
we divide the surface into two parts. Thus, the resulting surface again has only
one short period! Note that a complete collection of periods of the compound
surface can be obtained as disjoint union

periods of S′
1 � periods of S′

2 � periods of S′
3 � newborn short period

Hence, any flat surface S with three short homologous saddle connections and
no other short geodesic elements can be viewed as a nonconnected flat surface
S′

1 �S′
2 �S′

3 plus a memory about the short period v ∈ C which we use when
we break the zeroes (plus some combinatorial arbitrariness of finite order).

The moduli space of disconnected flat surfaces of the same type as S′
1 �

S′
2 � S′

3 has one dimension less than the original stratum H(d1, . . . , dm). Our
considerations imply the following generalization of formula (6) for the volume
of “ε-neighborhood” of the corresponding cusp:

Vol(“ε-neighborhood of the cusp C”) = VolHε
1(C)

k·VolH1(stratum of S′
1)·VolH1(stratum of S′

2)·VolH1(stratum of S′
3)·πε2
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where the factor k is an explicit constant depending on dimensions, possible
symmetries, and combinatorics of multiplicities of zeroes. In particular, we
get a subset of order ε2.

Now for any flat surface S0 ∈ H(d1, . . . , dm) we can state a counting
problem, where we shall count only those saddle connections which appear
in configuration C of triples of homologous saddle connections breaking S0

into three surfaces of the same topological and geometric types as S′
1, S

′
2, S

′
3.

Applying literally same arguments as in Sec. 6.2 and 6.3 we can show that
such number of triples of homologous saddle connections of length at most L
has quadratic growth rate and that the corresponding Siegel–Veech constant
c(C) can be expressed by the same formula as above:

c(C) = lim
ε→0

1
πε2

Vol(“ε-neighborhood of the cusp C ”)
VolHcomp

1 (d1, . . . , dm)

= (combinatorial factor)
∏n

k=1 VolH1(stratum of S′
k)

VolHcomp
1 (d1, . . . , dm)

Principal Boundary of the Strata

The results above give a description of typical degenerations of flat surfaces.
A flat surface gets close to the boundary of the moduli space when some
geodesic element (or a collection of geodesic elements) get short. Morally, we
have described something like “faces” of the boundary, while there are still
“edges”, etc, representing degenerations of higher codimension. Flat surfaces
which are close to this “principal boundary” of a stratum H(d1, . . . , dm) have
the following structure.

If the short geodesic element is a saddle connection joining two distinct
zeroes, then the surface looks like the one at Fig. 32. It can be decomposed to
several flat surfaces with slits glued cyclically one to another. The boundaries
of the slits form short saddle connections on the compound surface. All these
saddle connections join the same pair of points; they have the same length and
direction. They represent homologous cycles in the relative homology group
H1(S, {P1, . . . , Pm}; Z).

Figure 33 represents a flat surface S0 ∈ H(1, 1) unfolded to a polygon. The
two short bold segments represent two homologous saddle connections. The
reader can easily check that on any surface S ∈ H(1, 1) obtained from S0 by
a small deformation one can find a pair of short parallel saddle connections
of equal length. Cutting S by these saddle connections we get a pair of tori
with slits.

We did not discuss in the previous section the case when the short geodesic
element is a regular closed geodesic (or a saddle connection joining a conical
point to itself). Morally, it is similar to the case of saddle connections, but
technically it slightly more difficult. A flat surface near the principal boundary
of this type is presented on the right of Fig. 34.



Flat Surfaces 523

Fig. 33. Flat surface with two short homologous saddle connections. Any small
deformation of this surface also has a pair of short homologous saddle connections.

The cycles are NOT homologous

Fig. 34. A typical (on the right) and nontypical (on the left) degenerations of a
flat surface. Topological picture

Similar to the case of saddle connections, the surface can be also decom-
posed to a collection of well-proportional flat surfaces S′

1, . . . , S
′
n of lower

genera. Each surface S′
k has a pair of holes. Each of these holes is realized by

a saddle connection joining a zero to itself. The surfaces are cyclically glued
to a “necklace”, where two neighboring surfaces might be glued directly or by
a narrow cylinder. Since the waist curves of all these cylinders and all sad-
dle connections representing boundaries of surfaces S′

k are homologous, the
corresponding closed geodesics on S are parallel and have equal length. A
more artistic5 image of a surface, which is located closed to the boundary of
a stratum is represented on Fig. 35.

The surface on the left of Fig. 34 is close to an “edge”of the moduli space
in the sense that it represents a “nontypical” degeneration: a degeneration
of codimension two. This surface has two nonhomologous closed geodesics
shorter than ε. Due to the Theorem of H. Masur and J. Smillie cited above,
the subset Hε,thin

1 (d1, . . . , dm) of such surfaces has measure of the order ε4.
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Fig. 35. Flat surface near the principal boundary5

Configurations of Saddle Connections and of Closed Geodesics as Invariants
of Orbits

Consider a flat surface S0 and consider its orbit under the action of SL(2, R).
It is very easy to construct this orbit locally for those elements of the group
GL+(2, R) which are close to identity. It is a fairly complicated problem to
construct this orbit globally in H(d1, . . . , dm) and to find its closure. Ergodic
theorem of H. Masur and W. Veech (see Sec. 3.5) tells that for almost every
surface S0 the closure of the orbit of S0 coincides with the embodying con-
nected component of the corresponding stratum. But for some surfaces the
closures of the orbits are smaller. Sometimes it is possible to distinguish such
surfaces looking at the configurations of parallel closed geodesics and sad-
dle connections. Say, for Veech surfaces which will be discussed in Sec. 9.5
the orbit of SL(2, R) is already closed in the stratum, so Veech surfaces are
very special. This property has an immediate reflection in behavior of parallel
closed geodesics and saddle connections: as soon as we have a saddle connec-
tion or a closed geodesic in some direction on a Veech surface, all geodesics
in this direction are either closed or (finite number of them) produce saddle
connections.

Thus, it is useful to study configurations of parallel closed geodesics on
a surface (which includes the study of proportions of corresponding maximal
cylinders filled with parallel regular closed geodesics) to get information about
the closure of corresponding orbit.

One can also use configurations of parallel closed geodesics on a flat surface
to determine those connected component of the stratum, to which belongs
our surface S0. Some configurations (say, g− 1 tori connected in a “necklace”
by a chain of cylinders, compare to Fig. 35) are specific for some connected

5 H. Matisse: La Danse. The State Hermitage Museum, St. Petersburg. (c) Succes-
sion H. Matisse/VG Bild-Kunst, Bonn, 2005
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components and never appear for surfaces from other connected components.
We return to this discussion in the very end of Sec. 9.4 where we use this
idea to distinguish connected components of the strata in the moduli space of
quadratic differentials.

6.5 Application: Billiards in Rectangular Polygons

Consider now a problem of counting generalized diagonals of bounded length
or a problem of counting closed billiard trajectories of bounded length in a
billiard in a rational polygon Π. Apply Katok–Zemliakov construction (see
Sec. 2.1) and glue a very flat surface S from the billiard table Π. Every
generalized diagonal (trajectory joining two corners of the billiard, possibly,
after reflections from the sides) unfolds to a saddle connection and every
periodic trajectory unfolds to a closed regular geodesic.

It is very tempting to use the results described above for the counting
problem for the billiard. Unfortunately, the technique elaborated above is not
applicable to billiards directly. The problem is that flat surfaces coming from
billiards form a subspace of large codimension in any stratum of flat surfaces;
in particular, this subspace has measure zero. Our “almost all” technique does
not see this subspace.

However, the problems are related in some special cases; see [EMaScm]
treating billiard in a rectangle with a barrier. As another illustration we
consider billiards in “rectangular polygons”. These results represent the
work [AthEZo] which is in progress. We warn the reader that we are extremely
informal in the remaining part of this section.

Rectangular Polygons

Figure 36 suggests several examples of rectangular polygons. The “polygons”
are allowed to have ramification points at the boundary, with restriction that
the angles at ramification points are integer multiples of π/2. Note that we
do not identify the side P5P6 with a part of the side P4P5 in the right poly-
gon. This polygon should be considered with a cut along the side P5P6. The
corresponding billiard has a “barrier” along the side P5P6.

PP

PP

PP

P

7 6

5

4 3

21

Fig. 36. Rectangular polygons
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Formally speaking, by a rectangular polygon Π we call a topological disc
endowed with a flat metric, such that the boundary ∂Π is presented by a
finite broken line of geodesic segments and such that the angle between any
two consecutive sides equals kπ/2, where k ∈ N.

Consider now our problem for a standard rectangular billiard table (the
proportions of the sides do not matter). We emit a trajectory from some corner
of the table and want it arrive to another corner after several reflections from
the sides.

When our trajectory reflects from a side it is convenient to prolong it as
a straight line by making a reflection of the rectangle with respect to the
corresponding side (see Katok–Zemliakov construction in Sec. 2.1). Unfolding
our rectangular table we tile the plane R

2 with a rectangular lattice. Our
problem can be reformulated as a problem of counting primitive lattice points
(see the right part of Fig. 30).

We are emitting our initial trajectory from some fixed corner of the billiard.
It means that in the model with a lattice in the plane we are emitting a straight
line from the origin inside one of the four quadrants. Thus, we are counting
the asymptotics for the number of primitive lattice points in the intersection
of a coordinate quadrant with a disc of large radius L centered at the origin.
This gives us 1/4 of the number of all primitive lattice points. Note that
in our count we have fixed the initial corner, but we let our trajectory hit
any of the remaining three corners. Thus, if we count only those generalized
diagonals which are launched from some prescribed corner Pi and arrive to
a prescribed corner Pj (different from initial one) we get 1/3 of the previous
number. Hence, the number Nij(L) of generalized diagonals joining Pi with Pj

is 1/12 of the number Ncg(T2, L) ∼ (1/ζ(2)) · πL2 of primitive lattice points,
see 3.

In our calculation we assumed that the billiard table has area one. It is
clear that asymptotics for our counting function is homogeneous with respect
to the area of the table. Adjusting our formula for a rectangular billiard table
of the area different from 1 we get the following answer for the number of
generalized diagonals of length at most L joining prescribed corner Pi to a
prescribed corner Pj different from the first one:

Nij(L) ≈ 1
2π

· L2

Area of the billiard table
(7)

Now, having studied a model case, we announce two examples of results
from [AthEZo] concerning rectangular polygons.

Consider a family of rectangular polygons having exactly k ≥ 0 angles
3π/2 and all other angles π/2 (see Fig. 37). Consider a generic billiard table
in this family (in the measure-theoretical sense). Fix any two corners Pi �= Pj

having angles π/2. The number Ñij(L) of generalized diagonals of length at
most L joining Pi to Pj is approximately the same as for a rectangle:

Ñij(L) ∼ 1
2π

· L2

Area of the billiard table
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Pi

Pj

Pi

Pj

Fig. 37. Family of rectangular polygons of the same geometry and the same area.
The shape of these polygons is quite different. Nevertheless for both billiard tables
the number of trajectories of length at most L joining the right-angle corner Pi to
the right-angle corner Pj is approximately the same as the number of trajectories
of length at most L joining two right-angle corners of a rectangle of the same area.

We have to admit that we are slightly cheating here: the equivalence “∼”
which we can currently prove is weaker than “≈” in (7); nevertheless, we do
not want to go into technical details.

Note that the shape of the polygon within the family may vary quite con-
siderably, see Fig. 37, and this does not affect the asymptotic formula. How-
ever, the answer changes drastically when we change the family. For rectan-
gular polygons having several angles of the form nπ the constant in quadratic
asymptotics is more complicated. This is why we do not expect any elemen-
tary proof of this formula (our proof involves evaluation of corresponding
Siegel–Veech constant).

Actually, naive intuition does not help in counting problems of this type.
Consider, for example, an L-shaped billiard table as on Fig. 38.

c Moon Duchin

Fig. 38. L-shaped billiard table
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The angle at the vertex P0 is 3π/2 which is three times larger than the
angle π/2 at the other five vertices P1, . . . , P5. However, the number

Ñ0j(L) ∼ 2
π
· L2

Area of the billiard table

of generalized diagonals of length at most L joining P0 to Pj , where 1 ≤ j ≤ 5,
is four times bigger than the number Ñij(L) of generalized diagonals joining
two corners with the angles π/2.

7 Volume of Moduli Space

In Sec. 3.4 we defined a volume element in the stratum H(d1, . . . , dm). We used
linear volume element in cohomological coordinates H1(S, {P1, . . . , Pm}; C)
normalized in such way that a fundamental domain of the lattice

H1(S, {P1, . . . , Pm}; Z ⊕√−1 Z) ⊂ H1(S, {P1, . . . , Pm}; C)

has unit volume. The unit lattice does not depend on the choice of cohomo-
logical coordinates, its vertices play the role of integer points in the moduli
space H(d1, . . . , dm). In Sec. 7.1 we suggest a geometric interpretation of flat
surfaces representing integer points of the strata.

Using this interpretation we give an idea for counting the volume (“hyper-
area”) of the hypersurface H1(d1, . . . , dm) ⊂ H(d1, . . . , dm) of flat surfaces of
area one. We apply the strategy which can be illustrated in a model example
of evaluation of the area of a unit sphere. We first count the asymptotics for
the number N(R) of integer points inside a ball of huge radius R. Clearly
N(R) corresponds to the volume of the ball, so if we know the asymptotics
for N(R) we know the formula for the volume Vol(R) of the ball of radius R.

The derivative
d

dR
Vol(R)

∣∣
R=1

gives us the area of the unit sphere.

Similarly, to evaluate the “hyperarea of a unit hyperboloid” H1(d1, . . . , dm)
it is sufficient to count the asymptotics for the number of integer points inside
a “hyperboloid” HR(d1, . . . , dm) of huge “radius” R. The role of the “radius”
R is played by the positive homogeneous real function R = area(S) defined
on H(d1, . . . , dm).

Note that the volume ν
(H≤R(d1, . . . , dm)

)
of a domain bounded by the

“hyperboloid” HR(d1, . . . , dm) is a homogeneous function of R of the weight
dimR H(d1, . . . , dm)/2 while the volume of a ball of radius R is a homogeneous
function of R of the weight which equals the dimension of the space. This
difference in weights explains the factor 2 in the formula below:

Vol
(H1(d1, . . . , dm)

)
= 2

d

dR
ν
(H≤R(d1, . . . , dm)

)∣∣∣∣∣
R=1

= dimR(H1(d1, . . . , dm)) · ν(H≤1(d1, . . . , dm)
)

(1)
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This approach to computation of the volumes was suggested by A. Es-
kin and A. Okounkov and by M. Kontsevich and the author. However, the
straightforward application of this approach, described in Sec. 7.1, gives the
values of the volumes only for several low-dimensional strata. The general so-
lution of the problem was found by A. Eskin and A. Okounkov who used in
addition powerful methods of representation theory. We give an idea of their
method in Sec. 7.2.

7.1 Square-tiled Surfaces

Let us study the geometric properties of the flat surfaces S represented by
“integer points” S ∈ H1(S, {P1, . . . , Pm}; Z ⊕ √−1 Z) in cohomological co-
ordinates. Let ω be the holomorphic one-form representing such flat surface
S. Since [ω] ∈ H1(S, {P1, . . . , Pm}; Z ⊕ √−1 Z) all periods of ω (including
relative periods) belong to Z ⊕√−1 Z. Hence the following map fω from the
flat surface S to the standard torus T

2 = C/(Z ⊕√−1 Z) is well-defined:

fω : P �→
(∫ P

P1

ω
)

mod Z ⊕√−1 Z ,

where P1 is one of the conical points. It is easy to check that fω is a ramified
covering, moreover, it has exactly m ramification points, and the ramification
points are exactly the zeros P1, . . . , Pm of ω. Consider the flat torus T

2 as
a unit square with the identified opposite sides. The covering fω : S → T

2

induces a tiling of the flat surface S by unit squares. Note that all unit squares
are endowed with the following additional structure: we know exactly which
edge is top, bottom, right, and left; adjacency of the squares respects this
structure in a natural way: we glue vertices to vertices and edges to edges,
moreover, the right edge of a square is always identified to the left edge of some
square and top edge is always identified to the bottom edge of some square.
We shall call a flat surface with such tiling a square-tiled surface. We see that
the problem of counting the volume of H1(d1, . . . , dm) is equivalent to the
following problem: how many square-tiled surfaces of a given geometric type
(determined by number and types of conical singularities) can we construct
using at most N unit squares. Say, Fig. 46 gives the list of all square-tiled
surfaces of genus g > 1 glued from at most 3 squares. They all belong to the
stratum H(2).

In terms of the coverings our Problem can be formulated as follows. Con-
sider the ramified coverings p : S → T

2 over the standard torus T
2. Fix the

number m of branching points, and ramification degrees d1, . . . , dm) at these
points. Assume that all ramification points P1, . . . , Pm project to the same
point of the torus T

2. Enumerate ramified coverings of any given ramification
type having at most N � 1 sheets. Here pairs of coverings forming commu-
tative diagrams as below are identified:
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S ←→ S
↘ ↙

T
2

(2)

Counting of Square-tiled Tori

Let us count the number of square-tiled tori tiled by at most N � 1 squares.
In this case our square-tiled surface has no singularities at all: we have a flat
torus tiled with the unit squares in a regular way. Cutting our flat torus by a
horizontal waist curve we get a cylinder with a waist curve of length w ∈ N

and a height h ∈ N, see Fig. 39. The number of squares in the tiling equals
w · h. We can reglue the torus from the cylinder with some integer twist t,
see Fig. 39. Making an appropriate Dehn twist along the waist curve we can
reduce the value of the twist t to one of the values 0, 1, . . . , w − 1. In other
words, fixing the integer perimeter w and height h of a cylinder we get w
different square-tiled tori.

t

w

h

h

wt

Fig. 39. A square-tiled surface is decomposed into several cylinders. Each cylinder is
parametrized by its width (perimeter) w and height h. Gluing the cylinders together
we get also a twist parameter t, where 0 ≤ t < w, for each cylinder

Thus the number of square tiled tori constructed by using at most N
squares is represented as

ν
(H≤N (0)

) ∼
∑

w,h∈N

w·h≤N

w =
∑

w,h∈N

w≤N
h

w ≈
∑
h∈N

1
2
·
(

N

h

)2

=
N2

2
· ζ(2) =

N2

2
· π2

6

Actually, some of the tori presented by the first sum are equivalent by an
affine diffeomorphism, so we are counting them twice, or even several times.
Say, the tori w = 2;h = 1; t = 0 and w = 1;h = 2; t = 0 are equivalent.
However, this happens relatively rarely, and this correction does not affect
the leading term, so we simply neglect it.

Applying the derivative 2
d

dN

∣∣∣∣∣
N=1

(see (1)) we finally get the following

value for the volume of the space of flat tori
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Vol(H1(0)) =
π2

3

Decomposition of a Square-Tiled Surface into Cylinders

Let us study the geometry of square-tiles surfaces. Note that all leaves of
both horizontal and vertical foliation on every square-tiled surface are closed.
In particular the union of all horizontal critical leaves (the ones adjacent to
conical points) forms a finite graph Γ . The collection P1, . . . , Pm of conical
points forms the set of the vertices of this graph; the edges of the graph are
formed by horizontal saddle connections. The complement S − Γ is a union
of flat cylinders.

For example, for the square-tiled surfaces from Fig. 46 we get the following
decompositions into horizontal cylinders. We have one surface composed from
a single cylinder filled with closed horizontal trajectories; this cylinder has
width (perimeter) w = 3 and hight h = 1. Two other surfaces are composed
from two cylinders. The heights of the cylinders are h1 = h2 = 1, the widths
are w1 = 1 and w2 = 2 correspondingly. Observing the two-cylinder surfaces
at Fig. 46 we see that they differ by the twist parameter t2 (see Fig. 39) of the
wider cylinder: in one case t2 = 0 and in the other case t2 = 1. By construction
the width wi and height hi of any cylinder are strictly positive integers; the
value of the twist ti is a nonnegative integer bounded by the width of the
cylinder: 0 ≤ ti < wi.

Separatrix Diagrams

Let us study in more details the graphs Γ of horizontal saddle connections.
We start with an informal explanation. Consider the union of all saddle

connections for the horizontal foliation, and add all critical points (zeroes
of ω). We obtain a finite oriented graph Γ . Orientation on the edges comes
from the canonical orientation of the horizontal foliation. Moreover, graph Γ
is drawn on an oriented surface, therefore it carries so called ribbon structure
(even if we forget about the orientation of edges), i.e. on the star of each vertex
P a cyclic order is given, namely the counterclockwise order in which edges
are attached to P . The direction of edges attached to P alternates (between
directions toward P and from P ) as we follow the counterclockwise order.

It is well known that any finite ribbon graph Γ defines canonically (up to
an isotopy) an oriented surface S(Γ ) with boundary. To obtain this surface
we replace each edge of Γ by a thin oriented strip (rectangle) and glue these
strips together using the cyclic order in each vertex of Γ . In our case surface
S(Γ ) can be realized as a tubular ε-neighborhood (in the sense of transversal
measure) of the union of all saddle connections for sufficiently small ε > 0.

The orientation of edges of Γ gives rise to the orientation of the bound-
ary of S(Γ ). Notice that this orientation is not the same as the canonical
orientation of the boundary of an oriented surface. Thus, connected compo-
nents of the boundary of S(Γ ) are decomposed into two classes: positively
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and negatively oriented (positively when two orientations of the boundary
components coincide and negatively, when they are different). The comple-
ment to the tubular ε-neighborhood of Γ is a finite disjoint union of open
cylinders foliated by oriented circles. It gives a decomposition of the set of
boundary circles π0(∂(S(Γ ))) into pairs of components having opposite signs
of the orientation.

Now we are ready to give a formal definition:
A separatrix diagram is a finite oriented ribbon graph Γ , and a decompo-

sition of the set of boundary components of S(Γ ) into pairs, such that

– the orientation of edges at any vertex is alternated with respect to the
cyclic order of edges at this vertex;

– there is one positively oriented and one negatively oriented boundary com-
ponent in each pair.

Notice that ribbon graphs which appear as a part of the structure of a
separatrix diagram are very special. Any vertex of such a graph has even
degree, and the number of boundary components of the associated surface
with boundary is even. Notice also, that in general the graph of a separatrix
diagram is not planar.

Any separatrix diagram (Γ, pairing) defines a closed oriented surface to-
gether with an embedding of Γ (up to a homeomorphism) into this surface.
Namely, we glue to the surface with boundary S(Γ ) standard oriented cylin-
ders using the given pairing.

In pictures representing diagrams we encode the pairing on the set of
boundary components painting corresponding domains in the picture by some
colors (textures in the black-and-white text) in such a way that every color
appears exactly twice. We will say also that paired components have the same
color.

Example. The ribbon graph presented at Figure 40 corresponds to the hor-
izontal foliation of an Abelian differential on a surface of genus g = 2. The
Abelian differential has a single zero of degree 2. The ribbon graph has two
pairs of boundary components.

Any separatrix diagram represents an orientable measured foliation with
only closed leaves on a compact oriented surface without boundary. We say
that a diagram is realizable if, moreover, this measured foliation can be chosen
as the horizontal foliation of some Abelian differential. Lemma below gives a
criterion of realizability of a diagram.

Assign to each saddle connection a real variable standing for its “length”.
Now any boundary component is also endowed with a “length” obtained as
sum of the “lengths” of all those saddle connections which belong to this
component. If we want to glue flat cylinders to the boundary components, the
lengths of the components in every pair should match each other. Thus for
every two boundary components paired together (i.e. having the same color)
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6 1

5 2

4 3

Fig. 40. An example of a separatrix diagram. A detailed picture on the left can be
encoded by a schematic picture on the right.

we get a linear equation: “the length of the positively oriented component
equals the length of the negatively oriented one”.

Lemma. A diagram is realizable if and only if the corresponding system of
linear equations on “lengths” of saddle connections admits strictly positive
solution.

The proof is obvious.

Example. The diagram presented at Fig. 40 has three saddle connections, all
of them are loops. Let p16, p52, p34 be their “lengths”. There are two pairs
of boundary components. The corresponding system of linear equations is as
follows: {

p34 = p16

p16 + p52 = p34 + p52

Exercise. Check that two separatrix diagrams at Fig. 41 are realizable, and
one – not. Check that there are no other realizable separatrix diagrams for
the surfaces from the stratum H(2). Find all realizable separatrix diagrams
for the stratum H(1, 1).

Counting of Square-tiled Surfaces in H(2)

To consider one more example we count square-tiled surfaces in the stratum
H(2). We have seen that in this stratum there are only two realizable separa-
trix diagrams; they are presented on the left and in the center of Fig. 41.

Consider those square tiled surfaces from H(2) which correspond to the
left diagram from Fig. 41. In this case the ribbon graph corresponding to the
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p1

p2p3

p1

p2

p1

Fig. 41. The separatrix diagrams from left to right a) represent a square-tiled
surface glued from one cylinder of width w = p1 + p2 + p3; b) represent a square-
tiled surface glued from two cylinder of widths w1 = p1 and w2 = p1 + p2; c) do not
represent any square-tiled surface

separatrix diagram has single “top” and single “bottom” boundary compo-
nent, so our surface is glued from a single cylinder. The waist curve of the
cylinder is of the length w = p1 + p2 + p3, where p1, p2, p3 are the lengths of
the separatrix loops. As usual, denote the height of the cylinder by h. The
twist t of the cylinder has an integer value in the interval [0, w − 1]. Thus the
number of surfaces of this type of the area bounded by N is asymptotically
equivalent to the sum

1
3

∑
p1,p2,p3,h∈N

(p1+p2+p3)h≤N

(p1 + p2 + p3) ∼
N4

24
· ζ(4) =

N4

24
· π4

90

(see more detailed computation in [Zo5]). The coefficient 1/3 compensates
the arbitrariness of the choice of enumeration of p1, p2, p3 preserving the cyclic
ordering. Similar to the torus case we have neglected a small correction coming
from counting equivalent surfaces several times.

Exercise. Check that for p1 = p2 = p3 = 1 all possible values of the twist
t = 0, 1, 2 give equivalent flat surfaces; see also Fig. 46

Consider now a ribbon graph corresponding to the middle diagram from
Fig. 41. It has two “top” and two “bottom” boundary components. Thus,
topologically, we can glue in a pair of cylinders in two different ways. However,
to have a flat structure on the resulting surface we need to have equal lengths
of “top” and “bottom” boundary components. These lengths are determined
by the lengths of the corresponding separatrix loops. It is easy to check that
one of the two possible gluings of cylinders is forbidden: it implies that one of
the separatrix loops has zero length, and hence the surface is degenerate.

The other gluing is realizable. In this case there is a pair of separatrix
loops of equal lengths p1, see Fig. 41. The square-tiled surface is glued from
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two cylinders: one having a waist curve w1 = p1, and the other one having
waist curve w2 = p1 + p2. Denote the heights and twists of the corresponding
cylinders by h1, h2 and t1, t2. The twist of the first cylinder has the value in
the interval [0, w1 − 1]; the twist of the second cylinder has the value in the
interval [0, w2 − 1]. Thus the number of surfaces of 2-cylinder type of the area
bounded by N is asymptotically equivalent to the sum

∑
p1,p2,h1,h2

p1h1+(p1+p2)h2≤N

p1(p1 + p2) =
∑

p1,p2,h1,h2
p1(h1+h2)+p2h2≤N

p2
1 + p1p2

It is not difficult to represent these two sums in terms of the multiple zeta
values ζ(1, 3) and ζ(2, 2) (see detailed computation in [Zo5]). Applying the
relations ζ(1, 3) = ζ(4)/4 and ζ(2, 2) = 3ζ(4)/4 we get the following asymp-
totic formula for our sum:

∑
p1,p2,h1,h2

p1(h1+h2)+p2h2≤N

p2
1+p1p2 ∼ N4

24
(
2·ζ(1, 3)+ζ(2, 2)

)
=

N4

24
· 5
4
·ζ(4) =

N4

24
· 5
4
· π

4

90

Joining the impacts of the two diagrams and applying 2 · d

dN

∣∣∣∣∣
N=1

(see (1))

we get the following value for the volume of the stratum H(2):

Vol(H1(2)) =
π4

120

Separatrix diagrams: more serious reading. Technique of separatrix diagrams
is extensively used by K. Strebel in [Str] and in some articles like [KonZo].

7.2 Approach of A. Eskin and A. Okounkov

It is time to confess that evaluation of the volumes of the strata by means
of naive counting square-tiled surfaces suggested in the previous section is
not efficient in general case. The number of realizable separatrix diagrams
grows and it is difficult to express the asymptotics of the sums for individual
separatrix diagrams in reasonable terms (say, in terms of multiple zeta values).
In general case the problem was solved using the following approach suggested
by A. Eskin and A. Okounkov in [EOk].

Consider a square-tiled surface S ∈ H(d1, . . . , dm). Enumerate the squares
in some way. For the square number j let πr(j) be the number of its neighbor
to the right and let πu(j) be the number of the square atop the square number
j. Consider the commutator π′ = πrπuπ−1

r π−1
u of the resulting permutations.

When the total number of squares is big enough, for most of the squares
Geometrically the resulting permutation π′ corresponds to the following

path: we start from a square number j, then we move one step right, one
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step up, one step left, one step down, and we arrive to π′(j). When the total
number of squares is large, then for majority of the squares such path brings
us back to the initial square; for these values of index j we get π′(j) = j.
However, we may have more than 4 squares adjacent to a conical singularity
Pk ∈ S. For the squares adjacent to a singularity the path right-up-left-down
does not bring us back to the initial square. It is easy to check that the
commutator π′ = πrπuπ−1

r π−1
u is represented as a product of m cycles of

lengths (d1 + 1), . . . , (dm + 1) correspondingly.
We conclude that a square-tiled surface S ∈ H(d1, . . . , dm) can be defined

by a pair of permutations πr, πu, such that the commutator πrπuπ−1
r π−1

u

decomposes into given number m of cycles of given lengths (d1 +1), . . . , (dm +
1). Choosing another enumeration of the squares of the same square-tiled
surface S we get two new permutations π̃r, π̃u. Clearly the permutations in this
new pair are conjugate to the initial ones by means of the same permutation
ρ responsible for the change of enumeration of the squares: π̃r = ρπrρ

−1, π̃u =
ρπuρ−1.

We see that the problem of enumeration of square-tiled surfaces can be
reformulated as a problem of enumeration of pairs of permutations of at most
N elements such that their commutator decomposes into a given number
of cycles of given lengths. Here the pairs of permutations are considered up
to a simultaneous conjugation. This problem was solved by S. Bloch and
A. Okounkov by using methods of representation theory. However, it is not
directly applicable to our problem. Describing the square-tiled surfaces in
terms of pairs of permutations one has to add an additional explicit constraint
that the resulting square-tiled surface is connected ! Taking a random pair of
permutations of very large number N � 1 of elements realizing some fixed
combinatorics of the commutator we usually get a disconnected surface!

The necessary correction is quite nontrivial. It was performed by A. Eskin
and A. Okounkov in [EOk]. In the further paper A. Eskin, A. Okounkov
and R. Pandharipande [EOkPnd] give the volumes of all individual connected
components of the strata; see also very nice and accessible survey [E].

For a given square-tiled surface S denote by Aut(S) its automorphism
group. Here we count only those automorphisms which isometrically send
each square of the tiling to another square. For most of the square-tiled sur-
faces Aut(S) is trivial; even for those rare square-tiled surfaces, which have
nontrivial inner symmetries the group Aut(S) is obviously finite. We com-
plete this section with the following arithmetic Theorem which confirms two
conjectures of M. Kontsevich.

Theorem (A. Eskin, A. Okounkov, R. Pandharipande). For every
connected component of every stratum the generating function

∞∑
N=1

qN
∑

N-square-tiled
surfaces S

1
|Aut(S)|
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is a quasimodular form, i.e. a polynomial in Eisenstein series G2(q), G4(q),
G6(q).

Volume Vol(Hcomp
1 (d1, . . . , dm) of every connected component of every

stratum is a rational multiple of π2g, where g is the genus, d1 + · · · + dm =
2g − 2.

8 Crash Course in Teichmüller Theory

In this section we present the Teichmüller theorem about extremal quasicon-
formal map and define Teichmüller metric. This enables us to explain finally
in what sense the “Teichmüller geodesic flow” (which we initially defined in
terms of the action of the subgroup of diagonal matrices in SL(2, R) on flat
surfaces) is a geodesic flow.

8.1 Extremal Quasiconformal Map

Coefficient of Quasiconformality

Consider a closed topological surface of genus g and two complex structures
on it. Let S0 and S1 be the corresponding Riemann surfaces. When the com-
plex structures are different there are no conformal maps from S0 to S1. A
smooth map f : S0 → S1 (or, being more precise, its derivative Df) sends an
infinitesimal circle at x ∈ S0 to an infinitesimal ellipse, see Fig. 42.

→

Fig. 42. Quasiconformal map

Coefficient of quasiconformality of f at x ∈ S0 is the ratio

Kx(f) =
a

b

of demi-axis of this ellipse. Coefficient of quasiconformality of f is

K(f) = sup
x∈S0

Kx(f)

Though S0 is a compact Riemann surface we use sup and not max since the
smooth map f is allowed to have several isolated critical points where Df = 0
(and not only det(Df) = 0) and where Kx(f) is not defined.
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Half-translation Structure

There is a class of flat metrics which is slightly more general than the very flat
metrics which we consider in this paper. Namely, we can allow to a flat metric
to have the most simple nontrivial linear holonomy which is only possible:
we can allow to a tangent vector to change its sign after a parallel transport
along some closed loops (see the discussion of linear holonomy in Sec. 1.2).

Surfaces endowed with such flat structures are called half-translation sur-
faces. A holomorphic one-form (also called a holomorphic differential or an
Abelian differential) is an analytic object representing a translation surface
(in our terminology, a very flat surface). A holomorphic quadratic differential
is an analytic object representing a half-translation surface.

In local coordinate w a quadratic differential has the form q = q(w)(dw)2.
In other words, the tensor rule for q is

q = q(w)(dw)2 = q (w(w′)) ·
(

dw

dw′

)2

· (dw′)2 (1)

under a change of coordinate w = w(w′).
One should not confuse (dw)2 with a wedge product dw∧dw which equals

to zero! It is just a tensor of the type described by the tensor rule (1). In
particular, any holomorphic one-form defined in local coordinates as ω =
ω(w)dw canonically defines a quadratic differential ω2 = ω2(w)(dw)2.

Reciprocally, a holomorphic quadratic differential q = q(w)(dw)2 locally
defines a pair of holomorphic one forms ±√

q(w) dw in any simply-connected
domain where q(w) �= 0. However, for a generic holomorphic quadratic differ-
ential neither of these 1-forms is globally defined: trying to extend the local
form ω+ =

√
q(w) dw along a closed path we may get back with the form

ω− = −√
q(w) dw.

Recall that there is a bijection between very flat (=translation) surfaces
and holomorphic 1-forms. There is a similar bijection between half-translation
surfaces and holomorphic quadratic differentials, where similar to the “very
flat” case a flat surface corresponding to a quadratic differential is polarized:
it is endowed with canonical vertical and horizontal directions. (They can be
defined locally using the holomorphic one-forms ω± = ±√

q(w) dw.) Note,
however, that we cannot distinguish anymore between direction to the North
and to the South, or between direction to the East and to the West unless
the quadratic differential q is a global square of a holomorphic 1-form ω. In
particular, the vertical and horizontal foliations are nonorientable for generic
quadratic differentials.

Teichmüller Theorem

Choose any two complex structures on a topological surface of genus g ≥ 1;
let S0 and S1 be the corresponding Riemann surfaces. Developing ideas of
Grötzsch Teichmüller has proved a Theorem which we adapt to our language.
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Note that flat structure used in the formulation of the Theorem below is
slightly more general than one considered in Sec. 1.2 and in Convention 1: it
corresponds to a half-translation structure and to a holomorphic quadratic dif-
ferential (see above in this section). In particular, speaking about a flat metric
compatible with a given complex structure we mean a flat metric correspond-
ing to a quadratic differential holomorphic in the given complex structure.

Theorem (Teichmüller). For any pair S0, S1 of Riemann surfaces of genus
g ≥ 1 there exist an extremal map f0 : S0 → S1 which minimizes the coefficient
of quasiconformality K(f).

For this extremal map f0 the coefficient of quasiconformality is constant
on S0 (outside of a finite collection of singular points)

Kx(f0) = K(f0) ∀x ∈ S0 − {P1, . . . , Pm}
One can choose a flat metric (half-translation structure) compatible with

the complex structure in which foliation along big (correspondingly small)
demi-axis of ellipses is the horizontal (correspondingly vertical) foliation in
the flat metric.

In flat coordinates the extremal map f0 is just expansion-contraction with
coefficient

√
K.

→

Fig. 43. In flat coordinates the extremal map f0 is just an expansion-contraction
linear map

8.2 Teichmüller Metric and Teichmüller Geodesic Flow

Now everything is ready to define the Teichmüller metric. In this metric we
measure the distance between two complex structures as

dist(S0, S1) =
1
2

log K(f0),

where f0 : S0 → S1 is the extremal map.
It means that a holomorphic quadratic differential defines a direction of

deformation of the complex structure and a geodesic in the Teichmüller metric.
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Namely, a holomorphic quadratic differential defines a flat metric. A one-
parameter family of maps which in the flat coordinates are defined by diagonal
matrices

gt =
(

et 0
0 e−t

)

is a one-parameter family of extremal maps, so it forms a Teichmüller geodesic.
According to the definition above we have

dist(S0, gtS0) = t.

Remark. Note that the Teichmüller metric is not a Riemannian metric but
a Finsler metric: it does not correspond to a quadratic form in the tangent
space, but just to a norm which depends continuously on the point of the
space of complex structures.

It is known that the space of complex structures on a surface of genus
g ≥ 2 has complex dimension 3g − 3. We have seen, that the space of pairs
(complex structure, holomorphic quadratic differential) can be identified with
a tangent space to the space of complex structures, in particular, it has com-
plex dimension 6g−6. Taking into consideration the functorial behavior of the
space of pairs (complex structure, holomorphic quadratic differential) one can
check, that it should be identified with a total space of a cotangent bundle.

9 Hope for a Magic Wand and Recent Results

This section is devoted to one of the most challenging problems in the theory
of flat surfaces: to the problem of complete classification of the closures of
all orbits of GL+(2, R) on the moduli spaces of Abelian (and quadratic) dif-
ferentials. This problem was very recently solved for genus two in the works
of K. Calta and of C. McMullen; we give a short survey of their results in
Sec. 9.7 and 9.8.

9.1 Complex Geodesics

In this section we are following the geometric approach of C. McMullen de-
veloped in [McM2] and [McM3].

Fix the genus g of the surfaces. We have seen in the previous section
that we can identify the space Q of pairs (complex structure, holomorphic
quadratic differential) with the total space of the (co)tangent bundle to the
moduli space M of complex structures. Space H of pairs (complex structure,
holomorphic quadratic differential) can be identified with a subspace in Q
of those quadratic differentials, which can be represented as global squares
of holomorphic 1-forms. This subspace forms a vector subbundle of special
directions in the (co)tangent space which we denote by the same symbol H.
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The “unit hyperboloid” H1 ⊂ H of holomorphic 1-forms corresponding to flat
surfaces of unit area can be considered as a subbundle of unit vectors in H.
It is invariant under the Teichmüller geodesic flow – the geodesic flow for the
Teichmüller metric.

One can check that an SL(2; R)-orbit in H1 descends to a commutative
diagram

SL(2; R) −−−−→ H1⏐⏐�
⏐⏐�

SL(2; R)/SO(2; R) � H
2 −−−−→ M,

(1)

which we interpret as
⎛
⎝ Unit tangent

bundle to
hyperbolic plane

⎞
⎠ −−−−→

⎛
⎝Unit tangent

subbundle to
moduli space

⎞
⎠

⏐⏐�
⏐⏐�(

Hyperbolic
plane

)
−−−−→

(
Moduli
space

)

Moreover, it can be checked that the map H
2 → M in this diagram is

an isometry with respect to the standard hyperbolic metric on H
2 and Te-

ichmüller metric on M. Thus, following C. McMullen it is natural to call the
projections of SL(2; R)-orbits to M (which coincide with the images of H

2)
complex geodesics. Another name for these projections is Teichmüller discs.

9.2 Geometric Counterparts of Ratner’s Theorem

Though it is proved that the moduli space of complex structures is not a
hyperbolic manifold (see [Ma1]) there is a strong hope that with respect to
SL(2, R)-action on H and on Q the moduli space behaves as if it is.

In this section we present several facts about group actions on homoge-
neous spaces and several related facts about geodesic submanifolds. We warn
the reader that our selection is not representative; it opens only a narrow slit
to the fascinating world of interactions of group actions, rigidity, hyperbolic
geometry, dynamics and number theory.

We start with an informal formulation of part of Ratner’s Theorem (see
much better exposition adopted to our subject in the survey of A. Eskin [E]).

A discrete subgroup Γ of a Lie group G is called a lattice if a homogeneous
space G/Γ has finite volume.

Theorem (M. Ratner). Let G be a connected Lie group and U a connected
subgroup generated by unipotent elements. Then, for any lattice Γ ⊂ G and
any x ∈ G/Γ the closure of the orbit Ux in G/Γ is an orbit of some closed
algebraic subgroup of G.
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We would like to point out why this theorem is so remarkably powerful.
Considering a dynamical system, even an ergodic one, it is possible to get a
lot of information about a generic (in measure-theoretical sense) trajectory.
However, usually there are plenty of trajectories having rather particular be-
havior. It is sufficient to consider geodesic flow on a surface with cusps to find
trajectories with closures producing fairly wild sets. Ratner’s theorem proves,
that the closure of any orbit of a unipotent group acting on a homogeneous
space is a nice homogeneous space.

Ratner’s theorem has numerous important relations with geometry of ho-
mogeneous spaces. As an illustration we have chosen a result of N. Shah [Sh]
and a generalization of his result for noncompact hyperbolic manifolds ob-
tained by T. Payne [Pa].

Theorem (N. Shah). In a compact manifold of constant negative curva-
ture, the closure of a totally geodesic, complete (immersed) submanifold of
dimension at least 2 is a totally geodesic immersed submanifold.

Theorem (T. Payne). Let f : M1 → M2 be a totally geodesic immersion
between locally symmetric spaces of noncompact type, with M2 of finite volume.
Then the closure of the image of f is an immersed submanifold. Moreover,
when M1 and M2 have the same rank, the closure of the image is a totally
geodesic submanifold.

9.3 Main Hope

Main Conjecture and its Possible Applications

If only the moduli space of complex structures M would be a homogeneous
space we would immediately apply the Theorem above to diagram (1) and
would solve considerable part of our problems. But it is not. Nevertheless,
there is a strong hope for an analogous Theorem.

Problem. Classify the closures of GL+(2, R)-orbits in Hg and in Qg. Classify

the orbit closures of the unipotent subgroup
(

1 t
0 1

)
t∈R

on Hg and on Qg.

The following Conjecture is one of the key conjectures in this area.

Conjecture. The closure C(S) of a GL+(2, R)-orbit of any flat surface S ∈ H
(or S ∈ Q) is a complex-algebraic suborbifold.

Remark. We do not discuss here the problems related with possible compact-
ifications of the moduli spaces Hg and Qg. A complex-analytic description
of a compactification of Qg can be found in the papers of J. Fay [Fay] and
H. Masur [Ma2].
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Recall that according to Theorem of M. Kontsevich (see Sec. 3.6) any
GL+(2, R)-invariant complex suborbifold in H is represented by an affine sub-
space in cohomological coordinates. Thus, if the Conjecture above is true, the
structure of orbit closures of the action of GL+(2, R) on H and on Q (and of
SL(2, R) on H1 and on Q1) would be as simple as in the case of homogeneous
spaces.

We have not discussed the aspects of Ratner’s Theorem concerning the
measures; it states more than we cited above. Actually, not only orbit clo-
sures have a nice form, but also invariant ergodic measures; namely, all such
measures are just the natural measures supported on orbits of closed sub-
groups. Trying to make a parallel with Ratner’s Theorem one should extend
the Conjecture above to invariant measures.

In the most optimistic hopes the study of an individual flat surface
S ∈ H(d1, . . . , dm) would look as follows. (Frankly speaking, here we slightly
exaggerate in our scenario, but after all we are describing the dreams.) To de-
scribe all geometric properties of a flat surface S we first find the orbit closure
C(S) = GL+(2, R)S ⊂ H(d1, . . . , dm) (our optimistic hope assumes that there
is an efficient way to do this). Then we consult a (conjectural) classification
list and find C(S) in some magic table which gives all information about C(S)
(like volume, description of cusps, Siegel–Veech constants, Lyapunov expo-
nents, adjacency to other invariant subspaces, etc). Using this information we
get answers to all possible questions which one can ask about the initial flat
surface S.

Billiards in rational polygons give an example of possible implementa-
tion of this optimistic scenario. Fixing angles of the polygon which defines
a billiard table we can change the lengths of its sides. We get a family B
of polygons which induces a family B̃ of flat surfaces obtained by Katok–
Zemlyakov construction (see Sec. 2.1). This family B̃ belongs to some fixed
stratum B̃ ⊂ H(d1, . . . , dm). However, it has a nontrivial codimension in the
stratum, so B̃ has measure zero and one cannot use ergodic theorem naively
to get any information about billiards in corresponding polygons. Having a
version of ergodic theorem which treats all orbits (like in Ratner’s Theorem)
presumably it would be possible to get a powerful tool for the study of rational
billiards.

Exercise. Consider the family B of billiard tables as on Fig. 37. Determine
the stratum H(d1, . . . , dm) to which belong the corresponding flat surfaces
and compute the codimension of the resulting family B̃ ⊂ H(d1, . . . , dm).

Content of Remaining Sections

The Conjecture above is trivial for genus one, since in this case the “Te-
ichmüller space of Riemann surfaces of genus one” coincides with an upper
half-plane, and the entire space coincides with a single Teichmüller disc (image
of H

2 in diagram (1)).
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Very recently C. McMullen proved the Conjecture in genus two [McM2],
[McM3], and this is a highly nontrivial result. We give a short report of rev-
olutionary results of K. Calta [Clt] and of C. McMullen [McM2]–[McM6] in
Sec. 9.7 below. However, their techniques, do not allow any straightforward
generalizations to higher genera: Riemann surfaces of genus two are rather
special, in particular, every such surface is hyperelliptic.

In the next two sections 9.4 and 9.5 we try to give an idea of what is known
about invariant submanifolds in higher genera (which is an easy task since,
unfortunately, little is known).

Having an invariant submanifold K ⊂ Hg (or K ⊂ Qg) in genus g one can
construct a new invariant submanifold K̃ ⊂ Hg̃ (correspondingly K̃ ⊂ Qg̃) in
higher genus g̃ > g replacing every S ∈ K by an appropriate ramified covering
S̃ over S of some fixed combinatorial type. We do not want to specify here
what does a “fixed combinatorial type” mean; what we claim is that having
an invariant manifold K there is some procedure which allows to construct a
whole bunch of new invariant submanifolds K̃ for higher genera g̃ > g.

In some cases all quadratic differentials in the invariant submanifold K̃
obtained by a ramified covering construction from some K ⊂ Qg might become
global squares of Abelian differentials. Hence, using special ramified coverings
one can construct GL+(2, R)-invariant submanifolds K̃ ⊂ Hg̃ from invariant
submanifolds K ⊂ Qg.

What is really interesting to understand is what invariant manifolds form
the “roots” of such constructions. Such invariant manifolds are often called
the primitive ones.

In the following two sections 9.4 and 9.5 we consider the two extremal
classes of primitive invariant submanifolds: the largest ones and the small-
est ones. Namely, in Sec. 9.4 we present a classification of connected com-
ponents of the strata H(d1, . . . , dm). It follows from ergodicity of SL(2, R)-
action on H1(d1, . . . , dm) that the orbit closure of almost any flat surface
in H(d1, . . . , dm) coincides with the embodying connected component of
H(d1, . . . , dm).

In section 9.5 we consider the smallest possible GL+(2, R)-invariant sub-
manifolds: those which correspond to closed orbits. Teichmüller discs obtained
as projections of such orbits to the moduli space M of complex structures form
the “closed complex geodesics” — Riemann surfaces with cusps.

9.4 Classification of Connected Components of the Strata

In order to formulate the classification theorem for connected components of
the strata H(d1, . . . , dm) we need to describe the classifying invariants. There
are two of them: spin structure and hyperellipticity. Both notions are applica-
ble only to part of the strata: flat surfaces from the strata H(2d1, . . . , 2dm)
have even or odd spin structure. The strata H(2g−2) and H(g−1, g−1) have
special hyperelliptic connected component.
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Spin Structure

Consider a flat surface S from a stratum H(2d1, . . . , 2dm). Let ρ : S1 → S
be a smooth closed path on S; here S1 is a standard circle. Note that at
any point of the surfaces S we know where is the “direction to the North”.
Hence, at any point ρ(t) = x ∈ S we can apply a compass and measure the
direction of the tangent vector ẋ. Moving along our path ρ(t) we make the
tangent vector turn in the compass. Thus we get a map G(ρ) : S1 → S1 from
the parameter circle to the circumference of the compass. This map is called
the Gauss map. We define the index ind(ρ) of the path ρ as a degree of the
corresponding Gauss map (or, in other words as the algebraic number of turns
of the tangent vector around the compass) taken modulo 2.

ind(ρ) = deg G(ρ) mod 2

It is easy to see that ind(ρ) does not depend on parameterization. More-
over, it does not change under small deformations of the path. Deforming
the path more drastically we may change its position with respect to conical
singularities of the flat metric. Say, the initial path might go on the left of Pk

and its deformation might pass on the right of Pk. This deformation changes
the deg G(ρ). However, if the cone angle at Pk is of the type 2π(2dk + 1),
then deg G(ρ) mod 2 does not change! This observation explains why ind(ρ)
is well-defined for a free homotopy class [ρ] when S ∈ H(2d1, . . . , 2dm) (and
hence, when all cone angles are odd multiples of 2π).

Consider a collection of closed smooth paths a1, b1, . . . , ag, bg representing
a symplectic basis of homology H1(S, Z/2Z). We define the parity of the spin-
structure of a flat surface S ∈ H(2d1, . . . , 2dm) as

φ(S) =
g∑

i=1

(ind(ai) + 1) (ind(bi) + 1) mod 2 (2)

Lemma. The value φ(S) does not depend on the choice of symplectic basis
of cycles {ai, bi}. It does not change under continuous deformations of S in
H(2d1, . . . , 2dm).

Lemma above shows that the parity of the spin structure is an invariant
of connected components of strata of those Abelian differentials, which have
zeroes of even degrees.

Exercise. Consider two flat surfaces presented at Fig. 44. They are obtained
by a surgery which attaches a handle to a flat surface obtained from a regular
octagon. Note, however, that the handles are attached in two different ways
(see the identifications of vertical sides). Check that both surfaces belong to
the same stratum H(4).

Consider a symplectic basis of cycles of the initial surface (corresponding
to the regular octagon) realized by paths which do not pass through the
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Fig. 44. Attaching a handle to the flat surface S0 ∈ H(2) in two different ways
we get two flat surfaces in H(4) with different parities of spin structure. Hence the
resulting flat surfaces live in different connected components of H(4)

conical singularity. Show that a symplectic basis of cycles for each of two new
surfaces can be obtained by completion of the initial basis with a pair of cycles
a, b representing the attached handle, where the cycle a is the waist curve of
the handle. Calculate ind(a) and ind(b) for each of two surfaces. Check that
ind(b) are different, and thus our two flat surfaces have different parities of
spin structure and hence belong to different connected components of H(4).

Spin structure: more serious reading. We have hidden under the carpet geom-
etry of the “spin structure” defining the “parity-of-the-spin-structure”. The
reader can find details in [KonZo] and in original papers of M.Atiyah [At],
J. Milnor [Mil], D.Mumford [Mum] and D. Johnson [J]. Recent paper of C. Mc-
Mullen [McM4] contains further applications of spin structures to flat surfaces.

Hyperellipticity

A flat surface S may have a symmetry; one specific family of such flat sur-
faces, which are “more symmetric than others” is of a special interest for
us. Recall that there is a one-to-one correspondence between flat surfaces
and pairs (Riemann surface M , holomorphic 1-form ω), see Sec. 3.3. When
the corresponding Riemann surface is hyperelliptic the hyperelliptic involution
τ : M → M acts on any holomorphic 1-form ω as τ∗ω = −ω.

We say that a flat surface S is a hyperelliptic flat surface if there is an
isometry τ : S → S such that τ is an involution, τ ◦ τ = id, and the quotient
surface S/τ is a topological sphere. In flat coordinates differential of such
involution obviously satisfies Dτ = − Id.

Exercise. Check that the flat surface S from Fig. 12 is hyperelliptic, and that
the central symmetry of the polygon induces the hyperelliptic involution of S.

In a general stratum H(d1, . . . , dm) hyperelliptic surfaces form a small
subspace of nontrivial codimension. However, there are two special strata,
namely H(2g − 2) and H(g − 1, g − 1), for which hyperelliptic surfaces form
entire hyperelliptic connected components Hhyp(2g−2) and Hhyp(g−1, g−1)
correspondingly.
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Note that in the stratum H(g−1, g−1) there are hyperelliptic flat surfaces
of two different types. A hyperelliptic involution τS → S may fix the conical
points or might interchange them. It is not difficult to show that for surfaces
from the connected component Hhyp(g − 1, g − 1) the hyperelliptic involution
interchanges the conical singularities.

The remaining family of those hyperelliptic flat surfaces in H(g−1, g−1),
for which the hyperelliptic involution keeps the saddle points fixed, forms a
subspace of nontrivial codimension in the complement H(g−1, g−1)−Hhyp(g−
1, g−1). Thus, the hyperelliptic connected component Hhyp(g−1, g−1) does
not coincide with the space of all hyperelliptic flat surfaces.

Classification Theorem for Abelian Differentials

Now, having introduced the classifying invariants we can present the classifi-
cation of connected components of strata of Abelian differentials.

Theorem (M. Kontsevich and A. Zorich). All connected components of
any stratum of Abelian differentials on a curve of genus g ≥ 4 are described
by the following list:

The stratum H(2g − 2) has three connected components: the hyperelliptic
one, Hhyp(2g − 2), and two nonhyperelliptic components: Heven(2g − 2) and
Hodd(2g − 2) corresponding to even and odd spin structures.

The stratum H(2d, 2d), d ≥ 2 has three connected components: the hyperel-
liptic one, Hhyp(2d, 2d), and two nonhyperelliptic components: Heven(2d, 2d)
and Hodd(2d, 2d).

All the other strata of the form H(2d1, . . . , 2dm) have two connected com-
ponents: Heven(2d1, . . . , 2dm) and Hodd(2d1, . . . , 2dn), corresponding to even
and odd spin structures.

The stratum H(2d− 1, 2d− 1), d ≥ 2, has two connected components; one
of them: Hhyp(2d−1, 2d−1) is hyperelliptic; the other Hnonhyp(2d−1, 2d−1)
is not.

All the other strata of Abelian differentials on the curves of genera g ≥ 4
are nonempty and connected.

In the case of small genera 1 ≤ g ≤ 3 some components are missing in
comparison with the general case.

Theorem. The moduli space of Abelian differentials on a curve of genus g = 2
contains two strata: H(1, 1) and H(2). Each of them is connected and coincides
with its hyperelliptic component.

Each of the strata H(2, 2), H(4) of the moduli space of Abelian differentials
on a curve of genus g = 3 has two connected components: the hyperelliptic one,
and one having odd spin structure. The other strata are connected for genus
g = 3.

Since there is a one-to-one correspondence between connected components
of the strata and extended Rauzy classes (see Sec. 5.6 and paper [Y] in this
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collection) the Classification Theorem above classifies also the extended Rauzy
classes.

Classification Theorem for Quadratic Differentials

Note that for any partition d1 + · · · + dm = 2g − 2 of a positive even integer
2g − 2 the stratum H(d1, . . . , dm) of Abelian differentials is nonempty. For
meromorphic quadratic differentials with at most simple poles there are four
empty strata! Namely,

Theorem (H. Masur and J. Smillie). Consider a partition of the number
4g − 4, where g ≥ 0 into integers d1 + · · · + dm with all dj ∈ N ∪ {−1}.
The corresponding stratum Q(d1, . . . , dm) is non-empty with the following four
exceptions:

Q(∅),Q(1,−1) (in genus g = 1) and Q(4),Q(1, 3) (in genus g = 2)

Classification of connected components of the strata of meromorphic
quadratic differentials with at most simple poles was recently obtained by
E. Lanneau [Lan].

Theorem (E. Lanneau). Four exceptional strata Q(−1, 9), Q(−1, 3, 6),
Q(−1, 3, 3, 3) and Q(12) of meromorphic quadratic differentials contain ex-
actly two connected components; none of them hyperelliptic.

Three series of strata

Q(2(g − k) − 3, 2(g − k) − 3, 2k + 1, 2k + 1) k ≥ −1, g ≥ 1, g − k ≥ 2
Q(2(g − k) − 3, 2(g − k) − 3, 4k + 2) k ≥ 0, g ≥ 1 and g − k ≥ 1
Q(4(g − k) − 6, 4k + 2) k ≥ 0, g ≥ 2 and g − k ≥ 2

contain hyperelliptic connected components. The strata from these series in
genera g ≥ 3 and the strata Q(−1,−1, 3, 3), Q(−1,−1, 6) in genus g = 2
contain exactly two connected components; one of them – hyperelliptic, the
other one – not.

The remaining strata from these series, namely, Q(1, 1, 1, 1), Q(1, 1, 2),
Q(2, 2) in genus g = 2 and Q(1, 1,−1,−1), Q(−1,−1, 2) in genus g = 1 co-
incide with their hyperelliptic connected component. All other strata of mero-
morphic quadratic differentials with at most simple poles are connected.

Recall that having a meromorphic quadratic differential with at most sim-
ple poles one can associate to it a surface with a flat metric which is slightly
more general that our usual very flat metric (see Sec. 8.1 for a discussion of
half-translation structures).

It is easy to verify whether a half-translation surface belongs to a hyper-
elliptic component or not. However, currently there is no simple and efficient
way to distinguish half-translation surfaces from the four exceptional compo-
nents.
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Problem. Find an invariant of the half-translation structure which would
be easy to evaluate and which would distinguish half-translation surfaces
from different connected components of the four exceptional strata Q(−1, 9),
Q(−1, 3, 6), Q(−1, 3, 3, 3) and Q(12).

Currently there are two ways to determine to which of the two connected
components of an exceptional stratum belongs a flat surface S.

The first approach suggests to find a “generalized permutation” for an
analog of the first return map of the vertical flow to a horizontal segment
and then to find it in one of the two extended Rauzy classes (see Sec. 5.6)
corresponding to two connected components. Note, however, that already for
the stratum Q(−1, 9) the corresponding Rauzy classes contain 97 544, and
12 978 generalized permutations; the Rauzy classes for the components of
Q(12) contain already 894 117 and 150 457 elements.

In the second approach one studies configurations of saddle connections
(see Sec. 6.4) on the surface S and tries to find a configuration which is forbid-
den for one of the two connected components of the corresponding stratum.

For example, for surfaces from one of the two connected components of
Q(−1, 9) as soon as we have a saddle connection joining the simple pole with
the zero we necessarily have a closed geodesic going in the same direction.
Thus, if we manage to find on a surface S ∈ Q(−1, 9) a saddle connection
which is not accompanied by a parallel closed geodesic, S belong to the other
connected component of Q(−1, 9).

9.5 Veech Surfaces

For almost every flat surface S in any stratum H1(d1, . . . , dm) the orbit
SL(2, R) · S is dense in the stratum and for any g1 �= g2 ∈ SL(2, R) we
have g1S �= g2S. However, some flat surfaces have extra symmetries. When a
flat surface S0 has an affine automorphism, i.e. when for some g0 ∈ SL(2, R)
we get g0S = S the orbit of S0 is smaller than usual.

The stabilizer Stab(S) ∈ SL(2; R), that is a subgroup of those g ∈ SL(2, R)
for which gS = S, is called the Veech group of the flat surface S and is
denoted SL(S). In representation of the flat surface S in terms of a pair
(Riemann surface X, holomorphic 1-form ω on it) the Veech group is denoted
as SL(X,ω) following the notation of C. McMullen [McM2].

Some exceptional flat surfaces S possess very large group of symmetry
and their orbits are very small. The flat surfaces having the largest possible
symmetry group are called Veech surfaces. More precisely, a flat surface is
called a Veech surface if its Veech group SL(S) is a lattice in SL(2, R) (that
is the quotient SL(2, R)/SL(S) has finite volume).

Theorem (J. Smillie). An SL(2, R)-orbit of a flat surface S is closed in
H1(d1, . . . , dm) if and only if S is a Veech surface.
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Forgetting polarization (direction to the “North”) of a flat surface we get
a Teichmüller disc of S (see (1) and the comments below it)

\SL(2, R)/
SO(2, R) SL(S) = H/

SL(S)

A flat surface S is a Veech surface if its Teichmüller disc H
2/SL(S) has

finite volume. However, even for a Veech surface the Teichmüller disc is never
compact: it necessarily contains at least one cusp. The Teichmüller discs of
Veech surfaces can be considered as closed complex geodesics (see discussion
at the end of Sec. 9.1).

Consider an elementary example. As a flat surface take a flat torus ob-

tained from a unit square. Fig. 45 shows why the element g+ =
(

1 1
0 1

)
∈

SL(2, Z) belongs to a stabilizer of S.

a

a

b b
c

a

a

b b
c

a

a

c c
b=

Fig. 45. This linear transformation belongs to the Veech group of T
2

Similarly the element g− =
(

1 0
1 1

)
∈ SL(2, R) also belongs to the Veech

group SL(T2) of T
2. Since the group SL(2, Z) is generated by g+ and g−

we conclude that SL(2, Z) ⊂ SL(T2). It is easy to check that, actually,
SL(2, Z) = SL(T2). As the Teichmüller disc of T

2 we get the modular curve
H

2/SL(2, Z) (see Fig. 13) which, actually, coincides with the moduli space of
complex structures on the torus.

(
0 1
−1 0

) (
1 1
0 1

)

Fig. 46. There are three 3-square-tiled surfaces in H(2). Our picture shows that
they all belong to the same SL(2; Z)-orbit
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Consider a slightly more complicated example.

Exercise. Verify that square-tiled surfaces presented at Fig. 46 belong to the
stratum H(2). Show that there are no other 3-square-tiled surfaces. Verify
that the linear transformations indicated at Fig. 46 act as it is described on
the Figure; check that the surfaces belong to the same SL(2, R)-orbit. Find
Veech groups of these three surfaces. Show that these flat surfaces are Veech
surfaces. Verify that the corresponding Teichmüller disc is a triple cover over
the modular curve (see Fig. 47).

Fig. 47. Teichmüller discs of a 3-square-tiled surface is a triple cover over the
modular curve

Primitive Veech Surfaces

It is not difficult to generalize the Exercise above and to show that any square-
tiled surface (see Sec. 7.1) is necessarily a Veech surface.

A square-tiled surface is a ramified covering over a flat torus, such that
all ramification points project to the same point on the flat torus, which is a
Veech surface. One can generalize this observation. Having a Veech surface S
one can construct a ramified covering S̃ → S such that all ramification points
on S̃ project to conical singularities on S. One can check that any such S̃ is a
Veech surface. Thus, having a Veech surface we can construct a whole bunch
of Veech surfaces in higher genera.

Veech surfaces which cannot be obtained from simpler Veech surfaces by
the covering construction are called primitive. For a long time (and till recent
revolution in genus two, see Sec. 9.7, the list of known primitive Veech surfaces
was very short. Very recently C. McMullen has found infinitely many Veech
surfaces in genera 3 and 4 as well, see [McM7]. All other known primitive Veech
surfaces of genus g > 2 can be obtained by Katok–Zemlyakov construction
(see Sec. 2.1) from triangular billiards of the first three types in the list below:
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(
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,
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n − 1
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π

)
, for n ≥ 6 (discovered by W. Veech)

(
π
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,

π

n
,

n − 2
n

π

)
, for n ≥ 7 (discovered by W. Veech)

(
π
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,

π

2n
,

2n − 3
2n

π

)
, for n ≥ 4 (discovered by Ya. Vorobets)

(
π

3
,

π

4
,

5π

12

)
(discovered by W. Veech))

(
π

3
,

π

5
,

7π

15

)
(discovered by Ya. Vorobets)

(
2π

9
,

3π

9
,

4π

9

)
(discovered by R. Kenyon

and J. Smillie)(
π

3
,

π

12
,

7π

12

)
(discovered by W. P. Hooper)

— The flat surface corresponding to the isosceles triangle with the an-
gles π/n, (n−1)π/(2n), (n−1)π/(2n) belongs to the hyperelliptic component
Hhyp(2g−2) when n = 2g and to the hyperelliptic component Hhyp(g−1, g−1)
when n = 2g + 1. The surface can be unwrapped to the regular 2n-gon with
opposite sides identified by parallel translations, see Fig. 21.

— The flat surface corresponding to the isosceles triangle with the angles
π/n, π/n, (n− 2)π/(2n) belongs to the hyperelliptic component Hhyp(2g − 2)
when n = 2g + 1 and to the hyperelliptic component Hhyp(g − 1, g − 1) when
n = 2g + 2. The surface can be unwrapped to a pair of regular n-gons glued
by one side. Each side of one polygon is identified by a parallel translation
with the corresponding side of the other polygon, see Fig. 7.

— The flat surface corresponding to the obtuse triangle with the angles
π/n, π/(2n), (2n−3)π/(2n) belongs to one of two nonhyperelliptic components
of the stratum H(2g − 2) where n = g + 1.

— The flat surface corresponding to the acute triangle π/3, π/4, 5π/12
belongs to the nonhyperelliptic component Hodd(4); here g = 3.

— The flat surface corresponding to the acute triangle π/3, π/5, 7π/15
belongs to the nonhyperelliptic component Heven(6); here g = 4.

— The flat surface corresponding to the acute triangle 2π/9, 3π/9, 4π/9
belongs to the stratum H(3, 1); here g = 3.

— The flat surface corresponding to the obtuse triangle π/3, π/12, 7π/12
belongs to the stratum H(6); here g = 4 (the information that this is a Veech
surface is taken from [McM7]).

The details on unwrapping of these surfaces and on cylinder decomposi-
tions of some of them can be found in the paper of Ya. Vorobets [Vb1].
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It is proved that unwrapping triangular billiards in other acute, rectan-
gular or isosceles triangles does not give new Veech surfaces in genera g > 2
(see [KenS], [Pu], [Vb1] and further references in these papers). For obtuse
triangles the question is open.

We discuss genus g = 2 separately in the next section: very recently
K. Calta [Clt] and C. McMullen [McM2] have found a countable family of
primitive Veech surfaces in the stratum H(2) and proved that the list is com-
plete. However, even in genus g = 2 the situation with the stratum H(1, 1) is
drastically different: using the results of M. Moeller [Mo1]–[Mo3] very recently
C. McMullen has proved [McM6] the following result.

Theorem (C. McMullen). The only primitive Veech surface in the stra-
tum H(1, 1) is the surface represented by the regular decagon with identified
opposite sides.

Thus, it is not clear, what one should expect as a solution of the following
general problem.

Problem. Find all primitive Veech surfaces.

An algebro-geometric approach to Veech surfaces suggested by M. Möller
in [Mo1] and [Mo2] might help to shed some light on this Problem.
Veech surfaces: more serious reading. I recommend the survey paper [HuSdt5]
of P. Hubert and T. Schmidt as an introduction to Veech surfaces. A canonical
reference for square-tiled surfaces (also called arithmetic Veech surfaces) is the
paper of E. Gutkin and C. Judge [GuJg]. More information about Veech sur-
faces can be found in the pioneering paper of W. Veech [Ve7] and in the paper
of Ya. Vorobets [Vb1]. For the most recent results concerning Veech groups
and geometry of the Teichmüller discs see the original papers of P. Hubert and
T. Schmidt [HuSdt1], [HuSdt2], [HuSdt3], [HuSdt4], of C. McMullen [McM1],
[McM7] and of P. Hubert and S. Lelièvre [HuLe1], [HuLe2].

9.6 Kernel Foliation

In this section we describe some natural holomorphic foliation on the moduli
space of Abelian differentials. In higher genera little is known about this foli-
ation (though it seems to be worth of study). We use this foliation in the next
section to describe GL(2, R)-invariant submanifolds of “intermediate type”
discovered by K. Calta and by C. McMullen in genus two.

We have seen that any stratum H(d1, . . . , dm) can be locally parameterized
by a collection of basic relative periods of the holomorphic one-form ω, or, in
other words, that a neighborhood U([ω]) ⊂ H1(S; {P1, . . . , Pm}; C) gives a
local chart in H(d1, . . . , dm).

Let S ∈ H(1, 1). Let closed paths a1, a2, b1, b2 represent a basis of cycles
in H1(S; Z). Any path c joining conical singularities P1 and P2 represents a
relative cycle in H1(S, {P1, P2}; Z). Let A1, A2, B1, B2, C ∈ C be the periods
of ω: the integrals of ω over a1, a2, b1, b2, c correspondingly.
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h1 h2

h3

w1 w2

a1

b1 a2

b2

Fig. 48. A deformation of a flat surface inside the kernel foliation keeps the absolute
periods unchanged

Example. The collection of cycles ai, bi, i = 1, 2, on the surfaces from Fig. 48
represent a basis of cycles in H1(S; Z). All horizontal geodesics on these sur-
faces are closed; each surface can be decomposed into three cylinders filled
with horizontal geodesics. Let w1, w2, w3 = w1 + w2 be the widths (perime-
ters) of these cylinders; h1, h2, h3 be their heights; t1, t2, t3 their twists, see
Fig. 39. It is easy to check that

A1 =
∫

a1

ω = −w1 B1 =
∫

b1

ω = (t1 − t2) +
√−1(h2 − h1)

A2 =
∫

a2

ω = −(w1 + w2) B2 =
∫

b2

ω = (t2 + t3) −
√−1(h2 + h3)

The kernel foliation in H(1, 1) is the foliation defined in local coordinates by
equations {

A1 = const11

A2 = const21

{
B1 = const12

B2 = const22

In other words, this is a foliation which is obtained by fixing all absolute peri-
ods and changing the relative period C =

∫ P2

P1
ω. Similarly, the kernel foliation

in arbitrary stratum H(d1, . . . , dm) is a foliation which in cohomological coor-
dinates is represented by parallel complex (m−1)-dimensional affine subspaces
obtained by changing all relative periods while fixing the absolute ones.

Passing to a finite cover over H(d1, . . . , dm) we can assume that all zeroes
P1, . . . , Pm are named (i.e. having two zeroes Pj , Pk of same degrees, we know
exactly which of the two is Pj and which is Pk). Now we can fix an arbitrary
subcollection of zeroes and define a kernel “subfoliation” along relative periods
corresponding to chosen subcollection.

Recall that the area of a flat surface is expressed in terms of the absolute
periods (see Riemann bilinear relation in Table 1 in Sec. 3.3). Thus, moving
along leaves of kernel foliation we do not change the area of the surface. In
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particular, we can consider the kernel foliation as a foliation of the “unit
hyperboloid” H1(d1, . . . , dm).

Exercises on Kernel Foliation

Exercise. To deform the flat surface on the left of Fig. 48 along the kernel
foliation we have to keep all A1, A2, B1, B2 unchanged. Hence, we cannot
change the widths (perimeters) of the cylinders, since they are expressed in
terms of A1 and A2. Increasing the height of the second cylinder by ε we
have to increase the height of the first cylinder by the same amount ε to
keep B1 = (t1 − t2) +

√−1 ((h2 + ε) − (h1 + ε)) unchanged; we also have to
decrease the height h3 of the third cylinder by ε to preserve the value of B2.
Similarly, increasing the twist t1 by δ we have to increase the twist t2 by the
same amount δ and to decrease t3 by δ.

Exercise. It is convenient to consider the kernel foliation in the total moduli
space Hg of all holomorphic 1-forms without subdivision of Hg into strata
H(d1, . . . , dm), where

∑
j dj = 2g − 2. In particular, to deform a surface S ∈

H(2) ⊂ H2 along the kernel foliation we have to break the double zero into
two simple zeroes preserving the absolute periods. The corresponding surgery
is presented at Fig. 31.

The leaves of the kernel foliation are naturally endowed with a flat struc-
ture, which has conical singularities at the points of intersection of the leaf
with the smaller strata and with degenerate strata.

Assuming that the zeroes P1, P2 of a surface S ∈ H(1, 1) are named show
that the intersection of the kernel foliation with the stratum H(2) corresponds
to a conical point with the cone angle 6π, while the intersections with the two
strata of degenerate flat surfaces (determine which ones) are just the regular
points of the flat structure.

In the exercise below we use a polygonal representation of a flat surface
(compare to Fig. 8 in the paper [Clt] of K. Calta).

Exercise. Consider a regular decagon. Imagine that there are springs inside
its sides so that we can shrink or expand the sides keeping them straight
segments. Imagine that we hammer a nail in the center of each side. Though
the centers of the sides are now fixed our decagon is still flexible: we can pull a
vertex and the whole frame will follow, see Fig. 49b. We assume that under any
such deformation each nail stays exactly in the middle of the corresponding
side.

Prove that the deformed polygon is again centrally symmetric with the
same center of symmetry. Prove that the opposite sides of the deformed poly-
gon are parallel and have equal length. Prove that the resulting flat surface
lives in the same leaf of the kernel foliation. Show that the “nails” (the cen-
ters of the sides) and the center of symmetry are the Weierstrass points of the
corresponding Riemann surface (fixed points of the hyperelliptic involution).
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a b

c d

e f

Fig. 49. This cartoon movie represents a path living inside a leaf of the kernel
foliation. When at the stage c it lands to a surface from the stratum H(2) we
remove the nails from one pair of vertices and hammer them in the other symmetric
pair of vertices (stage d). Then we continue the trip inside the kernel foliation

Move a vertex towards the center of the side which this vertex bounds.
The side becomes short (see the upper side on Fig. 49b) and finally contracts
to a point (Fig. 49c). What flat surface do we get?

Show that the deformation presented at Fig. 49c brings us to a surface
S0 in the stratum H(2). Remove the pair of clues, which is hammered at the
vertices of the resulting octagon. Hammer them to another pair of symmetric
vertices (see Fig. 49d). We can declare that we have a new centrally-symmetric
decagon with a pair of sides of zero lengths. Stretching this pair of sides and
making them have positive length (see Fig. 49e) we continue our trip inside
the kernel foliation. Show that for a given small value v ∈ C of the saddle
connection joining two conical singularities, there are exactly three different
surfaces obtained as a small deformation of the surface S0 ∈ H(2) as on
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Fig. 49c along the leaf of the kernel foliation and having a saddle connection
v. (Use previous Exercise and Fig. 31.)

Following our path in the kernel foliation we get to the surface S1 as
on Fig. 49f. Is this surface singular? To what stratum (singular stratum) it
belongs?

Compact Leaves of the Kernel Foliation

Let us show that the leaf K of the kernel foliation passing through a square-
tiled surface S(ω0) of genus two is a compact square-tiled surface. To simplify
notations suppose that the absolute periods of the holomorphic 1-form ω0,
representing the flat surface S(ω0), generate the entire integer lattice Z +√−1 Z.

Consider the “relative period” map p : K → T
2 from the corresponding leaf

K of the kernel foliation containing S(ω0) to the torus. The map p associates
to a flat surface S(ω) ∈ K the relative period C taken modulo integers,

K � S(ω)
p�→ C =

∫ P2

P1

ω mod Z +
√−1 Z ∈ C/(Z +

√−1 Z) = T
2

Since the flat surface S(ω) belongs to the same leaf K as the square-tiled
surface S(ω0) ∈ K, the absolute periods of ω are the same as the ones of
ω0, and hence the integral above taken modulo integers does not depend on
the path on S(ω) joining P1 and P2. It is easy to check that the map p is a
finite ramified covering over the torus T

2, and thus the leaf K is a square-tiled
surface.

Those flat surfaces S(ω) ∈ K, which have integer relative period C ∈
Z +

√−1 Z, have all periods in Z +
√−1 Z. Hence, these flat surfaces are

square-tiled. Since S(ω) and S(ω0) have the same area, the number N of
squares tiling S(ω) and S(ω0) is the same. Thus, K has a structure of a
square-tiled surface such that the vertices of the tiling are represented by
N -square-tiled surfaces S(ω) ∈ K.

To discuss the geometry of K we need to agree about enumeration of zeroes
P1, P2 of a surface S ∈ H(1, 1). We choose the convention where the zeroes
are named. That is, given two zeroes of order 1 we know which of them is P1

and which of them is P2. Under this convention the square-tiled surface K is
a translation surface; it is represented by a holomorphic one-form. (Accepting
the other convention we would obtain the quotient of K over the natural
involution exchanging the names of the zeroes. In this latter case the zeroes
of S ∈ H(1, 1) are not distinguishable; the leaf of the kernel foliation gives a
flat surface represented by a quadratic differential.)

The lattice points of the square-tiled surface K are represented by N -
square-tiled surfaces S ∈ K of several types. We have the lattice points repre-
sented by N -square tiled surfaces from H(1, 1). These points are the regular
points of the flat metric on K.
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There are points of intersection of K with H(2). Such point S(ω) ∈ K∩H(2)
is always represented by a square-tiled surface, and hence gives a vertex of
the tiling of K. We have seen (see Fig. 31) that given a surface S(ω) ∈ H(2)
and a small complex period C one can construct three different flat surfaces
S(ω1), S(ω2), S(ω3) ∈ H(1, 1) with the same absolute periods as ω and with
the relative period C. Thus, the points S(ω) ∈ K∩H(2) correspond to conical
points of K with the cone angles 3 · 2π when the zeroes are named (and with
the cone angle 3π, when they are not named). The total number of such points
was computed in the paper of A. Eskin, H. Masur and M. Schmol [EMaScm];
it equals

number of conical points on K =
3
8

(N − 2)N2
∏
p |N

(
1 − 1

p2

)
(3)

There remain vertices of the tiling of K represented by degenerate square-
tiled surfaces S(ω). It is not difficult to show that these points are regular
for the flat metric on K(ω) when the zeroes are named. (They correspond to
conical singularities with the cone angle π, when the zeroes are not named).
The degenerate N -square-tiled surfaces S(ω) are of two types. It might be an
N -square-tiled torus with two points of the tiling identified. It might be a pair
of square-tiled tori with a vertex of the tiling on one torus identified with a
vertex of the tiling on the other torus. Here the total number of squares used
to tile these two tori is N . The total number of the vertices of the tiling of K
of this type is computed in the paper [Schl1]; it equals

number of special points on K =
1
24

(5N + 6)N2
∏
p |N

(
1 − 1

p2

)

Summarizing we conclude that the translation surface K lives in the stra-
tum H(2, . . . , 2︸ ︷︷ ︸

k

), where the number k of conical points is given by formula (3).

We complete this section with an interpretation of a compact leaf K
as a space of torus coverings; this interpretation was introduced by A. Es-
kin, H. Masur and M. Schmol in [EMaScm] and developed by M. Schmoll
in [Schl1], [Schl2].

We have seen that a nondegenerate flat surface S(ω0) ∈ H(1, 1) repre-
senting a vertex of the square tiling of K is an N -square-tiled surface. Hence,
S(ω) is a ramified covering over the standard torus T

2 of degree N having two
simple ramification points, which project to the same point of the torus. A
non vertex point S(ω) ∈ K is also a ramified covering over the standard torus
T

2. To see this consider once more the period map, but this time applied to
S(ω):

S(ω) � P
proj�→

∫ P

P1

ω mod Z +
√−1 Z ∈ C/(Z +

√−1 Z) = T
2.
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Since all absolute periods of ω live in Z +
√−1 Z the integral taken modulo

integers does not depend on the path joining the marked point (conical singu-
larity) P1 with a point P of the flat surface S(ω). The map proj is a ramified
covering.

The degree of the covering can be computed as the ratio of areas of S(ω)
and of the torus T

2, which gives N . The covering has precisely two simple
ramification points, which are the conical points P1, P2 of S(ω). This time
they project to two different points of the torus.

Recall that by convention we assume that the absolute periods of ω gen-
erate the entire lattice Z +

√−1 Z. They corresponds to primitive covers: the
ones which do not quotient through a larger torus.

Proposition (M. Schmoll). Consider primitive branched covers over the
standard torus T

2. Fix the degree N of the cover. Let the cover have exactly
two simple branch points.

The space of such covers is connected; its natural compactification coin-
cides with the corresponding leaf K of the kernel foliation. The Veech group
of the square-tiled surface K coincides with SL(2, Z).

Connectedness of the space of covers is not quite obvious (actually, it was
proved earlier in other terms by W. Fulton [Ful]). An observation above shows,
that the leaf K coincides with a connected component of the space of covers.
Thus, connectedness of the space of covers implies that this space coincides
with K. The group SL(2, Z) acts naturally on the space of covers; in particular
it maps the space of covers to itself. This implies that SL(2, Z) belongs to the
Veech group of the square-tiled surface K. It is easy to show, that it actually
coincides with SL(2, Z).

Corollary (M. Schmoll). Consider square-tiled surfaces S(ω) of genus two
such that the absolute periods of ω span the entire integer lattice Z +

√−1 Z.
For any given N > 3 all such N -square tiled surfaces belong to the same
compact connected leaf K(N) of the kernel foliation.

For more information on kernel foliation of square-tiled surfaces in genus
two see the papers of A. Eskin, H. Masur and M. Schmol [EMaScm] and of
M. Schmoll [Schl1], [Schl2]. In particular, the latter papers propose a beautiful
formula for Siegel–Veech constants of any flat surface S ∈ K(N) in terms of
geometry of the cylinder decomposition of the square-tiled surface K(N).

9.7 Revolution in Genus Two (after K. Calta and C. McMullen)

In this section we give an informal survey of recent revolutionary results in
genus g = 2 due to K. Calta [Clt] and to C. McMullen [McM2].

Using different methods they found a countable collection of primitive
Veech surfaces in the stratum H(2), proved that this collection describes
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all Veech surfaces, and gave efficient algorithms which recognize and classify
Veech surfaces in H(2).

This result is in a sharp contrast with the Theorem of C. McMullen [McM6]
cited above, which tells that in the other stratum H(1, 1) in genus g = 2 there
is only one primitive Veech surface.

This discovery of an infinite family of primitive Veech surfaces in the stra-
tum H(2) is also in a sharp contrast with our poor knowledge of primitive
Veech surfaces in higher genera: as we have seen in the previous section,
primitive Veech surfaces in higher genera g ≥ 3 are currently known only in
some special strata (mostly hyperelliptic), and even in these special strata we
know only finite number of primitive Veech surfaces (basically, only one).

Another remarkable result is a discovery by K. Calta and by C. McMullen
of nontrivial examples of invariant submanifolds of intermediate dimension:
larger than closed orbits and smaller than the entire stratum.

One more revolutionary result in genus two is a Classification Theorem
due to C. McMullen [McM3] which proves that a closure of any GL+(2, R)-
orbit is a nice complex-analytic variety which is either an entire stratum, or
which has one of the types mentioned above.

Algebro-geometric Approach To avoid overloading of this survey I had to sacri-
fice beautiful algebro-geometric part of this story developed by C. McMullen;
the reader is addressed to original papers [McM2]–[McM6] and to a short
overview presented in [HuSdt5].

Periods of Veech Surfaces in Genus g = 2

If S is a Veech surface then the flat surface gS is also a Veech surface for any
g ∈ GL+(2, R). Thus, speaking about a finite or about a countable collection
of Veech surfaces we, actually, choose some family of representatives {Sk} of
the orbits GL+(2, R) · S of Veech surfaces.

The question, which elements of our collection {Sk} belong to the same
GL+(2, R)-orbit and which ones belong to different orbits is a matter of a
separate nontrivial study. A solution was found by C. McMullen in [McM4];
it is briefly presented in the next Sec. 9.8. In this section we present effective
algorithm due to K. Calta and to C. McMullen which enables to determine
whether a given flat surface in H(2) is a Veech surface.

Following K. Calta we say that a flat surface S can be rescaled to a flat
surface S′ if S and S′ belong to the same GL+(2, R)-orbit. We say that a flat
surface S is quadratic if for any homology cycle c ∈ H1(S; Z) we have

∫
c

ω = (p + q
√

d) + i(r + s
√

d), where d ∈ N, p, q, r, s ∈ Q

In other words, we say that a flat surface S defined by a holomorphic 1-form
ω is quadratic if all periods of ω live in Q(

√
d) + iQ(

√
d).

We can considerably restrict the area of our search using the following
Lemma of W. Thurston.
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Lemma (W. Thurston). Any Veech surface in genus g = 2 (no matter
primitive or not, in the stratum H(2) or H(1, 1)) can be rescaled to a quadratic
surface.

Using this Lemma K. Calta suggest the following algorithm deciding
whether a given flat surface S ∈ H(2) is a Veech surface or not.

Algorithm of Calta

Recall, that if S is a Veech surface (of arbitrary genus), then by Veech alter-
native (see Sec. 3.7) a directional flow in any direction is either minimal or
completely periodic, that is a presence of a closed geodesic going in some direc-
tion implies that all geodesics going in this direction are periodic. Moreover, it
was proved by Veech that as soon as there a saddle connection going in some
direction, this direction is also completely periodic. In both cases the surface
decomposes into a finite collection of cylinders; each boundary component of
each cylinder contains a conical singularity (see Sec. 7.1).

The algorithm works as follows. Having a flat surface S ∈ H(2) it is easy to
find some closed geodesic on S (which is allowed to be a closed geodesic saddle
connection). Since “rescaling” the surface S (i.e. applying a linear transfor-
mation from GL+(2, R)) we replace a Veech surface by a Veech surface, we
can turn S in such way that the direction of the closed geodesic will become
horizontal. We denote the resulting surface by the same symbol S.

Since S lives in H(2) it has a single conical point P with the cone angle
6π. In particular, there are exactly three geodesics leaving the conical point
in the positive horizontal direction (to the East). If at least one of these three
horizontal geodesics does not come back to P the surface S is not a Veech
surface. Otherwise our test continues.

As we have seen in Sec. 7.1 there are two possible ways in which three
horizontal geodesics emitted from P to the East can return to P . Either
all three geodesics return at the angle 3π, or one of them returns at the
angle 3π and two others return at the angle π, see Fig. 41. In both cases all
horizontal geodesics are closed. In the first case the surface decomposes into
a single cylinder; in the second case the surface is glued from two cylinders,
see Sec. 7.1.

If the surface is decomposed into a single cylinder, it is sufficient to compare
the lengths p1, p2, p3 of three horizontal saddle connections, see Fig. 41. The
flat surface S is a Veech surface if and only if p1, p2, p3 are commensurable.
Moreover, if p1, p2, p3 are commensurable, we can rescale S to a square-tiled
surface. It can be done in several elementary steps. First we rescale S in
the horizontal direction making p1, p2, p3 rational and then integer. Then we
rescale S in the vertical direction making the height h of the cylinder integer.

Finally, we apply an appropriate parabolic linear transformation
(

1 s
0 1

)
. It

does not change neither p1, p2, p3 nor h, but when s ∈ R varies the twist t
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also varies continuously (see Fig. 39) taking all values in R; in particular, we
can achieve t = 0. We get a square-tiled surface.

Consider the second case, when the surface decomposes into two cylinders.
Let w1, w2, h1, h2, t1, t2 be the widths (perimeters), heights and twists of this
cylinders correspondingly (compare to Sec. 7.1). In a complete analogy with
the one-cylinder case we can rescale the surface horizontally, then vertically,
and finally apply an appropriate parabolic linear transformation in order to
make the width (perimeter) w1 and height h1 of the first cylinder equal to
one, h1 = w1 = 1, and the twist t1 = 0 equal to zero. Applying an appropriate
Dehn twist to the second cylinder we can assure 0 ≤ t2 < w2.

If after our rescaling all parameters w2, h2, t2 characterizing the second
cylinder do not get to the same quadratic field Q(

√
d) for some d ∈ N, the

surface S is not a Veech surface.
If w2, h2, t2 are rational (i.e. if d is a complete square), the surface S can

be rescaled to a square-tiled surface.
The remaining case is treated by one of the key Theorems in the paper of

K. Calta [Clt].

Theorem (K. Calta). Let all parameters wj , hj , tj, j = 1, 2 of a two-
cylinder decomposition of a flat surface S ∈ H(2) belong to the same quadratic
field Q(

√
d) with d ∈ N not a complete square. Then S is a Veech surface if

and only if the parameters satisfy the following system of equations:
{

w1h̄1 = −w2h̄2,

w̄1t1 + w̄2t2 = w1t̄1 + w2t̄2,
(4)

(where the bar denotes conjugation p + q
√

d = p − q
√

d in Q(
√

d) with p, q ∈
Q).

Actually, we kept the system of equation above as it is written in the origi-
nal paper [Clt]. In this form it can be adopted to a more general normalization
of parameters: it is sufficient to rescale surface S to bring all wj , hj , tj , j = 1, 2
to a quadratic field.

Remark. Similar necessary conditions for Veech surfaces in H(2) were ob-
tained by D. Panov independently of K. Calta and of C. McMullen.

Since by Lemma of Thurston any Veech surface in H(2) can be rescaled to a
quadratic surface, taking a collection of all quadratic surfaces decomposed into
two horizontal cylinders satisfying the condition above, we get representatives
of the GL+(2, R)-orbits of all flat surfaces in H(2).

Exercise. Show that the Katok–Zemlyakov construction applied to an L-
shaped billiard as on Fig. 50 (see also Fig. 38) generates a surface S ∈ H(2).
Show that this surface is decomposed into two cylinders filled by closed hor-
izontal geodesics and that these cylinders have parameters w1 = 2, h1 =
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2a − 2, t1 = 0 for the first cylinder and w2 = 2b, h2 = 2, t2 = 0 for the
second cylinder. Using the condition above prove the following Theorem of
C. McMullen [McM2]:

a

1

1

b

Fig. 50. L-shaped billiard table P (a, b) and its unfolding into a flat surface S ∈ H(2)
(after C. McMullen [McM2])

Theorem (C. McMullen). The L-shaped billiard table P (a, b) as on Fig. 50
generates a Veech surface if and only if a and b are rational or

a = x + z
√

d and b = y + z
√

d

for some x, y, z ∈ Q with x + y = 1 and d ≥ 0 in Z.

Kernel Foliation in Genus 2

The following elementary observation explains our interest to kernel foliation
in the content of our study of GL+(2, R)-invariant subvarieties. Let N ⊂
H(d1, . . . , dn) be a GL+(2, R)-invariant submanifold. The “germ” of the kernel
foliation at N is equivariant with respect to the action of GL+(2, R).

In other words this statement can be described as follows. Denote by t(δ)
a translation by δ along kernel foliation defined in a neighborhood of S ∈
H(1, 1). Here δ ∈ C is a small parameter. Let g ∈ GL+(2, R) be close to
identity. Then

g ◦ t(δ) · S = t(gδ) ◦ gS

where g acts on a complex number δ as on a vector in R
2. Moving along the

kernel foliation, and then applying an element g of the group is the same
as applying first the same element of the group and then moving along an
appropriate translation along the kernel foliation. A similar construction works
in a general stratum.
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We get the following very tempting picture. Suppose, that we have a closed
GL+(2, R)-orbit N in H(1, 1) or in H(2). For example, suppose that N is an
orbit of a Veech surface. Consider a union of leaves of the kernel foliation
passing through N . Due to the remark above this is a GL+(2, R)-invariant
subset!

The weakness of this optimistic picture is that there is no a priori reason
to hope that the resulting invariant subset in H(1, 1) would be closed. And
here the magic comes. The following statement was proved independently by
K. Calta [Clt] and by C. McMullen [McM2].

Theorem (K. Calta; C. McMullen). For any Veech surface S0 ∈ H(2) the
union of leaves of the kernel foliation passing through the GL+(2, R)-orbit of
S0 is a closed GL+(2, R)-invariant complex orbifold N of complex dimension
3.

In particular, the complex dimension of the resulting orbifold is the sum
of the complex dimension of the GL+(2, R)-orbit of S0 and of the complex
dimension of the kernel foliation 3 = 2 + 1.

K. Calta has found the following beautiful geometric characterization of
flat surfaces living in an invariant subvariety N as above. Surfaces in any
such N are completely periodic: as soon as there is a single closed trajectory
in some direction, all geodesics going in this direction are closed. This condi-
tion is necessary and sufficient condition for a surface to live in an invariant
subvariety N as above. In particular, this shows that not only Veech surfaces
have this property.

An algorithm analogous to the algorithm determining Veech surfaces in
H(2) (see above) allows to K. Calta to determine whether a given surface
S ∈ H(1, 1) is completely periodic or not (and hence, whether it belongs to
an invariant subvariety N as above or not). As before one starts with finding
some closed geodesic or some saddle connection. If the surface is completely
periodic in the corresponding direction, then all other geodesics going in this
direction are periodic and the surface decomposes into cylinders. After an
appropriate rotation this periodic direction becomes horizontal. Without loss
of generality, we may assume that S decomposes into three cylinders. By wi,
hi and ti with 1 ≤ i ≤ 3, we denote the widths, heights and twists. After
renumbering, we may assume that w3 = w1 + w2. Define s1 = h1 + h3,
s2 = h2 +h3, τ1 = t1 + t3, τ2 = t2 + t3. If the surface is completely periodic its
absolute periods can be rescaled to get to Q(

√
d) + iQ(

√
d) (compare to the

algorithm for Veech surfaces). Leaving the elementary case when d ∈ N is a
complete square, the following characteristic equations obtained by K. Calta
(analogous to equations (4) above) tell whether our flat surface is completely
periodic or not:

w1s̄1 = −w2s̄2,

w̄1τ1 + w̄2τ2 = w1τ̄1 + w2τ̄2, 0 ≤ τi < wi + w3.
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Note that we consider any invariant subvariety N as above as a subvariety
in H2 = H(1, 1) � H(2). Clearly, the intersection N ∩ H(1, 1) and N ∩ H(2)
results in close GL+(2, R)-invariant subvarieties in the corresponding strata.
Note that dimCN = 3. Since N is a union of leaves of the kernel foliation this
implies that dimCN ∩H(2) = 2. This means that any surface S ∈ N ∩H(2)
is a Veech surface!

Classification Theorem of McMullen

We complete this section with a description of the wonderful result of C. Mc-
Mullen [McM3] realizing a dream of a complete classification of closures of
GL+(2, R)-orbits in genus g = 2. The classification is astonishingly simple.
We slightly reformulate the original Theorem using the notions of kernel foli-
ation and of completely periodic surface (and, hence, using implicitly results
of K. Calta [Clt]).

Theorem (C. McMullen).

• If a surface S ∈ H(2) is a Veech surface, its GL+(2, R)-orbit is a closed
complex 2-dimensional subvariety;

• Closure of GL+(2, R)-orbit of any surface S ∈ H(2) which is not a Veech
surface is the entire stratum H(2);

• If a surface S ∈ H(1, 1) is a Veech surface, its GL+(2, R)-orbit is a closed
complex 2-dimensional subvariety;

• If a surface S ∈ H(1, 1) is not a Veech surface but is a completely peri-
odic surface, then the closure of its GL+(2, R)-orbit is a closed complex
3-dimensional subvariety N foliated by leaves of the kernel foliation as
described above;

• If a surface S ∈ H(1, 1) is not completely periodic, then the closure of its
GL+(2, R)-orbit is the entire stratum H(1, 1).

Actually, the Theorem above is even stronger: connected components of
these invariant submanifolds are basically also classified. We have seen that
the GL+(2, R)-orbit of any Veech surfaces in H(2) has a representative with
all periods in a quadratic field. The discriminant D = b2−4c > 0 is a positive
integer: a discriminant of the corresponding quadratic equation x2+bx+c = 0
with integer coefficients. The discriminant is an invariant of an GL+(2, R)-
orbit. Since for any integer b the number b2 mod 4 can be either 0 or 1, the
discriminant D mod 4 = 0, 1. The values D = 1, 4 are not realizable, so the
possible values of D are 5, 8, 9, 12, 13, . . . .

We postpone the description of results of P. Hubert and S. Lelièvre [HuLe1]
and of C. McMullen [McM4] on classification of the orbits of Veech surfaces
in H(2) to the next section. Here we state the following result of C. Mc-
Mullen [McM3]. By N (D) denote the 3-dimensional invariant submanifold
obtained as a union of leaves of the kernel foliation passing through the orbits
of all Veech surfaces corresponding to the given discriminant D.
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Theorem (C. McMullen). The invariant subvariety N (D) is nonempty
and connected for any D = 0, 1 mod 4, D ∈ N, D ≥ 5.

Ergodic Measures

Actually, the Classification Theorem of C. McMullen is even stronger: it also
classifies the invariant measures. Consider the “unit hyperboloids” H1(2) and
H1(1, 1): the subvarieties of real codimension one representing flat surfaces of
area 1. The group SL(2, R) acts on H1(2) and H1(1, 1) preserving the measure
induced on these “unit hyperboloids”, see Sec. 3.4. Let us discuss what other
SL(2, R)-invariant measures do we know.

When we have an SL(2, R)-invariant subvariety, we can get an invari-
ant measure concentrated on this subvariety. For example, as we know an
SL(2, R)-orbit of a Veech surface S is closed; it is isomorphic to the quotient
SL(2, R)/Γ (S), where, by definition of a Veech surface, this quotient has finite
volume. Thus, Haar measure on SL(2, R) induces a finite invariant measure
on the SL(2, R)-orbit of a Veech surface S.

Consider now a “unit hyperboloid” N1 ⊂ N in the manifold N obtained
as a union of leafs of the kernel foliation passing through SL(2, R)-orbit of a
Veech surface S. Note that by Riemann bilinear relations the area of a flat
surface can be expressed in terms of absolute periods. Thus, moving along the
kernel foliation we do not change the area of the surface. We have seen that
every leaf of the kernel foliation is flat. Consider the corresponding Euclidean
volume element in each leaf. The group SL(2, R) maps leaves of the kernel
foliation to leaves and respects this volume element. Thus we get an invariant
measure on N1 ⊂ N ; near an SL(2, R)-orbit of a Veech surface it disintegrates
to a product measure.

We have associated to any connected invariant subvariety of each of four
types as above a natural SL(2, R)-measure supported on it. One more result
of C. McMullen in [McM3] tells that there are no other ergodic measures.

Other Properties

The invariant subvarieties have numerous wonderful geometric properties. In
particular, their projections to the moduli space M of complex structures on
a surface of genus two are also nice subvarieties. C. McMullen has showed that
the GL+(2, R)-orbit of a Veech surface projects to an isometrically immersed
algebraic curve and N (D) projects to a complex surface. Such surfaces (of
complex dimension two) are called Hilbert modular surfaces.

One more surprising phenomenon proved by C. McMullen in [McM3] con-
cerns Veech groups of flat surfaces in genus g = 2.

Theorem (C. McMullen). If the Veech group Γ (S) of a flat surface S ∈
H(2) contains a hyperbolic element, the flat surface S is a Veech surface; in
particular, its Veech group Γ (S) is a lattice in SL(2, R).
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If the Veech group Γ (S) of a flat surface S ∈ H(1, 1) contains a hyperbolic
element, and the flat surface S is not a Veech surface, then S is completely
periodic. In this case the Veech group Γ (S) is infinitely generated.

The Veech group of a flat surface S contains a hyperbolic element if and
only if S admits an affine pseudoanosov diffeomorphism.

We complete this section with the following natural problem for higher
genera g ≥ 3.

Problem. Let K be a GL+(2, R)-invariant subvariety in some stratum of
holomorphic one-forms H(d1, . . . , dm) ⊂ Hg. Consider the union U of leaves of
the kernel foliation passing through K. Is U a closed subvariety in H(1, . . . , 1)?
Similar question for other strata.

9.8 Classification of Teichmüller Discs of Veech Surfaces in H(2)

It is easy to check that any square-tiled surface (see Sec. 7.1) is a Veech
surface, and thus an SL(2, R)-orbit of any square-tiled surface is closed. Such
orbit contains other square-tiled surfaces. Since the SL(2, R)-action does not
change the area of a surface these other square-tiled surfaces are tiled with
the same number of squares, see Fig. 46 in Sec. 9.5 and the Exercise related
to this Figure.

For a fixed integer n the number of n-square-tiled surfaces is finite. It would
be interesting to know (and this is certainly a part of general Problem from
Sec. 9.3) how the square-tiled surfaces are arranged into orbits of SL(2, R).
Say, we have seen in the previous section that there are exactly three 3-
square-tiled surfaces in H(2) (see Fig. 46) and that they belong to the same
orbit. For n = 4 there are already nine 4-square-tiled surfaces in H(2) and
they still belong to the same SL(2, R)-orbit. The corresponding Teichmüller
disc is a 9-fold cover over the modular curve. For n = 5 there are twenty
seven 5-square-tiled surfaces in H(2) and they split into two different orbits
of SL(2, R).

Generalizing a result of P. Hubert and S. Lelièvre [HuLe1] obtained for
prime number n C. McMullen has recently proved the following conjecture of
P. Hubert and S. Lelièvre.

Theorem (C. McMullen). All n-square-tiled surfaces in H(2), which can-
not be tiled with p × q-rectangles with p or q greater than 1, get to the same
SL(2, R)-orbit when n ≥ 4 is even and get to exactly two distinct orbits when
n ≥ 5 is odd.

Actually, C. McMullen has classified in [McM4] the orbits of all Veech
surfaces in H(2). As we have seen in the previous section Veech surfaces in
H(2) are characterized by an integer parameter, called the discriminant D.
For n-square-tiled surfaces the discriminant equals D = n2.
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Veech surfaces which cannot be rescaled to a square-tiled surface are called
nonarithmetic Veech surfaces. Any nonarithmetic Veech surface in H(2) can
be rescaled to a flat surface having all periods in a quadratic field (see the
Lemma of W. Thurston in the previous section). The discriminant correspond-
ing to a nonarithmetic Veech surface is the discriminant of this quadratic field.
Of course a GL+(2, R)-orbit of a nonarithmetic Veech surface might have dif-
ferent representatives S, such that all periods of S belong a quadratic field.
Nevertheless, for Veech surfaces in genus g = 2 the discriminant is well-defined:
it is an invariant of a GL+(2, R)-orbit. The discriminant is a positive integer
D = 0, 1 mod 4, D ≥ 5.

C. McMullen has proved the following classification Theorem [McM4]:

Theorem (C. McMullen). For D = 1 mod 8, D > 9, all Veech surfaces in
H(2) corresponding to discriminant D get to exactly two distinct GL+(2, R)-
orbits. For other values D = 0, 1 mod 4, D ≥ 5, they belong to the same
GL+(2, R)-orbit.

1

λ

λ

b

Fig. 51. The L-shaped billiard table L(b, e) generating a “canonical” Veech surface

Moreover, C. McMullen proposed the following canonical representative for
any such GL+(2, R)-orbit, see [McM4]. Consider an L-shaped billiard L(b, e)
as on Fig. 51, where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b, e ∈ Z; λ = (e +
√

e2 + 4b)/2
e = −1, 0 or 1
e + 1 < b

if e = 1 then b is even

(5)

The billiard table L(b, e) generates a flat surface S(b, e) in H(2), see Fig. 50.

Theorem (C. McMullen). The flat surface S(b, e) generated by the L-
shaped billiard table L(b, e) with parameters b, e satisfying (5) is a Veech
surface. Any closed GL+(2, R)-orbit in H(2) is represented by one of such
S(b, e) and this representation is unique. The discriminant D of S(b, e) equals
D = e2 + 4b.
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Exercise. Using linear transformations and scissors rescale the flat surface
obtained from the “double pentagon” (see Fig. 7) to the flat surface obtained

from a “golden cross” P (a, b), with a = b =
1 +

√
5

2
; see Fig. 50 for the

definition of P (a, b). Using linear transformations and scissors rescale any of
these flat surfaces to a surface obtained from the billiard table L(1,−1), see
Fig. 51, proving that these Veech surfaces have discriminant D = 5. (For
solutions see Fig. 4 in [McM2]; see also and [McM5]).

Exercise (T. Schmidt). Using linear transformations and scissors rescale the
flat surface obtained from the regular octagon to a surface obtained from
the billiard table L(2, 0), see Fig. 51, proving that these Veech surfaces have
discriminant D = 8. (See [McM5]).

Stratum H(1, 1)

We have discussed in details Veech surfaces in H(2). We did not discussed
the Veech surface for the stratum H(1, 1) because for square-tiled surfaces
in H(1, 1) (also called arithmetic Veech surfaces) the classification of the
GL+(2, R)-orbits is knot known yet...

The classification of nonarithmetic Veech surfaces in H(1, 1) is, however,
known (since very recently), and is quite surprising. Using the results of
M. Moeller [Mo1]–[Mo3] C. McMullen has proved in [McM6] the following
Theorem.

Theorem (C. McMullen). Up to a rescaling the only primitive nonarith-
metic Veech surface in H(1, 1) is the one obtained from the regular decagon by
identification of opposite sides. In other words, any primitive nonarithmetic
Veech surface in H(1, 1) belongs to the GL+(2, R)-orbit of the surface obtained
from the regular decagon.

For higher genera nothing is known neither about the number of SL(2, R)-
orbits of n-square-tiled surfaces, nor about their geometry.

Problem. Classify orbits of square-tiled surfaces in any stratum, in particular
in H(1, 1).

Square-tiled Surfaces: more serious reading. An elementary introduction can
be found in [Zo5]. Paper [HuLe1] of P. Hubert and S.Lelièvre and [McM4] of
C. McMullen classify orbits of square-tiled surfaces in H(2). See also the paper
of G. Schmithüsen [Schn] for an algorithm of evaluation of the Veech group of a
square-tiled surface and for examples of square-tiled surfaces having SL(2, R)
as a Veech group. Another such example due to M. Möller is presented in the
survey [HuSdt5] of P. Hubert and T. Schmidt.
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10 Open Problems

Flat surfaces with nontrivial holonomy and billiards in general
polygons

Problem 1 (Geodesics on general flat surfaces; Sec. 1.1).
Describe behavior of geodesics on general flat surfaces with nontrivial

holonomy. Prove (or disprove) that geodesic flow is ergodic on a typical (in
any reasonable sense) flat surface.

Does any (almost any) flat surface has at least one closed geodesic which
does not pass through singular points?

If yes, are there many regular closed geodesics? Namely, find the asymp-
totics for the number of closed geodesics of bounded length as a function of
the bound.

Problem 2 (Billiards in general polygons; Sec. 2.1).
Describe the behavior of a generic regular billiard trajectory in a generic

triangle, in particular, prove (or disprove) that the billiard flow is ergodic.
Does any (almost any) billiard table has at least one regular periodic

trajectory? If the answer is affirmative, does this trajectory survive under
deformations of the billiard table?

If a periodic trajectory exists, are there many periodic trajectories like
that? Namely, find the asymptotics for the number of periodic trajectories of
bounded length as a function of the bound.

More problems on billiards can be found in the survey of E. Gutkin [Gu2].

Problem 3 (Renormalization of billiards in polygons; Sec. 2.1 and Sec. 5).
Is there a natural dynamical system (renormalization procedure) acting

on the space of billiards in polygons?

Classification of orbit closures in Hg and Qg

Problem 4 (Orbit closures for moduli spaces; Sec. 9.3).
Is it true that the closures of GL+(2, R)-orbits in Hg and Qg are always

complex-analytic (complex-algebraic?) orbifolds? Classify these closures. Clas-
sify ergodic measures for the action of SL(2, R) on “unit hyperboloids”.

Suppose that these orbit closures are described by an explicit list. Find
natural intrinsic invariants of a flat surface S which would allow to determine
the closure of the orbit of S in the list.

To be honest, even having obtained a conjectural classification above, one
would need to develop a serious further machinery to get full variety of inter-
esting applications. The situation with the problem below is quite different:
a reasonable solution of this problem would immediately give a burst of ap-
plications since such a machinery already exists. For the experts interested
in ergodic aspects, counting problems, etc, the measure-theoretic analogue of
Ratner’s Theorem discussed below is the biggest open problem in the area.
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Problem 5 (A. Eskin: “Ratner’s theorem” for moduli spaces; Sec. 9.3).
Does the unipotent subgroup of SL(2, R) act nicely on Hg and Qg or not?

Are the orbit closures always nice (for example, real-analytic) orbifolds or one
can get complicated closures (say, Kantor sets)?

If the action is “nice”, classify the closures of orbits of the unipotent sub-

group
(

1 t
0 1

)
t∈R

in Hg and Qg. Classify ergodic measures for the action of the

unipotent subgroup on “unit hyperboloids”.
Solve the problem for genus g = 2.

The problem above is solved in the particular case when the unipotent
flow acts on a SL(2, R)-invariant submanifold in Hg obtained by a ramified
covering construction from a Veech surface; see the papers of A. Eskin, H. Ma-
sur and M. Schmoll [EMaScm] and of A. Eskin, J. Marklof, D. Witte Mor-
ris [EMkWt].

The next problem concerns possibility of construction of GL+(2, R)-
invariant submanifolds in higher genera using kernel foliation.

It follows from the results of K. Calta and C. McMullen that for any Veech
surface S0 ∈ H(2) the union of complex one-dimensional leaves of the kernel
foliation passing through the complex two-dimensional GL+(2, R)-orbit O(S0)
of S0 is a closed complex orbifold N of complex dimension 3, see Sec. 9.7. By
construction it is GL+(2, R)-invariant.

Problem 6 (Kernel foliation; Sec. 9.7).
Let O ⊂ H(d1, . . . , dm) ⊂ Hg be a GL(2, R)-invariant submanifold (sub-

orbifold). Let H(d′1, . . . , d
′
n) ⊂ Hg be a bigger stratum adjacent to the first

one, dj = d′k1
+ · · · + d′

kj
, i = 1, . . . , m.

Consider the closure of the union of leaves of the kernel foliation in
H(d′1, . . . , d

′
n) (or in Hg) passing through O. We get a closed GL+(2, R)-

invariant subset N ⊂ H(d′1, . . . , d
′
n) (correspondingly N ⊂ Hg).

Is N a complex-analytic (complex-algebraic) orbifold? When N does not
coincide with the entire connected component of the stratum H(d′1, . . . , d

′
n)

(correspondingly Hg)? When dimC N = dimC O + (n − m) (correspondingly
dimC N = dimC O + (2g − 2 − m)? Here (n − m) and (2g − 2 − m) is the
complex dimension of leaves of the kernel foliation in H(d′1, . . . , d

′
n) and in Hg

correspondingly.

Particular cases of classification problem

Problem 7 (Exceptional strata of quadratic differentials; Sec. 9.4).
Find an invariant which would be easy to evaluate and which would dis-

tinguish half-translation surfaces from different connected components of the
four exceptional strata Q(−1, 9), Q(−1, 3, 6), Q(−1, 3, 3, 3) and Q(12).

Problem 8 (Veech surfaces; Sec. 9.5).
Classify primitive Veech surfaces.
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Problem 9 (Orbits of square-tiled surfaces; Sec 9.8).
Classify orbits of square-tiled surfaces in any stratum. Describe their Te-

ichmüller discs.
Same problem for the particular case H(1, 1).

Geometry of individual flat surfaces

Problem 10 (Quadratic asymptotics for any surface; Sec. 6.1).
Is it true that any very flat surface has exact quadratic asymptotics for the

number of saddle connections and for the number of regular closed geodesics?

Problem 11 (Error term for counting functions; Sec. 6.1).
What can be said about the error term in quadratic asymptotics for count-

ing functions N(S,L) ∼ c · L2 on a generic flat surface S? In particular, is it
true that the limit

lim sup
L→∞

log |N(S,L) − c · L2|
log L

?
< 2

is strictly less than two? Is it the same for almost all flat surfaces in a given
connected component of a stratum?

One of the key properties used by C. McMullen for the classification of the
closures of orbits of GL(2, R) in H(1, 1) was the knowledge that on any flat
surface in this stratum one can find a pair of homologous saddle connections.
Cutting the surface along these saddle connections one decomposes the surface
into two tori and applies machinery of Ratner theorem.

Problem 12 (A. Eskin; C. McMullen: Decomposition of surfaces; Sec. 6.4).
Given a connected component of the stratum H(d1, . . . , dm) of Abelian

differentials (or of quadratic differentials Q(d1, . . . , dm)) find those configu-
rations of homologous saddle connections (or homologous closed geodesics),
which are presented at any very flat surface S in the stratum.

For quadratic differentials the notion of “homologous” saddle connections
(closed geodesics) should be understood in terms of homology with local co-
efficients, see [MaZo].

Topological, geometric, and dynamical properties of the strata

Problem 13 (M. Kontsevich: Topology of strata; Sec. 3).
Is it true that strata H(d1, . . . , dm) and Q(q1, . . . , qn) are K(π, 1)-spaces

(i.e. their universal covers are contractible)?

Problem 14 (Compactification of moduli spaces; Sec. 6.3 and 6.4).
Describe natural compactifications of the moduli spaces of Abelian differ-

entials Hg and of the moduli spaces of meromorphic quadratic differentials
with at most simple poles Qg. Describe natural compactifications of corre-
sponding strata H(d1, . . . , dm) and Q(q1, . . . , qn).
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Problem 15 (Dynamical Hodge decomposition; Sec. 4.3, 5.7 and Appendix B).
Study properties of distributions of Lagrangian subspaces in H1(S; R) de-

fined by the Teichmüller geodesic flow, in particular, their continuity. Is there
any topological or geometric way to define them?

Problem 16 (Lyapunov exponents; Sec. 5.7 and Appendix B).
Study individual Lyapunov exponents of the Teichmüller geodesic flow

– for all known SL(2; R)-invariant subvarieties;
– for strata in large genera.

Are they related to characteristic numbers of some natural bundles over
appropriate compactifications of the strata?

Some other open problems can be found in [HuMSdtZ].

A Ergodic Theorem

We closely follow the presentation in Chapter 1 of [CFSin]. However, for the
sake of brevity we do not consider flows; for the flows the theory is absolutely
parallel.

Ergodic Theorem

Consider a manifold Mn with a measure µ. We shall assume that the measure
comes from a volume form on Mn, and that the total volume (total measure)
of Mn is finite. We shall consider only measurable subsets of Mn.

Let T : Mn → Mn be a smooth map. We do not assume that T is a
bijection unless it is explicitly specified. We say that T preserves measure
µ is for any subset U ⊂ Mn measure µ(T−1U) of the preimage coincides
with measure µ(U) of the set. For example the double cover T : S1 → S1 of
the circle S1 = R/Z over itself defined as T : x �→ 2x mod 1 preserves the
Lebesgue measure on S1. In this section we consider only measure preserving
maps.

We say that some property is valid for almost all points of Mn if it is valid
for a subset U ⊂ Mn of complete measure µ(U) = µ(Mn).

A subset U ⊂ Mn is invariant under the map T if the preimage T−1U
coincides with U . Thus, a notion of an invariant subset is well-defined even
when T is not a one-to-one map. The measure-preserving map T : Mn → Mn

is ergodic with respect to µ if any invariant subset has measure 0 or 1. The
measure-preserving map T : Mn → Mn is uniquely ergodic with respect to µ
if there is no other invariant probability measure.

Note that if T has a fixed point or, more generally, a periodic orbit (that is
T k(x0) = x0 for some x0 ∈ Mn and some k ∈ N), one can consider an invariant
probability measure concentrated at the points of the orbit. Thus, such map T
cannot be uniquely ergodic with respect to any Lebesgue equivalent measure.
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Now we are ready to formulate the keystone theorem. Consider an inte-
grable function f on Mn and some point x. Consider an orbit of T of length n
starting at x. Let us evaluate the values of f at the points of the orbit, and let

us calculate the “mean value”
1
n

(
f(x)+f(Tx)+ · · ·+f(Tn−1x)

)
with respect

to the discrete time k of our dynamical system . . . , T k−1x, T kx, T k+1x, . . . .

Ergodic Theorem. Let T : Mn → Mn preserve a finite measure µ on Mn.
Then for any integrable function f on Mn and for almost all point x ∈ Mn

there exists the time mean: there exist the following limit:

lim
n→∞

1
n

n−1∑
k=0

f(T kx) = f̄(x).

The function f̄(x) is integrable and invariant under the map f̄(Tx) = f̄(x).
In particular, if T is ergodic, f̄ is constant almost everywhere. Moreover,

∫
Mn

f̄ dµ =
∫

Mn

f dµ

First Return Map

The following theorem allows to construct numerous induced dynamical sys-
tems which are closely related to the initial one.

Theorem (Poincaré Recurrence Theorem). For any subset U ⊂ Mn

of positive measure and for almost any starting point x ∈ U the trajectory
x, Tx, . . . eventually returns to U , i.e. there is some n ≥ 1 such that Tnx ∈ U .

The minimal n = n(x) ∈ N as above is called the first return time. Accord-
ing to Poincaré Recurrence Theorem integer-valued function n(x) is defined
almost everywhere in U . Consider the first return map T |U : U → U defined
as T |U : x �→ Tn(x)x, where x ∈ U . In other words, the map T |U maps a point
x ∈ U to the point where trajectory Tx, T 2x, . . . first meets U .

Lemma. For any subset U ⊂ Mn of positive measure the first return map
T |U : U → U preserves measure µ restricted to U . If T : Mn → Mn is ergodic
than T |U : U → U is also ergodic.

The first return time induced by an ergodic map T has the following
geometric property.

Kac Lemma. For an ergodic diffeomorphism T : Mn → Mn and for any
subset U ∈ Mn of positive measure the mean value of the first return time
equals to the volume of entire space:

∫
U

n(x)dµ = µ(Mn)
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Ergodic Theory: more serious reading. There are numerous nice books on
ergodic theory. I can recommend a classical textbook of I. P. Cornfeld,
S. V. Fomin and Ya. G. Sinai [CFSin] and a recent survey of B. Hasselblatt
and A. Katok [HaKat].

B Multiplicative Ergodic Theorem

In this section we discuss multiplicative ergodic theorem and the notion of
Lyapunov exponents and then we present some basic facts concerning Lya-
punov exponents. As an alternative elementary introduction to this subject
we can recommend beautiful lectures of D. Ruelle [Ru]. A comprehensive in-
formation representing the state-of-the-art in this subject can be found in the
very recent survey [BP2].

B.1 A Crash Course of Linear Algebra

Consider a linear transformation A : R
n → R

n represented by a matrix A ∈
SL(n, R). Assume that A has n distinct eigenvalues eλ1 , . . . , eλn ; let v1, . . . ,vn

be the corresponding eigenvectors. Note that since det A = 1 we get λ1 + · · ·+
λn = 0; in particular, λ1 > 0 and λn < 0.

Consider now a linear transformation AN : R
n → R

n, where N is a very
big positive integer. For almost all vectors v ∈ R

n the linear transformation
AN acts roughly as follows: it takes the projection vproj of v to the line
V1 = V ec(v1) spanned by the top eigenvector v1 and then expands it with a
factor eNλ1 . So, roughly, AN smashes the whole space to the straight line V1

and then stretches this straight line with an enormous coefficient of expansion
eNλ1 . (Speaking about projection to V1 = V ec(v1) we mean a projection
along the hyperplane spanned by the remaining eigenvectors v2, . . . ,vn.)

To be more precise, we have to note that the image of v would not have
exactly the direction of v1. A better approximation of AN (v) would give us
a vector in a two-dimensional subspace V2 = V ec(v1,v2) spanned by the two
top eigenvectors v1,v2. When λ2 > 0 the direction of AN (v) would be very
close to the direction of V1 though the endpoint of AN (v) might be at a
distance of order eNλ2 from V1, which is very large. However, this distance is
small in comparison with the length of AN (v) which is of order eNλ1 � eNλ2 .

Further terms of approximation give us subspaces Vj spanned by the top
j eigenvectors, Vj = V ec(v1, . . . ,vj). Note that starting with some k ≤ n the
eigenvalues eλk become strictly smaller than one. This means that the image
AN (v) of any fixed vector v gets exponentially close to the subspace Vk−1.

Going into details we have to admit that vectors v from a subspace of
measure zero in the set of directions expose different behavior. Namely, vectors
v from the hyperplane L2 spanned by v2, . . . ,vn have smaller coefficient of
distortion than the generic ones. From this point of view vectors from linear
subspaces Lj = V ec(vj ,vj+1, . . . ,n) expose more and more exotic behavior;



576 Anton Zorich

in particular, all vectors from the subspace Lk = V ec(vk,vj+1, . . . ,vn) get
exponentially contracted.

B.2 Multiplicative Ergodic Theorem for a Linear Map
on the Torus

Consider a linear transformation A : R
n → R

n this time represented by an
integer matrix A ∈ SL(n, Z) as above. Consider the induced map F : T

n → T
n

of the torus T
n = R

n/Z
n. This map preserves the natural linear measure on

the torus. Consider the N -th iterate FN of the map F , where N is a very
large number.

Note, that the differential of F in the natural coordinates on the torus is
represented by the constant matrix Dx0F = A for any x0 ∈ T

n. Note also
that the differential of the N -th iterate of F is represented as a product of
N differentials of F along the trajectory x0, F (x0), F (F (x0)) . . . , FN−1(x0) of
x0:

Dx(FN ) = DF N−1(x0)F ◦ · · · ◦ DF (x0)F ◦ Dx0F (1)

Hence, in “linear” coordinates we get Dx(FN ) = AN . Thus, the results of
the previous section are literarily applicable to the local analysis of the map
FN , where now vector v should be interpreted as a tangent vector to the
torus T

n. In particular, these results have the following interpretation. If we
consider the trajectory x0, F (x0), . . . , FN (x0) of the initial point and the tra-
jectory x, F (x), . . . , FN (x) of a point x obtained from x0 by a very small
deformation in direction v, then for most of the vectors v trajectories would
deviate exponentially fast one from the other; while for some special vectors
they would approach each other exponentially fast.

Namely, we get a distribution of linear subspaces Lk in the tangent space to
the torus such that deforming the starting point of trajectory in any direction
in Lk we get two exponentially converging trajectories. The subspace Lk =
V ec(vk,vk+1, . . . ,vn) is spanned by the eigenvectors of the matrix A having
eigenvalues, which are smaller than one. This distribution is integrable; it
defines a so-called stable foliation.

There is also a complementary unstable foliation corresponding to the dis-
tribution of subspaces Vk−1 = V ec(v1, . . . ,vk−1) spanned by the eigenvectors
of the matrix A having eigenvalues, which are greater than one. Passing from
the map F to the map F−1 the stable and unstable foliations change the roles:
stable foliation of F becomes unstable for F−1 and vice versa.

When matrix A has an eigenvalue (or several eigenvalues) equal to ±1, we
get also a neutral foliation corresponding to the distribution spanned by the
corresponding eigenvectors.

Exercise. Evaluate the limit

lim
N→∞

log ‖Dx(FN )(v‖
N

(2)



Flat Surfaces 577

for a tangent vector v ∈ Tx0T
n having a generic direction. What are the pos-

sible values of this limit for any tangent vector v ∈ Tx0T
n? Show that vectors

leading to different values of this limit are organized into a flag of subspaces
L1 ⊃ L2 ⊃ · · · ⊃ Ln, where we assume that all eigenvalues of the matrix A are
positive and distinct. How would this flag change if some eigenvalues would
have multiplicities? Would we have a flag of subspaces defined by different
values of the limit above for the most general matrix A ∈ SL(n, Z) (which
may have Jordan blocks, complex eigenvalues, multiplicities, ...)?

B.3 Multiplicative Ergodic Theorem

Consider now a smooth measure-preserving map F : Mn → Mn on a manifold
Mn. We consider the case when that the total measure of Mn is finite, and
when the map F is ergodic with respect to this measure.

Consider some generic point x0. Let us study, whether we have convergence
of the limit (2) for tangent vectors v ∈ Tx0M

n in this more general situation.
We can always trivialize the tangent bundle to Mn on an open subset of full
measure. Using this trivialization we can reduce our problem to the study of
product of matrices (1). This study is now much more difficult than in the
previous case since the matrices DF k(x0)F are not constant anymore. The
following multiplicative ergodic theorem formulated for general mappings of
general manifolds mimics the simplest situation with a linear map on the
torus.

Theorem (Oseledets). Let a smooth map F : Mn → Mn be ergodic with
respect to a finite measure. Then, there exists a collection of numbers

λ1 > λ2 > · · · > λk,

such that for almost any point x ∈ M there is an equivariant filtration

R
n � TxMn = L1 ⊃ L2 ⊃ · · · ⊃ Lk ⊃ Lk+1 = {0}

in the fiber TxMn of the tangent bundle at x with the following property. For
every v ∈ Lj − Lj+1, j = 1, . . . , k, one has

lim
N→+∞

1
N

log ‖(DFN )x(v)‖ = λj

The multiplicative ergodic theorem was proved by V. I. Oseledets [O2];
a similar statement for products of random matrices was proved earlier by
H. Furstenber [Fur].

Multiplicative ergodic theorem has several natural generalizations. The
theorem essentially describes the behavior of products (1) of matrices along
trajectories of the map F . Actually, matrices DxF are not distinguished by
any special property. One can consider any matrix-valued function A : Mn →
GL(m, R) and study the products of matrices
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A(FN−1(x)) · · · · · A(F (x)) · A(x)

along trajectories x, F (x), . . . , FN−1(x) of F . A statement completely anal-
ogous to the above Theorem is valid in this more general case provided
the matrix-valued function A(x) satisfy some very moderate requirements.
Namely, we do not assume that A(x) is continuous or even bounded. The
only requirement is that ∫

Mn

log+ ‖A(x)‖µ < +∞,

where log+(y) = max(log(y), 0). When this condition is satisfied one says that
A(x) defines an integrable cocycle. The numbers λ1 > · · · > λk are called the
Lyapunov exponents of the corresponding cocycle.

Exercise. Formulate a “continuous-time” version of multiplicative ergodic the-
orem when instead of a map F : Mn → Mn we have a flow Ft which is ergodic
with respect to a finite measure on Mn. Show that under the natural normal-
ization the corresponding Lyapunov exponents coincide with the Lyapunov
exponents of the map F1 obtained as an action of the flow at the time t = 1.

Consider a vector bundle over Mn; suppose that the vector bundle is
endowed with a flat connection. Formulate a version of multiplicative ergodic
Theorem for the natural action of the flow on such vector bundle.

Note that in the latter case the Lyapunov exponents are responsible for the
“mean holonomy” of the fiber along the flow. Namely, we take a fiber of the
vector bundle and transport it along a very long piece of trajectory of the flow.
When the trajectory comes close to the starting point we identify the fibers
using the flat connection and we study the resulting linear transformation of
the fiber.

Note that the choice of a norm in the fibers Vx is in a sense irrelevant.
Consider two norms ‖ ‖ and ‖ ‖′ and let

c(x) = min
‖v‖=1

‖v‖′ C(x) = max
‖v‖=1

‖v‖′.

If ∫
M

max (| log(c(x)|, | log(C(x)|) µ < +∞,

then neither the filtration Lk(x) nor the Lyapunov exponents λk do not change
when we replace the norm ‖ ‖ by the norm ‖ ‖′. In particular, when M is a
compact manifold all nonsingular norms are equivalent.

In general, even for smooth maps F : M → M (flows Ft) the subspaces
defined by the terms Lk(x) ⊂ Vx of the filtration do not change continuously
with respect to a deformation of the base point x. However, these subspaces
behave nicely for maps (flows) which have strong hyperbolic behavior (see [Po]
for a short introduction; a recent quite accessible textbook [BP1] and a sur-
vey [BP2] describing the contemporary status of Pesin theory).
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Currently there are no general methods of computation of Lyapunov expo-
nents other than numerically. There are some particular situations, say, when
the vector bundle has a one-dimensional equivariant subspace, or when Ft is
a homogeneous flow on a homogeneous space; in these rather special cases the
corresponding Lyapunov exponents can be computed explicitly. However, in
general it is extremely difficult to obtain any nontrivial information (positiv-
ity, simplicity of spectrum) about Lyapunov exponents.
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[Lv] P. Lévy: Sur le développement en fraction continue d’un nombre choisi
au hasard. Composito Mathematica, 3, 286–303 (1936)

[MmMsY] S. Marmi, P. Moussa, J.-C. Yoccoz: On the cohomological equation for
interval exchange maps. arXiv:math.DS/0304469, 11pp (2003)

[Ma1] H. Masur: On a class of geodesics in Teichmüller space. Ann. of Math.,
102, 205–221 (1975)

[Ma2] H. Masur: Extension of the Weil-Petersson metric to the boundary of
Teichmüller space. Duke Math. Jour., 43, no. 3, 623–635 (1976)

[Ma3] H. Masur: Interval exchange transformations and measured foliations.
Ann. of Math., 115, 169-200 (1982)

[Ma4] H. Masur: Closed Trajectories for Quadratic Differentials with an Ap-
plication to Billiards. Duke Math. Jour. 53, 307–314 (1986)

[Ma5] H. Masur: Lower bounds for the number of saddle connections and
closed trajectories of a quadratic differential. In: Holomorphic Functions
and Moduli, Vol. I (Berkeley, CA, 1986), 215–228. Math. Sci. Res. Inst.
Publ., 10 Springer, New York – Berlin (1988)

[Ma6] H.Masur: The growth rate of trajectories of a quadratic differential.
Ergodic Theory and Dynamical Systems, 10, no. 1, 151–176 (1990)

[Ma7] H. Masur: Ergodic theory of flat surfaces. In: B. Hasselblatt and A. Ka-
tok (ed) Handbook of Dynamical Systems, Vol. 1B Elsevier Science B.V.
(2005)

[MaS] H. Masur, J. Smillie: Hausdorff dimension of sets of nonergodic folia-
tions. Ann. of Math. 134 (1991) 455-543.

[MaT] H. Masur and S. Tabachnikov: Rational Billiards and Flat Structures.
In: B. Hasselblatt and A. Katok (ed) Handbook of Dynamical Systems,
Vol. 1A, 1015–1089. Elsevier Science B.V. (2002)

[MaZo] H. Masur and A. Zorich: Multiple Saddle Connections on Flat Surfaces
and Principal Boundary of the Moduli Spaces of Quadratic Differentials,
Preprint math.GT/0402197 73pp (2004)

[McM1] C. McMullen: Teichmüller geodesics of infinite complexity, Acta Math.
191, 191–223 (2003)

[McM2] C. McMullen: Billiards and Teichmüller curves on Hilbert modular sur-
faces. J. Amer. Math. Soc., 16, no. 4, 857–885 (2003)

[McM3] C. McMullen: Dynamics of SL2(R) over moduli space in genus two.
Annals of Math. (to appear)

[McM4] C. McMullen: Teichmüller curves in genus two: Discriminant and spin.
Math. Ann. (to appear)

[McM5] C. McMullen: Teichmüller curves in genus two: The decagon and be-
yond. J. Reine Angew. Math. (to appear)

[McM6] C. McMullen: Teichmüller curves in genus two: Torsion divisors and
ratios of sines. Preprint (2004)



Flat Surfaces 583

[McM7] C. McMullen: Prym varieties and Teichmüller curves. Preprint (2005)
[Mil] J. Milnor: Remarks concerning spin manifolds. In: Differential and Com-

binatorial Topology (in Honor of Marston Morse), Princeton (1965)
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1 Introduction

We shall consider some elementary analytic dynamical systems widely studied
in literature, which are perturbations of integrable (linear) ones. A classical
problem is to study the conditions for the perturbed system to be analytically
conjugated to the linear one, that is the conditions for the existence of an
analytic change of coordinates which maps the perturbed system to the linear
one. We shall see that such conditions can be naturally expressed in terms of
the Diophantine properties of a suitable parameter.

1.1 Brjuno function and Brjuno numbers

For ω ∈ R \ Q define the Brjuno function as the solution of the functional
equation
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{
B(ω + 1) = B(ω),
B(ω) = − log ω + ωB(1/ω), if ω ∈ (0, 1),

(1)

and call ω a Brjuno number if B(ω) < ∞. We shall be interested essentially
in numbers ω ∈ B = {ω ∈ R \ Q ∩ (0, 1) | B(ω) < ∞}.

Note that, if we denote with {pn/qn}∞n=0 the sequence of convergents of ω
and define

B1(ω) =
∞∑

n=0

log qn+1

qn
, (2)

there exists a constant C such that |B(ω) − B1(ω)| < C for all ω ∈ B [20].

1.2 Some dynamical systems

Siegel’s problem. Consider the holomorphic diffeomorphism [19]

z′ = f(z), f(z) = λz + O(z2), (3)

with λ = e2πiω. We shall write f ∈ Gλ, where G is the group of germs of
holomorphic diffeomorphisms of (C, 0) and Gλ = {f ∈ G | f ′(0) = λ}.

Define also Rλ(z) = λz. We say that f ∈ Gλ is linearizable if there exists
h ≡ hf ∈ G1 such that f ◦ h = h ◦ Rλ: in such a case the diffeomorphism
(3) is conjugated to its linear part Rλ: if we set α′ = λα then z′ = h(α′) =
h ◦ Rλ(α) = f ◦ h(α) = f(h(α)). The problem of finding conditions under
which f is linearizable is usually referred to as Siegel’s problem. The following
result holds.

Theorem 1. If ω ∈ B and λ = e2πiω then f ∈ Gλ is linearizable.

This follows from a stronger result of Yoccoz. If D denotes the unit disk
in C call Sλ the topological space of germs of holomorphic diffeomorphisms
f : D → C such that f(0) = 0, f ′(0) = λ and f is univalent on D, and, for
λ = e2πiω, set r(ω) = inff∈Sλ

r(f, ω), if r(f, ω) is the radius of convergence of
hf for f ∈ Gλ: then Theorem 1 is implied from the following one [20].

Theorem 2. There exists a constant C such that |log r(ω) + B(ω)| < C for
all ω ∈ B. Moreover if f(z) is the quadratic polynomial Pλ(z) = λz(1− z/2),
for all η > 0 there exists a constant Cη such that −B(ω)−C < log r(Pλ, ω) <
−(1 − η)B(ω) + Cη for a universal constant C and for all ω ∈ B.

Yoccoz also proved that if Pλ is linearizable then every germ f ∈ Gλ is
also linearizable [20].

Standard map, semistandard map and generalizations. Consider the dynamical
system

Tε :

{
x′ = x + y + εf(x),
y′ = y + εf(x),

(4)
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where f is a zero-average analytic function and ε is a small parameter. If
f is real for real x, then we shall study Tε as a map from the cylinder to
itself, Tε : T × R → T × R, with T = R/2πZ, otherwise we shall consider
Tε as a map Tε : C/2πZ × C → C/2πZ × C. As particular cases we consider
the standard map and the semistandard map [9, 16], obtained by choosing
f(x) = s(x) ≡ sin x and f(x) = e(x) ≡ exp(ix)/2i, respectively. In the case
of the semistandard map the parameter ε can be eliminated, but we prefer to
keep it in order to make easier the comparison with the standard map.

We look for solutions of the form{
x = α + u(α, ε),
y = 2πω + v(α, ε),

(5)

such that in the variable α the dynamics is a trivial rotation α′ = α + 2πω,
with rotation number ω. We see immediately that we can express v(α, ε) in
terms of u(α, ε) as v(α, ε) = u(α, ε) − u(α − 2πω, ε), while u(α, ε) solves the
functional equation

u(α + 2πω, ε) + u(α − 2πω, ε) − 2u(α, ε) = εf (α + u(α, ε)) . (6)

We say that Tε admits an invariant curve with rotation number ω if there
exists an analytic function u(α, ε) such that (5) holds with α → α + 2πω; the
function u(α, ε) is called the conjugating function. The following result holds.

Theorem 3. If ω ∈ B and ε is small enough then Tε admits an analytic
invariant curve with rotation number ω.

A more quantitative statement is the following. Given ω ∈ B there exists
r(ω, f) ∈ R

+ such that there exists a solution of (4) of the form (5) with u (and
hence v) analytic in ε for |ε| < r(ω, f): r(ω, f) is the radius of convergence of
the conjugating function for fixed ω and f (see also (2) below).

For the semistandard and the standard maps the result above can be
strengthened. In fact in such cases, if we set ρ0(ω) = r(e, ω) and ρ(ω) =
r(s, ω), one can prove the following results.

Theorem 4. There exist a universal constant C0 such that | log ρ0(ω) +
2B(ω)| < C0 for all ω ∈ B.

Theorem 5. There exist a universal constant C such that | log ρ(ω)+2B(ω)| <
C for all ω ∈ B.

The bounds of Theorem 4 were proved by Davie [10], who also proved
that one has ρ(ω) ≤ ρ0(ω), which implies the upper bound in Theorem 5. In
an unpublished paper [11] Davie also showed, by using renormalization group
methods, that for all η > 0 there exists a constant Cη such that one has
log ρ(ω) ≥ −(1 − η)B(ω) − Cη for ω ∈ B. This is not enough to obtain the
lower bound in Theorem 5, which was proved by Berretti and Gentile [4].
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Here we want to describe a technique which is suitable for proving the
lower bounds considered so far. In particular we shall see that it is very easy to
obtain the lower bounds for Siegel’s problem and the semistandard map, while
the case of the standard map turns out to be more difficult. Such a difficulty
is mainly due to the optimality of the bound: if we confined ourselves to show
that ρ(ω) (or even r(ω, f)) is strictly positive for ω ∈ B, then the proof would
be much easier.

2 Tree formalism

We use a technique which shows strong analogies with the renormalization
group method in quantum field theory. Such a technique has been introduced
by Eliasson [12] and Gallavotti [13] to prove existence of KAM tori for quasi-
integrable Hamiltonian systems, and then developed and extended in other
papers (we refer to the bibliography for some reviews [15, 14, 6]).

Let us consider first the dynamical system (4). The conjugating function
u(α, ε) admits a formal expansion – the Lindstedt series – of the form

u(α, ε) =
∑
ν∈Z

uν(ε) eiνα =
∑
k≥1

u(k)(α) εk =
∑
k≥1

∑
ν∈Z

u(k)
ν eiνα εk. (1)

For the standard map, at order k in ε, the Fourier expansion in α contains
only frequencies |ν| ≤ k, while for the semistandard map one has ν = k. The
radius of convergence of the Lindstedt series is naturally defined as

r(ω, f) = inf
α∈T

(
lim sup

k→∞

∣∣∣u(k)(α)
∣∣∣1/k

)−1

. (2)

By inserting (1) into the functional equation (6), and equating the Taylor-
Fourier coefficients we obtain a recursion relation for the coefficients of the
Lindstedt series: one has u

(1)
ν = g(ων)fν and, for k ≥ 2,

u(k)
ν = g(ων)

∑
m≥1

1
m!

∑
k1+...+km=k−1
ν0+ν1+...+νm=ν

fν0 (iν0)
m

m∏
j=1

u(kj)
νj

, (3)

with fν0 = −iν0δ|ν0|,1/2 for the standard map and fν0 = −iν0δν0,1/2 for the
semistandard map, and

g(ων) =
1

γ(ων)
, γ(ων) = 2 [cos(2πων) − 1] . (4)

The denominators γ(ων) can become arbitrarily small for ω irrational: this is
a manifestation of the famous small divisors problem.

By iterating the recursion relation (3), which corresponds to apply to each
u

(kj)
νj the same decomposition used for u

(k)
ν itself, we see that at the end the
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Fig. 1. A tree of order 18. The labels are not shown. All the arrows point toward
the point to the extreme left (root). All the other points are called nodes.

coefficients u
(k)
ν can be written as sums of contributions which are represented

in terms of tree graphs (or simply trees); see for instance Figure 1.
A tree ϑ is constructed in the following way. Consider a family of k−1 lines

arranged to connect a set of k points called nodes (so that no loops arise), and
add an extra line connecting one of the nodes to another point called the root.
Each line carries an arrow pointing toward the root: this induces a partial
ordering relation on the nodes (and lines), with the lowest nodes drawn to the
right and the root to the left. Given two nodes u1 and u2, we write u2 � u1 if
u1 is along the path of lines connecting u2 to the root r of the tree (they can
coincide: we say that u2 ≺ u1 if they do not).

If a line connects a node u to the right to a point u′ to the left we say that
the line comes out from u and enters u′. For each node u there are only one
line coming out from u and mu ≥ 0 entering ones; as there is a one-to-one
correspondence between nodes and lines, we can associate to each node u a
line �u coming out from it. By construction there is only one line entering the
root: we shall call it the root line. Note that each line �u can be considered
the root line of the subtree consisting of the nodes satisfying w � u and of the
lines connecting them plus the line connecting u to u′, which will be the root
of such subtree. The order of the tree is defined as the number k of nodes of
the tree.

To each node u ∈ ϑ we associate a mode label νu ∈ Z \ {0}, which is a
Fourier label of the function f(x); define the momentum flowing through the
line �u as ν�u

=
∑

w�u νw.
Let us denote by Θ0

k,ν the set of all trees of order k with momentum ν
flowing through the root line, and by V (ϑ) and Λ(ϑ), respectively, the set of
nodes and the set of lines of the tree ϑ. To each node u ∈ V (ϑ) we associate a
node factor Fv = (iνu)mu+1/(mu!2), while to each line � ∈ Λ(ϑ) we associate
a propagator G� = g(ων�), where g(ων) is defined in (4).

Given a tree ϑ ∈ Θ0
k,ν define a map Val : Θ0

k,ν → R as
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Val(ϑ) =
( ∏

u∈V (ϑ)

Fv

)( ∏
�∈Λ(ϑ)

G�

)
; (5)

if Θ0
k,ν = ∅ we interpret Val(ϑ) = 0. We call Val(ϑ) the value of the tree ϑ.

Then the following result holds, establishing a link between the conjugating
function and the trees.

Lemma 1. One can take u
(k)
0 = 0 for all k ≥ 1. Then ν� �= 0 ∀� ∈ Λ(ϑ) and

one has u
(k)
ν =

∑
ϑ∈Θ0

k,ν
Val(ϑ) for all k ≥ 1 and for all ν �= 0.

The (easy) proof can be carried out by induction. We say that two trees
are equivalent if they can be transformed into each other by continuously
deforming the lines without crossing. The sum over Θ0

k,ν is meant as a sum
over all the trees which are not equivalent; that this is the correct way to
count the trees follows from the fact that it keeps trace of the combinatorial
factors naturally arising from the Taylor expansion (1) when we iterate the
graphical construction generated by (3). The number of elements of Θ0

k,ν is
bounded by 22k in the case of the semistandard map and by 2k22k in the case
of the standard map. So we are left with the problem of proving that the series
(1) converges.

In the case of Siegel’s problem we consider the formal expansion

h(α) = α +
∞∑

k=2

h(k)αk ≡
∞∑

k=1

h(k)αk, (6)

so that, by writing f(z) = λz +
∑∞

k=2 fkzk and inserting (6) into (3), we
obtain h(1) = 1 and, for k ≥ 2,

h(k) = g(ωk)
k∑

m=2

fm

∑
k1+...+km=k

m∏
j=1

h(kj), (7)

with
g(ωk) =

1
λk − λ

=
1

e2πiωk − e2πiω
. (8)

Therefore also h(k) admits a graphic representation. The trees are defined as
before, but with different labels. First of all for each node u one can have
either mu = 0 or mu ≥ 2, where mu is the number of lines entering u; one
sets νu = 1 when mu = 0 and νu = 0 when mu ≥ 2. The order k of a tree ϑ is
defined as k =

∑
u∈V (ϑ) νu, while the momentum is defined as before; hence

k = ν�0 , if �0 is the root line. To each node u ∈ V (ϑ) we associate a node
factor fmu

, and to each line � we associate a propagator G�, with G� = g(ων�)
if ν� ≥ 2 and G� = 1 if ν� = 1.

By defining Val(ϑ) as in (5), with the new definition of the node factors
and of the propagators, the following result holds.
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Lemma 2. One has formally h(k) =
∑

ϑ∈Θ0
k,k

Val(ϑ, ω) for all k ≥ 1.

Again we have to face the problem of proving the convergence of the formal
expansion. As the case of Siegel’s problem can be essentially dealt with as for
the semistandard map (as far as the lower bound on the radius of convergence
is concerned) we shall concentrate henceforth on the system (4).

3 Renormalization group and multiscale decomposition

To control the product of the propagators in (5) one needs a multiscale analysis
which can be pursued as follows. We say that a line � has scale n if ‖ων�‖ =
minp∈Z |ων� − p| is approximately equal to 1/qn+1. A more formal statement
can be obtained by introducing a C∞ partition of unity. Let χ(x) a C∞ non-
increasing compact-support function defined on R

+, such that

χ(x) =

{
1 for x ≤ 1,

0 for x ≥ 2,
(1)

and define χ0(x) = 1−χ(96q1x) and χn(x) = χ(96qnx)−χ(96qn+1x) for each
n ∈ N; then for each line � set

G� = g(ων�) =
∞∑

n=0

G
(n)
� , G

(n)
� = χn(‖ων�‖) g(ων�), (2)

and call G
(n)
� the propagator on scale n. [To deal with the semistandard map

one could simply to introduce a sharp partition of unity (through step func-
tions); however when discussing the standard map one has to develop to sec-
ond order the propagators, and this explains why we need a smooth function
in (2).]

Given a tree ϑ, we can associate to each line � of ϑ a scale label n�, using
the multiscale decomposition (2) and singling out the summand with n = n�.
We shall call n� the scale label of the line �, and we shall say that the line �
is on scale n�.

Note that if a line � has momentum ν� and scale n�, then

1
96qn�+1

≤ ‖ων�‖ ≤ 1
48qn�

, (3)

provided that one has χn�
(||ων�||) �= 0. Note also that given a line � at most

only two summands in (2) are really non-vanishing.
Therefore u

(k)
ν can be rewritten as

u(k)
ν =

∑
ϑ∈Θk,ν

Val(ϑ),

Val(ϑ) =
( ∏

u∈V (ϑ)

Fv

)( ∏
�∈Λ(ϑ)

G
(n�)
�

)
,

(4)
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where Θk,ν is the set of all trees of order k and with ν�0 = ν carrying also
scale labels (in addition to the node labels); in the case of the semistandard
map the number of elements in Θk,ν is bounded by 2k22k, while in the case
of the standard map the number of elements in Θk,k is bounded by 2k2k22k.

Given a tree ϑ, a cluster T of ϑ on scale n is a maximal connected set
of lines of lines on scale ≤ n with at least one line on scale n; see Figure 2.
We shall say that such lines are internal to T , and write � ∈ Λ(T ). A node
u is called internal to T , and we write u ∈ V (T ), if at least one of the lines
entering or coming out from it is in T . Each cluster has an arbitrary number
mT ≥ 0 of entering lines but only one or zero line comes out from it; we shall
call external to T the lines entering or coming out from T (and which are all
on scale > n). We shall denote with nT the scale of the cluster T , and with
kT the number of nodes in T .

Fig. 2. A tree with its clusters. One should imagine that the tree itself is a cluster
including all the other clusters. All the clusters T with mT = 1 are resonances if
also the conditions (2) and (3) of the definition of resonance are satisfied.

Note that there is an inclusion relation between clusters: the innermost
ones are those with highest scale, while the outermost ones are on the lowest
scale. The aim of introducing the clusters is to characterize the lines of the
trees on the basis of the sizes of the corresponding propagators: the lines which
are contained inside the outermost clusters correspond to the propagators with
the smallest small divisors, and so on.

If we confine ourselves to the semistandard map the notion of cluster is
sufficient to prove the lower bound of Theorem 4: this will be discussed in
Section 4. On the contrary in the case of the standard map additional problems
arise, due to the fact that for each node u ∈ V (ϑ) one has νu = ±1, whereas
νu = 1 for the semistandard map. To single out the cases which can give
problems, we have to introduce the notion of resonance; see Figure 2.
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A cluster T will be called a resonance with resonance-scale n if the fol-
lowing three properties are verified: (1) mT = 1, (2)

∑
u∈V (T ) νu = 0 and (3)

kT < qn, where n is minimum between the scales of the external lines of T .
The condition (1) means that T has only one entering line, which, by the

condition (2) must have the same momentum of the exiting one (so that the
scales of the two lines can differ at most by one unit). Of course resonances
can not arise in the case of the semistandard map.

Then, because of the presence of resonances, in the case of the standard
map there can be some trees in which there can be accumulation of small divi-
sors equal to each other, but, when the values of all trees in Θk,ν are summed
together, if we group the trees into suitable classes then some remarkable
cancellation mechanisms intervene between them, and the overall contribu-
tion still admits a bound of the same kind of that of the semistandard map:
we shall be more precise in Section 5.

With the notion of resonance given above we are able to prove the lower
bound in Theorem 5 with 4 instead of 2 in front of the Brjuno function; see
Section 5. In order to obtain 2 a more careful analysis is needed: in particular
the cancellation mechanisms have to be extended to a larger class of trees; we
shall give some ideas about the proof at the end of Section 5.

4 Lower bound for the semistandard map

Let {qn}∞n=0 be the denominators of the convergents of ω. Then one has [18]

1
2qn+1

< ‖ωqn‖ <
1
qn

, (1a)

‖ων‖ > ‖ωqn‖ ∀|ν| < qn+1, |ν| �= qn. (1b)

Let us denote by Nn(ϑ) the number of lines � ∈ Λ(ϑ) with scale n� = n.
Then we want to prove that, in the case of the semistandard map one has

Nn(ϑ) ≤ k

qn
+

8k

qn+1
, (2)

which immediately implies the lower bound of Theorem 4. In fact (2), inserted
into (4), gives

|Val(ϑ)| ≤
(

1
2

)k ∞∏
n=0

(
cq2

n+1

)Nn(ϑ)

≤
( c

2

)k

exp

[
2k

∞∑
n=0

(
log qn+1

qn
+

8 log qn+1

qn+1

)]
,

(3)

where, in the first line, 1/2 is a bound on the node factor Fv, while cq2
n+1

is a bound on the propagator of a line on scale n, with c a constant. Then
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|u(k)
k | ≤ 23k

(
ce16D/2

)k
e2B1(ω)k, where D is a universal constant bounding∑∞

n=1 q−1
n log qn for any irrational ω with convergents {pn/qn}, so that, by

using the definition (2), the lower bound log ρ0(ω)+2B1(ω) > −C follows for
some constant C.

So it remains to check the bound (2). One can prove inductively on the
order k the following result.

Lemma 3. One has {
Nn(ϑ) = 0, if k < qn,

Nn(ϑ) ≤ 2k/qn − 1, if k ≥ qn,
(4)

for all n ≥ 0 and for all ϑ ∈ Θk,k.

The first bound in (4) is immediately implied by the property (1). Roughly
speaking the idea behind the proof of the second bound is the following. First
of all note that the propagators G� are large for ‖ων�‖ small. However, even if
the quantities ‖ων�‖ can become very small for ν� large enough, they cannot
“accumulate” too much. In fact once a line �1 on scale n (i.e. with momentum
ν�1 such that ‖ων�1‖ is of order 1/qn+1) has been obtained, in order to have
again a line �2 on the same scale along the path connecting �1 to the root, one
needs many nodes between the two lines (i.e. many nodes preceding �2 and
following �1), as each node contributes a mode label 1 to the momentum ν�2

and to have ‖ω(ν�2−ν�1)‖ ≤ ‖ων�1‖+‖ων�2‖ = O(1/qn+1) requires ν�2−ν�1 to
be large enough, by (1); but ν�2 − ν�1 is exactly the number of nodes between
�1 and �2. Therefore the number of lines on a fixed scale n can not grow
indefinitely.

Unfortunately the bound (4) is not enough to obtain (2) because of the
factor 2 instead of 1. This is not only a technical problem: it is not difficult
to provide explicit examples of trees for which the bound (4) with 1 instead
of 2 is false. In fact what we can prove is that Lemma 3 can be improved into
the following one.

Lemma 4. If qn+1 > 4qn one has⎧⎪⎨
⎪⎩

Nn(ϑ) = 0, if k < qn,

Nn(ϑ) ≤ k/qn, if qn ≤ k < qn+1/4,

Nn(ϑ) ≤ k/qn + 8k/qn+1 − 1, if k ≥ qn+1/4,

(5)

for all n ≥ 0 and for all ϑ ∈ Θk,k.

Again the proof is by induction; the details can be found in literature [6].
A basic result in order to deduce Lemma 4 is the following one [10].

Lemma 5. Given ν ∈ Z such that ‖ων‖ ≤ 1/4qn, then (1) either ν = 0 or
|ν| ≥ qn, and (2) either |ν| ≥ qn+1/4 or ν ∈ qnZ.

The proof is elementary, but the result plays an essential role in proving
Lemma 4; in particular it allows to distinguish between the two latter bounds
of (5) by treating in a different way the cases k < qn+1/4 and k ≥ qn+1/4.
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5 Lower bound for the standard map

In the case of the standard map, once a line �1 on a large scale n has appeared,
another line �2 on the same scale can be easily obtained once more along the
path connecting �1 to the root, without going much further along the tree.
For instance it is enough to have between �1 and �2 two nodes u1 and u2 with
νu1 = −νu2 = 1, in order to have ν�2 = νu1 + νu2 + ν�1 = ν�1 , so that the line
connecting u1 to u2 forms a resonance T with external lines �1 and �2 (as all
the conditions of the definition are satisfied) and the line �2 coming out from
T can have the same scale n; see Figure 3. So we can prove a bound like the
one of Lemma 3, but with Nn(ϑ) replaced by N∗

n(ϑ), if the latter denotes the
number of lines � ∈ Λ(ϑ) with scale n� = n which do not come out from any
resonance (we shall call them non-resonant lines).

Fig. 3. Trees obtained by shifting the entering line of a resonance T with two nodes
u1 and u2 with opposite mode labels. The black balls represent the remaining parts
of the tree and the labels are not shown.

The key remark to deal with the resonances is that, when summing the
tree values over all possible trees as in (4), all terms containing the same
resonance cancel almost exactly: more precisely, for any resonance T , the
values of the trees containing that resonance cancel to order 2 in ‖ων�1‖, if �1
is the line entering T . [To exploit the cancellations we have to derive twice the
propagators: here the smoothness of the compact support functions comes in.]
The criterion to single out the trees between which the cancellation operates
is the following: given a tree ϑ with a resonance T , consider the class FT (ϑ)
of all trees obtained by detaching the line entering T and re-attaching it to all
the nodes inside T , and for each of such trees consider also the tree obtained
by reverting the sign of the mode labels of the nodes contained in T (i.e. by
replacing each νu = 1 with νu = −1 and vice versa); see for an example Figure
3.

But a second order cancellation produces a factor proportional to ‖ων�1‖2

which is exactly of the same size of the propagator of the line �2 (recall that
ν�2 = ν�1). In other words, given a line �1 on a very large scale n, it is possible
to create another line �2 with the same scale adding only a few nodes (for
instance 2 in the example above), but in such a way a resonance arises, and
the cancellation mechanism described above produces a gain factor which
compensates the propagator of the newly added line �2: this means that also
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in the case of the standard map there cannot be any accumulation of small
divisors.

The conclusion is that the propagators corresponding to the non-resonant
lines can be controlled as in the case of the semistandard map (through a
minor extension of Lemma 3), while the propagators corresponding to the lines
coming out from some resonance (the resonant lines) are in fact compensated
by the gain factors produced by the cancellation mechanism. This is enough
to prove the convergence of the perturbative series (hence the existence of the
corresponding invariant curve), but produces again the extra factor 2 for the
lower bound of the radius of convergence.

The first thing one can think about is to try to extend also Lemma 4
to cover the case of the non-resonant lines for the standard map. But this
does not work: with the previous definition of resonance the bounds (5) fail
to be satisfied. Then one can try to generalize the definition of resonance by
enlarging the class of graphs to use in order to exploit the cancellations.

The condition (2) will be certainly retained, as it is needed for the cancella-
tion mechanism to work. On the contrary we eliminate the condition mT = 1:
we allow any number of entering lines (see Figure 4). Note that such condi-
tions are suggested from the study of the conjugating function for complex
values of the rotation number ω; see Section 6.

Fig. 4. A resonance, according to the new definition, can have an arbitrary number
of entering lines. The black balls represent the remaining parts of the tree and the
structure of the cluster is not shown.

The definition of resonance which is obtained at the end is rather involved,
and we give it here only for completeness. Given a cluster T denote with ni

T

the minimum of the scales of the lines entering T (if any) and with no
T the

scale of the line exiting T (if any). A cluster T of ϑ, with one exiting line
and at least one entering line, will be called a resonance with resonance-scale
n = min{ni

T , no
T }, if (1)

∑
u∈V (T ) νu = 0, (2) all the lines entering V are

on the same scale except at most one which can be on a higher scale, (3)
ni

T ≤ no
T if mT ≥ 2, and |ni

T − no
T | ≤ 1 for mT = 1, (4) kT < qn, (5) mT = 1

if qn+1 ≤ 4qn, (6) if qn+1 > 4qn and mT ≥ 2, denoting by k0 the sum of the
orders of the subtrees of order < qn+1/4 entering T , either there is only one
subtree of order k1 ≥ qn+1/4 entering T and k0 < qn+1/8, or there is no such
subtree and k0 < qn+1/4.
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Of course we shall not give here a proof how to extend Lemma 4 to the
number of non-resonant lines (with the new definition of resonance), for which
we refer to the literature [4]. An important remark is however that if we try
to prove a bound like (5) for N∗

n(ϑ) we have to restrict the definition of non-
resonant lines, in order to eliminate some cases which we are not able to control
(of course all such cases are not present in the case of the semistandard map
because of the condition (1) in the definition of resonance). What is left out
at the end is exactly the class of graphs verifying all the conditions (1)÷(6)
listed above.

6 Extensions, conclusions and open problems

The analysis of the previous sections extends to more general functions f in
(4), and analyticity of the conjugating function can be proved for any analytic
f , at least as far as we are not looking for optimal bounds. This means that
the proof of Theorem 3 can be easily obtained for any analytic function f in
(4), but no analogous of Theorems 4 and 5 is known for functions f different
from those of the semistandard and the standard maps.

Some light can be shed on the problem by studying the conjugating func-
tion for ω ∈ C. Suppose for instance that, in the case of the standard map, a
bound like that of Theorem 5 still holds for complex rotation numbers. One
can take ω of the form ω = p/q + iη, with η ∈ R tending to zero (more
generally one can consider rotation numbers tending to a rational value along
any path of the complex plane non-tangentially to the real axis): since the
Brjuno function B(p/q + iη) diverges as q−1 log |η|−1 [17] one can expect that
ρ(p/q + iη) goes to zero as |η|2/q. In fact this can be proved, and one can
also prove that, by rescaling ε → (2πη)2/qε and letting η go to zero, then the
conjugating function admits a limit function which can be easily expressed in
terms of elliptic functions [2]. An analogous result has been also proved for
the semistandard map and Siegel’s problem [7].

The advantage to study the conjugating function for complex rotation
number is that it is by far easier. Then one can ask how the radius of con-
vergence r(ω, f) behaves for rotation numbers of the form ω = p/q + iη when
more general functions f are taken into account. What is found [3, 5] is that
the scaling properties of the radius of convergence strongly depend on the
perturbation: one finds the that r(p/q + iη, f) goes to zero as |η|2/q(f) for an
integer q(f) which can be obtained from the solution of a suitable Diophan-
tine problem. Generically one has q(f) = 1: in particular this means that the
standard map is not generic in this respect. Another consequence is that a
bound like those of Theorems 4 and 5 can not hold for any analytic function
in general, not even by replacing the factor 2 with another integer or real
number. It is an open problem to see if, given a function f in (4), there exists
a suitable function, generalizing the Brjuno function, in terms of which one
can bound the radius of convergence.
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Coming back to the the standard map, another interesting problem is to
see what happens by keeping real the parameter ε. In other words one can
study until which real value of εc(ω) the invariant curve with rotation number
ω exists for the standard map; of course one has εc(ω) ≥ ρ(ω) and numerical
evidence [1] shows that one can have εc(ω) > ρ(ω). Note that a problem of
this can kind does not arise for the semistandard map and Siegel’s problem,
where the analyticity domains (in ε and in α, respectively) are just disks.

The value εc(ω) is called the critical function: the problem of determining
εc(ω) is much difficult, and it can not be studied with the techniques described
so far (which work well for ε inside the analyticity domain) There is some
numerical (and even some partial theoretical) results on the subject [8], which
seem to suggest that if a bound analogous to that of Theorem 5 holds, with
the factor 2 replaced by some other number β, then β is likely to be 1. But
the situation is not so clear and the problem is still open. Note also that this
is a problem for which it is very difficult to obtain results from numerical
investigations, as Brjuno numbers (which are not necessarily Diophantine)
are very hard to deal with from a numerical point of view.
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1 Introduction

Let α ∈ R \ Q and let (pn/qn)n≥0 be the sequence of the convergents of its
continued fraction expansion. A Brjuno number is an irrational number α such
that

∑∞
n=0 q−1

n log qn+1 < +∞.
The importance of Brjuno numbers comes from the study of analytic small

divisors problems in dimension one. In the case of germs of holomorphic diffeo-
morphisms of one complex variable with an indifferent fixed point, extending
a previous result of Siegel [29], Brjuno proved [7] that all germs with linear
part λ = e2πiα are linearizable if α is a Brjuno number. Conversely the third
author proved that this condition is also necessary [33]. Similar results hold
for the local conjugacy of analytic diffeomorphisms of the circle [17, 34, 35]
and for some area–preserving maps [22, 10], including the standard family
[11, 3, 4].

The set of Brjuno numbers is invariant under the action of the modular
group PGL (2, Z) and it can be characterized as the set where the Brjuno
function B : R \ Q → R ∪ {+∞} is finite. This arithmetical function is Z–
periodic and satisfies a remarkable functional equation which allows B to be
interpreted as a cocycle under the action of the modular group. The Brjuno
function gives the size (modulus L∞ functions) of the domain of stability
around an indifferent fixed point [2, 33] and it conjecturally plays the same
role in many other small divisor problems [26, 27, 23].

In two previous papers [24, 25] we studied the regularity properties of
the Brjuno function and we constructed its complex analytic extension to
the upper half–plane. Both the real and the complex analysis systematically
exploit its relationship with continued fractions and the cocycle relation.

In Section 2 we recall some elementary properties of the continued fraction
expansion of a real number and discuss the relationship between continued
fractions and a certain monoid M of the full modular group GL (2, Z). Note
that the same monoid arises also in the investigations of Lewis and Zagier
[20, 21] concerning period functions and the Selberg zeta function for the
Laplace–Beltrami operator on the modular surface. We then describe various
automorphic actions of M.

In Section 3 we introduce various types of diophantine conditions includ-
ing Brjuno numbers. Then we introduce the Brjuno function B and some
variants Bσ, σ > 0, which lead to different kinds of diophantine conditions
and establish the functional equations all these Brjuno functions satisfy. This
functional equation has the form (1 − T )B(x) = − log x for the Brjuno func-
tion and (1−T )Bσ(x) = x−1/σ for the variants, where T is, roughly speaking,
the operator Tf(x) = xf(x−1) acting on periodic functions. Then we describe
more precisely the relationship of B with the dynamics of quadratic polyno-
mials as established in the works [33, 2] and various conjectures [22, 26, 27, 8].

In Section 4 we explain how the Brjuno functions B and Bσ can be re-
garded as cocycles under the action of the modular group. First we briefly
recall some notions from the cohomology of groups and their applications to
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ergodic theory of dynamical systems. Then we describe the application to the
Brjuno functions.

In Section 5 we give explicit formulas for the complex Brjuno functions
B and Bσ associated to B and Bσ and we state the main results of [25]
on the complexification of the Brjuno function B. A sketch of the proof of
these formulas is given in Section 6: the key remark is that the action of
the operator T can be extended to hyperfunctions. In this section we also
introduce a complex analogue of the continued fraction expansion of a real
number. The main feature of the complex continued fraction is that it reduces
to the real continued fraction when the number is real and it stops after a finite
number of iterations when the number is rational or complex. In the latter
case the absolute value of the imaginary part of the iterates grows at least
exponentially with the number of iterations and when it reaches the value 1/2
the iteration stops. The complex continued fraction can be used to study the
behaviour of the complex Brjuno function B(z) when z is close to [0, 1]. This
is interesting in itself and it was crucial in [25], when applied to the complex
Brjuno function B, in order to prove our main results. Our study allows us
to prove that the restriction of T to the Hardy space (of function vanishing
at infinity) Hp(C \ [0, 1]) ∩ O1(C \ [0, 1]), 1 ≤ p ≤ +∞, is continuous with
spectral radius bounded above by

√
5−1
2 < 1. This is sufficient, for example,

to prove that B belongs to all Hardy spaces with p < +∞ whereas Bσ, σ > 1,
belongs to all spaces with p < σ.

In an Appendix we recall some elementary properties of the dilogarithm,
which arises naturally when considering the complexification of B.

Acknowledgements. The first and third authors are grateful to the orga-
nizers of the Les Houches school on Number Theory and Physics for their
invitation and support.

2 Continued fractions, the modular group, the monoid
M and its action

2.1 The Gauss map and continued fractions

2.1.1 The continued fractions arise constructing the symbolic dynamics of the
Gauss map (as well as for the linear flow on the two–dimensional torus or the
geodesic flow on the modular surface). Here we will consider the iteration of
the Gauss map

A : (0, 1) �→ [0, 1] , (2.1)

defined by

A(x) =
1
x

−
[

1
x

]
, (2.2)

where as as usua [x] denotes the integer part of x. Let
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G =
√

5 + 1
2

, g = G−1 =
√

5 − 1
2

.

To each x ∈ R \Q we associate a continued fraction expansion by iterating A
as follows. Let

x0 = x − [x] ,
a0 = [x] ,

(2.3)

then x = a0 + x0. We now define inductively for all n ≥ 0

xn+1 = A(xn) ,

an+1 =
[

1
xn

]
≥ 1 ,

(2.4)

thus
x−1

n = an+1 + xn+1 . (2.5)

Therefore we have

x = a0 + x0 = a0 +
1

a1 + x1
= . . . = a0 +

1

a1 +
1

a2 +
.. . +

1
an + xn

, (2.6)

and we will write
x = [a0, a1, . . . , an, . . .] . (2.7)

The nth-convergent is defined by

pn

qn
= [a0, a1, . . . , an] = a0 +

1

a1 +
1

a2 +
.. . +

1
an

. (2.8)

The numerators pn and denominators qn are recursively determined by

p−1 = q−2 = 1 , p−2 = q−1 = 0 , (2.9)

and for all n ≥ 0
pn = anpn−1 + pn−2 ,
qn = anqn−1 + qn−2 .

(2.10)

Moreover
x =

pn + pn−1xn

qn + qn−1xn
, (2.11)

xn = − qnx − pn

qn−1x − pn−1
, (2.12)

qnpn−1 − pnqn−1 = (−1)n . (2.13)

Let

βn = Πn
i=0xi = (−1)n(qnx − pn) for n ≥ 0, and β−1 = 1 . (2.14)

From the definitions given one easily proves by induction the following [24]
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Proposition 1. For all x ∈ R \ Q and for all n ≥ 1 one has

(i) |qnx − pn| = 1
qn+1 + qnxn+1

, so that 1
2 < βnqn+1 < 1

(ii) βn ≤ gn and qn ≥ 1
2Gn−1 .

2.2 Algebraic properties: the monoid M and its relations with
continued fractions, Farey intervals and the modular group

2.2.1 Notations:

– G = GL(2, Z) = {
(

a b
c d

)
, a, b, c, d ∈ Z , εg := ad − bc = ±1};

– H is the subgroup of order 8 of matrices of the form
(

ε 0
0 ε′

)
or

(
0 ε
ε′ 0

)
,

where ε, ε′ ∈ {−1,+1};
– M is the monoid with unit

(
1 0
0 1

)
made of matrices g =

(
a b
c d

)
∈ G such

that, if g �= id , we have d ≥ b ≥ a ≥ 0 and d ≥ c ≥ a.

– Z is the subgroup of matrices of the form
(

1 n
0 1

)
, n ∈ Z.

2.2.2 Let g(m) =
(

0 1
1 m

)
, where m ≥ 1. Clearly g(m) ∈ M. Moreover, M is

the free monoid generated by the elements g(m), m ≥ 1: each element g of
M can be written as

g = g(m1) · · · g(mr) , r ≥ 0 , mi ≥ 1 ,

and this decomposition is unique (see , Proposition A1.2 in [25] and also [20]).
2.2.3 One has

G = Z · M · H ,

i.e. the application

Z ×M× H → G , (z,m, h) �→ g = z · m · h

is a bijection.

2.2.4 The subset Z · M of G is made of matrices g =
(

a b
c d

)
such that

d ≥ c ≥ 0 with the following additional restrictions: a = 1 if c = 0, and,
b = a + 1 if d = c = 1.
2.2.5 Let us consider the usual action of G on C = C∪{∞} by homographical

transformations:
(

a b
c d

)
· z = az + b

cz + d
. The following facts are easy to check:

(i) Equation (2.5) can also be written xn = g(an+1)xn+1, therefore we have
x0 = g(a1)g(a2) · · · g(an)xn.
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(ii) The application g �→ g · 1 = a+b
c+d is a bijection of ZM over Q which maps

M onto Q ∩ (0, 1].
(iii) The application g �→ g · 0 = b/d maps ZM onto Q and each rational

number has exactly two inverse images. The two elements which map 0

on 1 are
(

1 1
0 1

)
and

(
0 1
1 1

)
.

(iv) The application g �→ g · [0,+∞] is a bijection of ZM on the set of Farey
intervals (the convention we adopt here implies that [n,+∞] is a Farey
interval, but [−∞, n] is not). For the definition and properties of the Farey
partition of [0, 1] we refer the reader to [15].

3 Diophantine conditions, Brjuno numbers and the
Brjuno function.

3.1 Diophantine conditions

3.1.1 Let γ > 0 and τ ≥ 0 be two real numbers. A number x ∈ R \ Q is
diophantine of exponent τ and constant γ if and only if for all p, q ∈ Z,
q > 0, one has

∣∣∣x − p
q

∣∣∣ ≥ γ q−2−τ .

We denote CD (γ, τ) the set of all irrationals x such that
∣∣∣x − p

q

∣∣∣ ≥ γq−2−τ

for all p, q ∈ Z, q > 0. CD (τ) will denote the union ∪γ>0CD (γ, τ) and
CD = ∪τ≥0CD (τ). One has

CD (τ) = {x ∈ R \ Q | qn+1 = O(q1+τ
n )} = {x ∈ R \ Q | an+1 = O(qτ

n)}
= {x ∈ R \ Q | x−1

n = O(β−τ
n−1)} = {x ∈ R \ Q | β−1

n = O(β−1−τ
n−1 )}

The complement in R\Q of CD is called the set of Liouville numbers. The set
of Liouville numbers has zero Lebesgue measure, zero Hausdorff dimension
but it is a dense Gδ–set

The sets CD (τ) and CD are both PGL (2, Z)–invariant. Moreover if τ > 0
then CD (τ) has full Lebesgue measure. The same holds for ∩τ>0CD (τ) (Roth
numbers).

We will see in the next section that some Brjuno functions can be used to
characterize diophantine numbers.
3.1.2 It is easy to show that if x is an algebraic number of degree n ≥ 2, i.e.
x ∈ R \Q is a zero of a monic polynomial with coefficients in Q and degree n,
then x ∈ CD (n− 2) (Liouville’s theorem). Thue improved this result in 1909
showing that x ∈ CD (τ − 1 + n/2) for all τ > 0 (see [32], Chapter V, for a
very nice discussion of the proof in the cubic case). Actually one can prove
that if x is algebraic then x ∈ CD (τ) for all τ > 0 regardless of the degree,
but this is difficult (Roth’s theorem).

Using the fact that the continued fraction of e =
∑∞

n=0
1
n! is

[2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . .]



Some Properties of Real and Complex Brjuno Functions 609

one obtains that e ∈ ∩τ>0CD (τ). A proof of the continued fraction expansion
of e, which is due to L. Euler, can be found in [18], Chapter V.

The set CD (0) is also called the set of numbers of constant type since
x ∈ CD (0) if and only if the sequence of its partial fractions is bounded. It
has Hausdorff dimension 1 and zero Lebesgue measure.

3.2 Brjuno numbers and the real Brjuno function

Let α ∈ R \ Q and let (pn/qn)n≥0 be the sequence of the convergents of
its continued fraction expansion. A Brjuno number is an irrational number
α such that

∑∞
n=0 q−1

n log qn+1 < +∞. All diophantine numbers are Brjuno
numbers but also “many” Liouville numbers are Brjuno numbers: for example
the number

∑
n≥1 10−n! is a Brjuno number.

The set of Brjuno numbers is invariant under the action of the modular
group PGL (2, Z) and it can be characterized as the set where the Brjuno
function B : R \ Q → R ∪ {+∞} is finite. This arithmetical function is Z–
periodic and satisfies the remarkable functional equation

B(α) = − log α + αB

(
1
α

)
, α ∈ (0, 1) , (3.1)

which allows B to be interpreted as a cocycle under the action of the modu-
lar group (see the next section). Moreover, the quadratic irrationals have an
eventually periodic continued fraction, and one can compute explicitely the
Brjuno function for these numbers, which form a countable but dense set of
irrationals.

In terms of the continued fraction expansion of α the Brjuno function is
defined as follows:

B(α) =
+∞∑
j=0

βj−1(α) log α−1
j , (3.2)

where the two sequences (βj)j≥−1 and (αj)j≥0 are obtained iterating the
Gauss map from α0 = {α}, as in (2.12) and (2.14).

In order to study the regularity properties of B in [24] we introduced the
linear operator

Tf(x) = xf

(
1
x

)
, x ∈ (0, 1) (3.3)

acting in the space of Z–periodic measurable functions and we studied the
equation

(1 − T )Bf = f , (3.4)

so that
Bf (x + 1) = Bf (x) ∀x ∈ R ,

Bf (x) = f(x) + xBf (1/x) ∀x ∈ (0, 1) .
(3.5)
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The choice f(x) = − log{x} (where {·} denotes fractional part) leads to the
Brjuno function B. For other choices of the singular behaviour of f at 0 the
condition Bf < +∞ leads to different diophantine conditions. For example
let σ > 0 and consider the function

Bσ(α) =
+∞∑
j=0

βj−1(α)α−1/σ
j . (3.6)

The same argument as for the Brjuno function (3.2) shows that Bσ is the
solution of the functional equation (3.5) with f(x) = x−1/σ. Moreover if
Bσ(x) < +∞ then x ∈ CD (σ). Viceversa, if x ∈ CD (τ) then Bσ(x) < +∞
for all σ > τ .

Some sort of singular behaviour for f at 0 is needed in order to characterize
some set of diophantine numbers. Indeed if f is Hölder continuous then Bf

is also Hölder continuous and this fact could help to explain the numerical
results of Buric, Percival and Vivaldi [6].

Acting on Lp([0, 1]) the operator T has spectral radius bounded above by√
5−1
2 (thus (1− T ) is invertible). A suitable adaptation of this argument has

led us to conclude that the Brjuno function belongs to BMO (T1) (bounded
mean oscillation, see [13, 14] for its definition and more information). The
proof of the first statement is very simple: replacing the Haar measure dx
with the invariant measure dx

(1+x) log 2 for the Gauss map one obtains the same
Lp spaces since the density is bounded below and above. But now

‖Tmf‖p
Lp =

∫ |(Tmf)(x)|p dx
(1+x) log 2 =

∫
βp

m−1|(f ◦ Am)(x)|p dx
(1+x) log 2

≤ gp(m−1)
∫ |f(x)|p dx

(1+x) log 2 = gp(m−1)‖f‖p
Lp ,

where the inequality is obtained applying Proposition 1 (ii) and the invariance
of the measure by A allows one to replace f ◦ Am with f .

By Fefferman’s duality theorem BMO is the dual of the Hardy space H1

thus one can add an L∞ function to B so that the harmonic conjugate of the
sum will also be L∞ (actually, it is proved in [25] that the harmonic conjugate
of B is bounded, see below). This suggests to look for an holomorphic function
B defined on the upper half plane which is Z–periodic and whose trace on R

has for imaginary part the Brjuno function B. The function B will be called
the complex Brjuno function.

3.3 The Brjuno function and dynamics.

The importance of Brjuno numbers comes from the study of one–dimensional
analytic small divisors problems. In the case of germs of holomorphic diffeo-
morphisms of one complex variable with an indifferent fixed point, extending
a previous result of Siegel [29], Brjuno proved [7] that all germs with linear
part λ = e2πiα are linearizable if α is a Brjuno number. Conversely the third
author proved that this condition is also necessary [33]. Similar results hold
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for the local conjugacy of analytic diffeomorphisms of the circle [17, 34, 35]
and for some area–preserving maps [22, 10] including the standard family
[11, 3, 4].

Another motivation for the introduction of the complex Brjuno function
comes from results concerning the linearization of the quadratic polynomial
Pλ(z) = λ(z − z2) ([33], Chapter II). One has the following results:

(i) there exists a bounded holomorphic function U : D → C such that |U(λ)|
is equal to the radius of convergence of the normalized linearization of Pλ;

(ii) for all λ0 ∈ S
1, |U(λ)| has a non–tangential limit in λ0 (which is still equal

to the radius of convergence of the normalized linearization of Pλ0);
(iii) if λ = e2πiα, α ∈ R \ Q, Pλ is linearizable if and only if α is a Brjuno

number. Moreover there exists a universal constant C1 > 0 such that for
all Brjuno numbers α one has

B(α) − C1 ≤ − log |U(λ)| ≤ B(α) + C1 .

(The upper bound was proved in [33] together with a weaker lower bound:
this version is due to [2]).

In [24] the authors proposed the following conjecture (see also [22]): the func-
tion defined on the set of Brjuno numbers by α �→ B(α) + log |U(e2πiα)| ex-
tends to a 1/2–Hölder continuous function as α varies in R. For a recent numer-
ical study of this conjecture see [8]. (An analogue of this conjecture for the so–
called critical function of the standard map was stated in [26]: see [5] for some
numerical evidence). If this were true then the function −iB(z)+ log U(e2πiz)
would also extend to a Hölder continuous function on H.

4 The real Brjuno function as a cocycle

In this Section we show how to interpret the real Brjuno function as a cocycle
under the action of PGL(2, Z) on R\Q. To this purpose we first introduce some
elementary notions borrowed from group cohomology (a subject which has had
its most important applications in number theory). The standard reference is
[30] but [31] has a nice short introduction to it (p. 104 and p. 222). For a
beautiful introduction to the cohomology of SL(2, Z) and its applications to
the theory of periods of modular forms see [36].

4.1 Group cohomology

Let G be a group, L be an abelian group (later on G will be the modular
group PGL(2, Z) and L the real projective line P

1(R)). To say that L is a
G–set means that G acts on L, i.e. there is a homomorphism G → Hom (L,L)
or, equivalently, one has a map G × L → L, (g, l) �→ g · l, such that e · l = l,
g1 ·(g2 ·l) = (g1g2)·l for all g1, g2 ∈ G, l ∈ L and where e is the neutral element
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of G. If in addition one has that g · (l1 + l2) = g · l1 + g · l2 we say that L is a
G–module. This is equivalent to giving L the structure of a Z[G]–module.

Let r ∈ N. An element ϕ ∈ Cr(G,L) = Map(Gr, L) is called an r–cochain.
There is a sequence

. . . → 0 → 0 → C0(G,L) d→ C1(G,L) d→ C2(G,L) d→ C3(G,L) d→ . . .

where C0(G,L) = L and the coboundary operator d is defined as follows: let
ϕi ∈ Ci(G,L), then

(dϕ0)(g) = g · ϕ0 − ϕ0

(dϕ1)(g1, g2) = g1 · ϕ1(g2) − ϕ1(g1g2) + ϕ1(g1)
(dϕ2)(g1, g2, g3) = g1 · ϕ2(g2, g3) − ϕ2(g1g2, g3) + ϕ2(g1, g2g3) − ϕ2(g1, g2)

(dϕ3)(g1, g2, g3, g4) = g1 · ϕ3(g2, g3, g4) − ϕ3(g1g2, g3, g4) + ϕ3(g1, g2g3, g4)
−ϕ3(g1, g2, g3g4) + ϕ3(g1, g2, g3)

. . . = . . .

It is now easy to guess how does d act on an arbitrary r–cochain. One has
d ◦ d = 0, i.e. Im d ⊂ Ker d.

Definition 1. An r–cocycle is an element of Zr(G,L) = Ker d|Cr(G.L). An r–
coboundary is an element of Br(G,L) = Im d|Cr−1(G.L). The r–th cohomology
group Hr(G,L) = Zr(G,L)/Br(G,L).

Suppose that one is given a group G, a set X on which G acts (i.e. a
group homomorphism G → End (X)), a commutative ring A (with multi-
plicative group A∗) and an A–module M . Let MX = Map (X,M). (We will
be interested later in the case X = R \ Q and M = C).

Definition 2. A function χ : G × X → A∗ is an automorphic factor if
the application G × MX → MX given by (g, ϕ) �→ g · ϕ where (g · ϕ)(x) =
χ(g−1, x)ϕ(g−1 ·x) defines a left action of G on MX , i.e. χ(g0g1, x) = χ(g0, g1 ·
x)χ(g1, x).

The datum of an automorphic factor gives MX the structure of a G–
module and the previous considerations apply. In particular a 1–cocycle is
a map c : G → MX such that g0 · c(g1) − c(g0g1) + c(g0) = 0. If we let
č(g) = c(g−1), being a 1–cocycle means that

č(g0g1, x) = χ(g1, x)č(g0, g1 · x) + č(g1, x) ∀x ∈ X .

The coboundary of ϕ ∈ MX is (dϕ)(g) = g · ϕ − ϕ.

4.2 Dynamics and cohomology

The standard situation in dynamical systems (see, e.g. [17]) is the following:
the phase space X is a compact metric space and the time evolution is provided
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by a homeomoerphism f ∈ Homeo (X). The dynamical system generated by
f gives X the structure of a Z–set and gives to the space of observables
C(X, R) the structure of a Z–module (with the trivial choice of automorphic
factor χ ≡ 1, but also other choices are conceivable). Thus a 1–coboundary is
dϕ = ϕ ◦ f −ϕ where ϕ ∈ C(X, R). Since for a Z–action one can always make
the identification between observables f and 1–cocycles c (the correspondence
being c(1) ←→ f) the first cohomology groups can be identified with the
quotient C(X, R)/dC(X, R). This has relevant applications in ergodic theory
since, for example, a system is uniquely ergodic if and only if the uniform
closure dC(X, R) has codimension one in C(X, R) (i.e. it is as large as possible
since a constant function cannot be a coboundary).

4.3 Action of PGL(2, Z) on R \ Q

Let us consider G = PGL(2, Z) and X = R \Q, the action being given by the
homographies. The transformations T (x) = x + 1 and S(x) = x−1 generate
PGL(2, Z). One has the following more precise result:

Proposition 2. Let g ∈ PGL(2, Z) and let x0 ∈ R \Q. There exist r ≥ 0 and
elements g1, . . . , gr ∈ {S, T, T−1} such that

(i) g = gr . . . g1;
(ii)let xi = gixi−1 for 1 ≤ i ≤ r, then xi−1 > 0 if gi = S.

Moreover one can require that gigi−1 �= 1 for 0 < i ≤ r, and in this case
r, g1, . . . , gr are uniquely determined.

The previous proposition has the following important consequence for the
modular interpretation of the Brjuno function functional equation: it is enough
to prescribe an automorphic factor for the PGL(2, Z)–action on functions on
R \ Q giving its values in correspondence of the inversion S just at points
belonging to the interval (0, 1). More precisely one has

Corollary 1. Let A be an abelian ring, t : R\Q → A, s : (0, 1)∩(R\Q) → A∗,
where A∗ denotes the group of invertible elements of A. There exists a unique
automorphic factor χ such that

χ(T, x) = t(x) for allx ∈ R \ Q = X ,
χ(S, x) = s(x) for allx ∈ X ∩ (0, 1) .

The same property holds for cocycles: they just need to be prescribed, in
correspondence of the inversion, on the interval (0, 1).

Corollary 2. Let A be an abelian ring, χ an automorphic factor, M a A–
module, MX with the structure of Z

[G]–module defined by χ. Let

čT : X → M
čS : X ∩ (0, 1) → M
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denote two maps. There exists a unique cocycle č : G × M → M such that

č(T ;x) = čT (x) for allx ∈ X
č(S;x) = čS(x) for allx ∈ X ∩ (0, 1) .

Note that one must have

č(T−1;x) = −χ(T−1, x)čT (x − 1) for all x ∈ X , (4.1)

č(S;x) = −χ(S, x)čS(x−1) for all x ∈ X , x > 1 . (4.2)

Moreover, if g = gr . . . g1 and x0 are given as in Proposition 2 then

č(g;x0) =
r∑

i=1

(č(gi, xi−1)χ(gi−1 . . . g1, x0)) (4.3)

4.4 The real Brjuno function as a cocycle

We now apply the results of 4.3 to the functional equation of the Brjuno
function (and, more generally, to equations (3.4) where T is replaced by
(Tνf)(x) = xνf(x−1) as in [24]. Let A = R, t(x) = 1 and s(x) = εxν with
ε ∈ {−1,+1}, ν ∈ R and apply Corollary 1. Then

χ(Tn, x) = 1 , for alln ∈ Z , x ∈ X
χ(S, x) = εxν , for allx ∈ X , x > 0 .

If x0 ∈ (0, 1), one has seen that U = T−1STST−1S, thus

χ(U, x0) = εxν
0ε

(
1 − x0

x0

)ν

ε

(
1

1 − x0

)ν

= ε

From U = TnUTn it follows that

χ(U, x) = ε

for all x ∈ X and from S = USU follows that

χ(S, x) = εε|x|νε

for x < 0, or
χ(S, x) = ε|x|ν

for all x ∈ X. One concludes that one must have

χ(g, x) =

{
|cx + d|ν if ε = +1
det(g)|cx + d|ν if ε = −1

(4.4)

for all g =
(

a b
c d

)
∈ PGL(2, Z).
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Consider now the functional equations

B
(ν)
f (x) = xνB

(ν)
f (1/x) + f(x) , x ∈ (0, 1) ∩ R \ Q

B
(ν)
f (x) = B

(ν)
f (x + 1) , x ∈ R \ Q ,

(4.5)

where f : (0, 1) ∩ R \ Q → C is given. By Corollary 2, there exists exactly
one 1–cocycle čf such that

čf (T, x) = 0 ∀x ∈ R \ Q

čf (S, x) = f(x) ∀x ∈ R \ Q ∩ (0, 1) .
(4.6)

The 1–cocycle is a 1–coboundary if and only if the functional equations have
a solution B

(ν)
f , in which case we have cf = −d0(B(ν)

f ). These considerations
also apply and may become fruitful in case we restrict C

R\Q to one of its
C

[G]–submodules: measurable functions, Lp spaces, BMO, etc..

4.5 The cocycles associated to the Brjuno functions

We can use (4.2) and (4.3) to compute the cocycle associated to B
(ν)
f on the

whole real line. From (4.2) and (4.6) we get

čf (S, x) = −xνf(x−1) ∀x ∈ R \ Q , x > 1 .

To obtain the values of čf (S, x) for x < 0 we apply (4.3) to čf (S,U(x)) where
U(x) = −x. If 0 < x < 1, since U = T−1STST−1S and χ(U, x) = 1 we obtain

čf (S,−x) = čf (S, x) + χ(S, x)čf (U, S(x)) − čf (U, x) . (4.7)

On the other hand iterating several times the cocycle condition we get for
0 < x < 1

čf (U, x) = χ(S, x) χ(S, (T−1S)(x))čf (S, (TST−1S)(x))
+χ(S, x)čf (S, (T−1S)(x)) + čf (S, x)

thus if 0 < x < 1 we obtain

čf (U, x) = f(x) − f(1 − x) +

{
−(1 − x)νf

(
x

1−x

)
if 0 < x < 1/2

+xνf
(

1−x
x

)
if 1/2 < x < 1

(4.8)

If n < x < n + 1 then from the identity U = T−nUTn one gets

čf (S,U(x)) = čf (S, x) + χ(S, x)čf (U, S(x)) − čf (U, x − n) (4.9)

čf (U, x) = čf (T−nUTn, x) = čf (U, x − n) (4.10)

thus for all x > 0 we get
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čf (U, x) = f(x0)−f(1−x0)+

⎧⎨
⎩

−(1 − x0)νf
(

x0
1−x0

)
if 0 < x0 < 1/2

+xν
0f

(
1−x0

x0

)
if 1/2 < x0 < 1

(4.11)

where x0 = {x} is the fractional part of x. Plugging (4.11) into (4.7) we find
that if 0 < x < 1, if we denote x1 = {x−1}

čf (S, − x) = f(1 − x)

+xν

⎡
⎣f(x1) − f(1 − x1) +

⎧⎨
⎩

−(1 − x1)νf
(

x1
1−x1

)
if 0 < x1 < 1/2

xν
1f

(
1−x1

x1

)
if 1/2 < x1 < 1

⎤
⎦

+

{
−(1 − x)νf

(
x

1−x

)
if 0 < x < 1/2

+xνf
(

1−x
x

)
if 1/2 < x < 1

(4.12)
Finally if x > 1 we get

čf (S,−x) = −xνf(x−1) + f(x−1) − f(1 − x−1)

+

⎧⎨
⎩

−(1 − x−1)νf
(

x−1

1−x−1

)
if 0 < x−1 < 1/2

x−νf
(

1−x−1

x−1

)
if 1/2 < x−1 < 1

− f(x0) + f(1 − x0) +

⎧⎨
⎩

−(1 − x0)νf
(

x0
1−x0

)
if 0 < x0 < 1/2

+xν
0f

(
1−x0

x0

)
if 1/2 < x0 < 1

(4.13)
where as usual x0 = {x}.

5 Complexification. Statement of the main Theorem

The main result of [25] can be summarized as follows:

Theorem 1. (i) The complex Brjuno function is given by the series

B(z) = − 1
π

∑
p/q∈Q

{
(p′ − q′z)

[
Li2

(
p′−q′z
qz−p

)
− Li2

(
− q′

q

)]
+(p′′ − q′′z)

[
Li2

(
p′′−q′′z

qz−p

)
− Li2

(
− q′′

q

)]
+ 1

q log q+q′′

q+q′

}
,

(5.1)

where
[

p′

q′ ,
p′′

q′′

]
is the Farey interval such that p

q = p′+p′′

q′+q′′ (with the con-
vention p′ = p − 1, q′ = 1, p′′ = 1, q′′ = 0 if q = 1) and Li2(z) is the
dilogarithm of z (see Appendix 1).

(ii) The real part of B is bounded on the upper half plane and its trace (i.e.
non–tangential limit) on R is continuous at all irrational points and has a
decreasing jump of π/q at each rational point p/q ∈ Q.

(iii)As one approaches the boundary the imaginary part of B behaves as fol-
lows:
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– if α is a Brjuno number then �mB(α+w) converges to B(α) as w → 0
in any domain with a finite order of tangency to the real axis;

– if α is diophantine one can allow domains with infinite order of tan-
gency.

If instead of considering the Brjuno function associated to the cocycle deter-
mined by the choice f(x) = − log x in (3.5) we choose f(x) = x−1/σ with
σ > 1 this leads to the real Brjuno function Bσ given in (3.6) whereas the cor-
responding complex Brjuno function Bσ(z) is obtained by a formula analogue
of (5.1) where the dilogarithm is replaced by the hypergeometric function

ϕσ(z) =
1
z

σ

σ − 1
F

(
1, 1 − 1

σ
, 2 − 1

σ
, z−1

)
. (5.2)

More precisely one has

Bσ(z) = − 1
π

∑
p/q∈Q

{
(p′ − q′z)

[
ϕσ

(
qz−p

p′−q′z

)
− ϕσ

(
− q

q′

)]
+(p′′ − q′′z)

[
ϕσ

(
qz−p

p′′−q′′z

)
− ϕσ

(
− q

q′′

)]
+

[
− 1

q′ ϕ
′
σ

(
− q

q′

)
+ 1

q′′ ϕ
′
σ

(
− q

q′′

)]}
.

(5.3)

The results of Section 6.2 show that B belongs to all Hardy spaces Hp

with 1 ≤ p < +∞ whereas Bσ, σ > 1, belongs to those with 1 ≤ p < σ.

6 Some ideas from the proofs.

6.1 Hyperfunctions and operator T

6.1.1 We follow here [16], Chapter 9 and [9], Chapitre I. Let K be a non
empty compact subset of R. A hyperfunction with support in K is a linear
functional u on the space O(K) of functions analytic in a neighborhood of K
such that for all neighborhood V of K there is a constant CV > 0 such that

|u(ϕ)| ≤ CV sup
V

|ϕ| , ∀ϕ ∈ O(V ) .

We denote by A′(K) the space of hyperfunctions with support in K. It is a
Fréchet space: a seminorm is associated to each neighborhood V of K.

Let O1(C \ K) denote the C–vector space of functions holomorphic on
C \ K and vanishing at z = ∞. One has the canonical isomorphism

A′(K) � O(C \ K)
O(C)

� O1(C \ K) . (6.1)

To each u ∈ A′(K) corresponds ϕ ∈ O1(C \ K) given by

ϕ(z) = u(cz) , ∀z ∈ C \ K , (6.2)



618 Stefano Marmi, Pierre Moussa, and Jean-Christophe Yoccoz

where cz(x) = 1
π

1
x−z .

Note that to u(x) = −χ(0,1)(x) log x corresponds ϕu(z) = − 1
π

∫ 1

0
log x
x−z dx =

− 1
π Li2(z−1) whereas to uσ(x) = χ(0,1)(x)x−1/σ corresponds − 1

π

∫ 1

0
x−1/σ

x−z dx =
− 1

π ϕσ(z) where ϕσ is given by the hypergeometric function (5.2).
Conversely to each ϕ ∈ O1(C \ K) corresponds the hyperfunction

u(ψ) =
i

2π

∫
γ

ϕ(z)ψ(z)dz , ∀ψ ∈ A (6.3)

where γ is any piecewise C1 path winding around K in the positive direction.
We will also use the notation

u(x) =
1
2i

[ϕ(x + i0) − ϕ(x − i0)] (6.4)

for short.
6.1.2 Let T

1 = R/Z ⊂ C/Z. A hyperfunction on T is a linear funtional U on
the space O(T1) of functions analytic in a complex neighborhood of T

1 such
that for all neighborhood V of T there exists CV > 0 such that

|U(Φ)| ≤ CV sup
V

|Φ| , ∀Φ ∈ O(V ) .

We will denote A′(T1). the Fréchet space of hyperfunctions with support in T.
For U ∈ A′(T), let Û(n) := U(e−n) with en(z) = e2πinz. The doubly infinite
sequence (Û(n))n∈Z satisfies

|Û(n)| < Cεe
2π|n|ε . (6.5)

for all ε > 0 and for all n ∈ Z with a suitably chosen Cε > 0. Conversely
any such sequence is the Fourier expansion of a unique hyperfunction with
support in T.

Let OΣ denote the complex vector space of holomorphic functions Φ :
C \ R → C, 1–periodic, bounded at ±i∞ and such that the limit Φ(±i∞) :=
lim�m z→±∞ Φ(z) exist and verify Φ(+i∞) = −Φ(−i∞).

The spaces A′(T1) and OΣ are canonically isomorphic. To each U ∈ A′(T1)
corresponds Φ ∈ OΣ given by

Φ(z) = U(Cz) , ∀z ∈ C \ K , (6.6)

where Cz(x) = cot π(x − z). Conversely to each Φ ∈ OΣ corresponds the
hyperfunction

U(Ψ) =
i

2

∫
Γ

Φ(z)Ψ(z)dz , ∀Ψ ∈ A(T1) (6.7)

where Γ is any piecewise C1 path winding around a closed interval I ⊂ R of
length 1 in the positive direction. We will also use the notation
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U(x) =
1
2i

[Φ(x + i0) − Φ(x − i0)] (6.8)

for short.
Euler’s formula

1
π

∑
n∈Z

1
z − n

= cot πz (6.9)

shows that the following diagram commutes:

A′([0, 1]) −−−−−→ O1(C \ [0, 1])
∑

Z

⏐⏐⏐⏐�
⏐⏐⏐⏐�

∑
Z

A′(T1) −−−−−→ OΣ

the horizontal lines are the above mentioned isomorphisms and the sum over
integer translates, denoted

∑
Z
, is defined as follows. If ϕ ∈ O1(C\ [0, 1]) then

one can decompose in a unique way

ϕ(z) = a0 log
z

z − 1
+ ϕ0(z) , (6.10)

where a0 ∈ C, ϕ0 ∈ O2(C \ J) (i.e. ϕ0 has a zero of order at least two at
infinity) and we consider the main branch of the logarithm in C \ R

−. We
have

N∑
n=−N

log
z − n

z − n − 1
= log

z + N

z − N − 1

and this leads to the definition

∑
Z

ϕ(z) :=
∑

Z

ϕ0(z) +

{
−a0πi if �m z > 0
+a0πi if �m z < 0

. (6.11)

6.1.3 The results of 6.1.1 and 6.1.2 become fruitful in answering to the natural
question how to extend the operator T to complex analytic functions. Indeed
this is achieved as follows: the operator T extends to the space A′([0, 1]) of
hyperfunctions u with support contained in [0, 1] (see [25], section 1.4 for a
proof of this fact). Using the canonical isomorphism (6.1), on O1(C \ [0, 1])
the formula for T reads

(Tϕ)(z) = −z

∞∑
m=1

[
ϕ

(
1
z
− m

)
− ϕ(−m)

]
+

∞∑
m=1

ϕ′(−m) . (6.12)

Formally we have

(1 − T )−1ϕ(z) =
∑
r≥0

(T rϕ)(z) =
∑
g∈M

(Lgϕ)(z) , (6.13)
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where the monoid

M =
{

g =
(

a b
c d

)
∈ GL (2, Z) , d ≥ b ≥ a ≥ 0 , d ≥ c ≥ a

}
∪

{(
1 0
0 1

)}
,

acts on O1(C \ [0, 1]) according to

(Lgϕ)(z) = (a− cz)
[
ϕ

(
dz − b

a − cz

)
− ϕ

(
−d

c

)]
−det(g)c−1ϕ′

(
−d

c

)
. (6.14)

The series (6.13) actually converges in O1(C \ [0, 1]) to a function
∑

M ϕ. To
recover a holomorphic periodic function on H one sums over integer translates:

Bϕ(z) =
∑
n∈Z

(∑
M

ϕ

)
(z − n) . (6.15)

As we have already mentioned, to construct the complex Brjuno function B
one has to take ϕ0(z) = − 1

π Li2
(

1
z

)
whereas for the functions Bσ(z) one must

take − 1
π ϕσ(z) as in (5.2).

The proof of formulas (5.1) and (5.3) is the immediate from (6.15): it is
enough to use property (iv) of 2.2.5 which relates the matrices in ZM to
rational numbers.

To summarize, in order to construct the complex analytic extension of any
of the functions Bf (defined by (3.5)) our strategy is the following:

(i) take the restriction of the periodic function f to the interval [0, 1];
(ii) consider its associated hyperfunction uf and its holomorphic representa-

tive ϕ ∈ O1(C \ [0, 1]).

Then the series (6.15) converges to the complex extension Bf of the function
Bf . The main difficulty (unless f belongs to some Lp space, see [25], Section
4.3) would be to recover Bf as non–tangential limit of the imaginary part
of Bf as �m z → 0. But this is always the case for the functions described
in Section 5. , namely the complex Brjuno function B and its generalizations
Bσ. This is explained in the next Section where we discuss the action of T on
Hardy spaces.

6.2 Hp estimates

In order to control the action of T on spaces of holomorphic functions we
will make use of the following important remark. The open set C \ [0, 1] is
an hyperbolic Riemann surface which is naturally equipped with a Poincaré
metric. By the Lemma of Schwarz–Pick (see [1]), given two hyperbolic Rie-
mann surfaces M,N and an analytic map f : M → N either its differential
df contracts the hyperbolic metric or f is a surjective local isometry. In what
follows we will denote dhyper the Poincaré metric on the Riemann surface
under consideration. Given ρ > 0 we denote



Some Properties of Real and Complex Brjuno Functions 621

Vρ(D∞) = {z ∈ C \ [0, 1] , dhyper(z,D∞) < ρ} . (6.16)

the ρ–neighborhood of D∞ in C \ [0, 1].
It is then easy to check that for all ρ ≥ 0 and for all m ≥ 1 if z ∈ Vρ(D∞)

then 1
z − m ∈ Vρ(D∞).

On Hardy spaces one can prove [25] results which are completely analogous
to those obtained for the real Brjuno operator in [24]. The Hardy spaces
setting is especially useful in order to have guaranteed the existence of almost
everywhere non–tangential limits (see, e.g. [12, 13]). For example an easy proof
gives

sup
Vρ(D∞)

|T rϕ(z)| ≤ c′ρ

(√
5 − 1
2

)r

sup
Vρ(D∞)

|ϕ(z)| , (6.17)

where ρ ≥ 0 and for all ϕ ∈ O1(C \ [0, 1]).
We may also consider the Hardy space Hp(D∞), 1 ≤ p < +∞ of ana-

lytic functions ϕ : D∞ → C such that the subharmonic function |ϕ|p has
a harmonic majorant. It is an immediate consequence of the Riemann map-
ping theorem that this space is isomorphic to Hp(D). Indeed if h maps D∞
conformally onto D one can use the norm

‖ϕ‖Hp(D∞) = ‖ϕ ◦ h−1‖Hp(D) =
(∫

∂D∞
|ϕ(z)|p|h′(z)||dz|

)1/p

. (6.18)

Note that since ∂D∞ is a rectifiable Jordan curve h extends to a homeomor-
phism of ∂D∞ onto T

1 which is conformal almost everywhere. Again one finds
that T is a bounded linear operator on Hp(D∞) with spectral radius ≤

√
5−1
2 .

6.3 Complex continued fractions

The introduction of a complex analogue of Gauss’ algorithm of continued
fraction expansion of a real number is essential for the study of the bound-
ary behaviour of

∑
M(Lgϕ)(z) and the construction of the complex Brjuno

function. Here we recall from [25] a complex version of the continued fraction
which has been used there to study the complex Brjuno function B.
6.3.1 We consider the following domains:

D0 =
{

z ∈ C , |z + 1| ≤ 1 , 	e z ≥
√

3
2 − 1

}
,

D1 =
{

z ∈ C , |z| ≥ 1 ,
∣∣∣z − 1√

3

∣∣∣ ≤ 1√
3

}
,

D = {z ∈ C , |z| ≤ 1 , |z − i| ≥ 1 , |z + i| ≥ 1 , 	e z > 0} ,
H0 = {z ∈ C , |z − i| ≤ 1 , |z + 1| ≥ 1 , 
m z ≤ 1/2} ,
H ′

0 = {z ∈ C , z ∈ H0}
∆ = H0 ∪ H ′

0 ∪ D = {z ∈ C , |z| ≤ 1 , |z + 1| ≥ 1 , | 
m z| ≤ 1/2} ,
D∞ = C \ (D0 ∪ ∆ ∪ D1)

= {|
m z| > 1/2} ∪ {	e z <
√

3
2 − 1} ∪ {	e z >

√
3

2 , |z −
√

3
3 | >

√
3

3 }.
A fundamental property is the following
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(i) if z /∈ D ∪D1 (in particular if z ∈ D∞) then 1/z −m ∈ D∞ for all m ≥ 1;
(ii) if z ∈ D1, then 1/z − 1 ∈ D0 and 1/z − m ∈ D∞ for all m ≥ 2.

Observe that
SD = ∪m≥1(∆ + m) ,

where the domains have disjoint interior. Thus, for z ∈ D, we define

A(z) =
1
z
− m = (g(m))−1 · z , (6.19)

(we recall that g(m) =
(

0 1
1 m

)
, m ≥ 1) where m ≥ 1 is the unique integer

such that
A(z) ∈ ∆ , |A(z)| < 1 .

Iterating from z0 ∈ D, we define

zi+1 = A(zi) = Ai+1(z0) (6.20)

as long as zi = Ai(z) ∈ D. The iteration process stops when one of the two
following conditions is verified:

(i) zl = 0 for some l ≥ 0; this happens if and only if z0 ∈ Q,
(ii) zl /∈ (D ∪ {0}), for some l ≥ 0; this happens if and only if z0 /∈ R.

For all 0 ≤ i < l, we will denote mi+1 the integer such that

zi+1 =
1
zi

− mi+1 , mi+1 ≥ 1 . (6.21)

6.3.2 Let (
pi−1 pi

qi−1 qi

)
=

(
0 1
1 m1

)
. . .

(
0 1
1 mi

)
∈ M , 0 ≤ i ≤ l .

Then one has the same recurrence relations as for the real continued fraction

pi+1 = mi+1pi + pi−1 ,
qi+1 = mi+1qi + qi−1 ,

(6.22)

with initial data p−1 = q0 = 1 and p0 = q−1 = 0. Moreover

z0 =
pi−1zi + pi

qi−1zi + qi
, zi =

pi − qiz0

qi−1z0 − pi−1
, (6.23)

and if one poses

βi(z0) =
i∏

j=0

zj = (−1)i(qiz0 − pi) , (6.24)

then
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βi(z0) =
zi

qi + qi−1zi
=

1
qi+1 + qizi+1

. (6.25)

Finally one has

(−1)i �mz0 = |βi−1(z0)|2 �m zi = |qi + qi−1zi|−2 �m zi ,
dzi

dz0
= (−1)i(βi−1(z0))−2 = (−1)i(qi + qi−1zi)2 .

Observe that, as |zi+1 + 1| ≥ 1 and �e zi+1 ≥
√

3
2 − 1 for i < l, we have from

(6.26)

|βi(z0)| ≤ q−1
i+1[cos π/12]−1 =

2
√

2
1 +

√
3
q−1
i+1 (6.27)

and, as qi ≤ qi+1, |zi+1| ≤ 1,

|βi(z0)| ≥ 1
2
q−1
i+1 . (6.28)

A1. Appendix 1: Some properties of the dilogarithm

The classical dilogarithmic series (see [19, 28] for more information) is defined
by

Li2(z) =
+∞∑
n=1

zn

n2
(A1.1)

and it is convergent for |z| ≤ 1. Since − log(1 − z) =
∑+∞

n=1
zn

n , the analytic
continuation of the dilogarithm to C \ [1,+∞) is given by

Li2(z) = −
∫ z

0

log(1 − t)
t

dt =
∫ z

0

(∫ t

0

dζ

1 − ζ

)
dt

t
. (A1.2)

From

Li2

(
1
z

)
= −

∫ 1

0

log t

z − t
dt , (A1.3)

it follows that Li2
(

1
z

)
is the Cauchy–Hilbert transform of the real function

ϕ0(t) =

{
− log t if t ∈ [0, 1]
0 elsewhere

(A1.4)

Note also that
ImLi2(t ± i0) = ±π log t , (A1.5)

where t ∈ [1,+∞). Moreover

|Li2(z)| = O(log2 |z|) as|z| → +∞ . (A1.6)
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CNRS, Paris, France)
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449, 466–468, 540, 542–544,
560–570

Hg – moduli space of holomorphic
1-forms, 464, 510, 542, 555,
570–572

H(d1, . . . , dm) – stratum in the moduli
space, 464, 465, 467–470, 497,
502–504, 509, 517, 519, 521, 522,
524, 528, 544, 546, 548, 572

H1(d1, . . . , dm) – “unit hyperboloid”,
466, 467, 469, 470, 476, 514, 520,
528, 529, 549

Mg – moduli space of complex struc-
tures, 449, 464, 470, 540–542, 544,
566

Q – moduli space of quadratic dif-
ferentials, 540–544, 548, 549,
570–572

R – (extended) Rauzy class, 492–494,
497–501, 547

SL(2, R)-action on the moduli space,
446, 466–468, 514, 537, 541–544,
549–551, 559, 566–572

dν – volume element in the moduli
space, 465, 528

dν1 – volume element on the “unit
hyperboloid”, 466, 467, 514

ν1, . . . , νg – Lyapunov exponents related
to the Teichmüller geodesic flow,
474, 476, 495, 501–505

θ1, . . . , θg – Lyapunov exponents of the
Rauzy–Veech cocycle, 494–496

A
Abelian differential, see Holomorphic

1-form
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Abelian ring, 613
Action on the moduli space
– of GL+(2, R), 449, 466–468, 540,

542–544, 560–570
– of SL(2, R), 446, 466–468, 514, 537,

541–544, 549–551, 559, 566–572
Admissible, 406
Algebraic fields, 74
Almost modular function, 163
Arithmetic
– groups, 73
– systems, 70
Asymptotic
– cycle, 447, 471–476, 481
– flag, 476, 486, 493, 577
Automorphic function, 188

B
BC algebra, 343
BC system
– abelian case, 281
Berry–Tabor conjecture, 164, 184
Bessel function, 192, 209
Billiard
– counting of periodic trajectories, 451,

525–528, 570
– in polygon, 445, 446, 451, 570
– in rational polygon, 446, 453–455
– in rectangular polygon, 525–528
– on constant negative curvature

surfaces, 15
– on plane rectangular, 7
– rational polygonal, 404
– table, 450, 570
– – L-shaped, 527, 562, 563, 568
– trajectory, 446, 451–453
– – generic, 451, 570
– – periodic, 451, 455, 525–528, 570
– triangular, 451, 551, 570
Birkhoff decomposition, 276
Boltzmann constant, 283
Brauer theory, 276
Brjuno function, 587, 604, 609
– as cocycle, 614
– complex, 610, 616, 621
Brjuno number, 588, 604, 609
Bryno function, see Brjuno function
Bryuno number, see Brjuno number

C

Chaotic system, 46, 184

Characters

– imprimitive, 137

– real primitive, 139

Choquet simplex, 285, 322

Cocycle

– multiplicative, 447, 494

Cohomological equation, 405

Completeness relation, 193

Cone angle, 442, 444, 452, 454, 463,
511, 517, 518

Configuration of saddle connections or
of closed geodesics, 517, 522, 524

Conical

– point, see Conical singularity

– singularity, 442, 444, 452, 454, 458,
459, 463, 465, 518–519, 558

Conjugated classes, 24

Connected component of a stratum,
see Moduli space: connected
components of the strata

Connection

– saddle connection, see Saddle
connection

Continued fraction, 448, 488, 496,
505–507

Continuous faction

– expansion, 606, 609

Continuous fraction

– algorithm, 403, 410, 417

Continuous fractions, 621

Correlation functions, 52

Correlation of zeros

– higher, 135

– pair, 134, 137

Critical temperature, 271, 285

Cusp, 188, 191

Cusp forms, 145, 147

– Maass, 192, 193, 206

Cusp of the moduli space, see also
Moduli space; principal boundary,
448, 462, 469, 507, 517, 521–525

Cycle

– asymptotic, see Asymptotic cycle

– relative, 463
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D
de Branges
– function, 369
– inverse theorem, 373
Dedekind η-function, 337
Dedekind zeta function, 192
Degenerated eigenvalues, 203
Degree of zero, 463
Density functions
– n-level, 113
– 1-level, 113
Density of state, 23
– mean, 23
Diagonal
– generalized, 451, 525
Diagonal approximation
– Correlation functions, 54
– for arithmetic systems, 85
Diagram
– separatrix diagram, 532
Differential
– Abelian, see Holomorphic 1-form
– quadratic, see Holomorphic quadratic

differential
Dilogarithm, 623
Dimension of a stratum, 464
Dimensional regularization, see

Renormalization
Diophantine conditions, 608
Direction
– completely periodic, 470
– vertical, 445, 463, 477
Dirichlet beta function, see L-function
Discriminant, 567
Dixmier trace, 275
Dynamical system
– suspension, 422
– suspension data, 422

E
EBK quantization, 164
Eigenvalues, 197
Eisenstein series, 193, 296
Elliptic curves, 108
Ergodic, 443, 451, 467, 570, 573
– multiplicative ergodic theorem, 447,

449, 494, 576–578
– uniquely, 417
– uniquely ergodic, 446, 470, 508, 573

Exponent
– Lyapunov exponent, 447, 449, 474,

476, 494–496, 501–505, 575

F
Fabulous states, 280, 294
Fagnano trajectory, 451
Farey interval, 608, 616
Fermi-surface, 446, 450, 456, 458
Finite part (FP), 353–355, 360, 361, 363
Fixed-points, 188, 191
Flag
– asymptotic, 476, 486, 493, 577
– Lagrangian, 476, 495
– of subspaces, see Flag: asymptotic
Flat connection
– G-valued, 277
Flat surface, 445
Flow
– ergodic, 469
– frame, 395
– hyperbolic, 383
– minimal, 469, 508
– Teichmüller geodesic flow, see

Teichmüller geodesic flow
– uniquely ergodic, 508
Foliation
– defined by a closed 1-form on a

surface, see Foliation: measured
foliation

– horizontal, 459
– kernel foliation, 554
– measured foliation, 446, 457–459
Form
– holomorphic 1-form, see Holomorphic

1-form
Formula
– of Gauss–Bonnet, 463
– of Siegel–Veech, 448, 515
Fourier expansion, 192
Free energy, 215
– F0, 218
– F1, 220
Free monoid, 607
Free probability, 232
Fricke functions, 332
Fundamental domain, 186, 190
Fundamental region, 19
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G
Galois group
– Gal(Q/Q), 288
– Gal(Qab/Q), 346
Gaudin’s lemma, 114
Gauss map, 605
Gauss–Bonnet formula, 463
Generalized diagonal, 451
Generators, 186, 190
– symmetry, 190
Geodesic, 185, 189, 443
– closed, 443, 455, 507–517, 519–525
– complex geodesic, 449, 541, 544, 550
– counting of periodic geodesics, 443,

507–517
– generic, 443, 471
– in flat metric, 446, 452
– motion, 184
Gibbs
– canonical ensemble, 283
– condition, 283
– relation, 284
GL2 system, 280, 289, 305, 311, 339
GOE, 112, 184
Graph
– countable, 246
– non-directed, 246
– random, 245, 250
Green function, 10, 22, 218
– semiclassical, 36
Grothendieck-Teichmüller group, 276
Group
– discrete, 18
– free, 239
– modular, 18
– orthogonal, 110
– simplectic, 110
– unitary, 109
Group cohomology, 611
GSE, 112, 184
GUE, 112, 184

H
Haar measure, 110, 239
Hadamard product, see Infinite product
Half-translation surface, 445, 538–539,

548, 571
Hamiltonian, 287
Hardy spaces, 621

Hardy-Littlewood conjecture, 59
Hecke
– congruence group, 145
– eigenfunction, 206
– eigenvalue, 206
– forms, 143, 146
– modular algebra, 311
– operator, 193, 203
Hecke operators, 94
Hejhal’s algorithm, 193
– central identity, 195
Hilbert’s 12th problem, 280, 292, 343
Hirota equations, 219
Holography principle, 343
Holomorphic
– 1-form, 446, 465
– differential, see Holomorphic 1-form
– quadratic differential, 538, 539
Holonomy, 442–445, 452, 453, 538
Hopf Algebra
– Feyman graphs, 276
Hurwitz zeta function, see Zeta function
Hyperbolic
– geometry, 16
– matrix, 20
Hyperbolic metric, 185, 189
Hyperelliptic
– connected component, 546
– involution, 546
– surface, 546
Hyperfunction, 617

I
Implicit automorphy, 195
Incidence matrix, 248
Infinite product
– Hadamard or Weierstrass, 353, 356,

361
– zeta-regularized, 354, 357, 359, 360,

364
Integer point of the moduli space, see

Lattice in the moduli space
Interval exchange map, 405, see Interval

exchange transformation
Interval exchange transformation, 447,

478–493
– space of, 485, 488, 492–494, 496, 497,

499, 500
Invariant measure, 431
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– for i.e.m., 429
Isometries, 185, 189

J
Jacquet–Langlands Correspondence, 98

K
Katok–Zemliakov construction, 454, 525
Keane’s property, 407, 408
Kernel foliation, 554
Kloosterman sums, 92
KMS condition, 280, 284
KMS state, 281, 288
– at critical temperature, 275
– extremal, 281, 322
Kontsevich-Zorich cocycle, 428

L
L-function, 108, 125, 364
– Dirichlet, 135, 366
– Dirichlet β-function, 352, 362
– modular, 142
– symmetric square, 156
Lagrangian
– flag, 476, 495
Laplace-Beltrami operator, 18
Laplacian, 188, 192
Large N limit, 216, 231
Lattice
– in the moduli space, 448, 528, 529
– subgroup, 541
LDirichlet L-functions, see L-function
Level counting function, 198
– integral, 200
Li’s criterion, 364
Linear fractional transformation, 185,

189
Liouville numbers, 608
Loop equation, 222
Lyapunov exponent, 447, 449, 474, 476,

494–496, 501–505, 575

M
Maass waveforms, 152, 189, 192
Metric
– flat, see Surface: flat; very flat
– Teichmüller metric, 448, 539
Modular curves
– noncommutative boundary, 339, 342

Modular forms
– higher level, 145
Modular group, 72, 185, 607
Moduli space
– connected components of the strata,

476, 493, 525, 549, 571
– integer point of, see Lattice in the

moduli space
– of Abelian differentials, see Moduli

space of holomorphic 1-forms
– of complex structures, 449, 464, 470,

540–542, 544, 566
– of holomorphic 1-forms, 446, 448,

464, 510, 541, 542, 555, 570–572
– of quadratic differentials, 448, 525,

540–544, 548, 549, 570–572
– principal boundary of the moduli

space, see also Cusp of the moduli
space, 448, 522–525

– volume of the moduli space, 448, 466,
528–530, 535–537

Mollifiers, 158
Moment, 131, 138
Motivic Galois theory, 276, 278
Multiplicative, 206
Multiplicative cocycle, see Cocycle:

multiplicative
Multiplicative ergodic theorem, 447,

449, 494, 576–578

N
Nearest-neighbor spacings, 203
Non-arithmetic triangles, 99
Noncommutative compactification, 340
Noncommutative tori, 339
Number variance, 167

O
Orbifold, 188
– finite, 188, 192
– non-compact, 188, 192
Order (of a sequence), 353, 357

P
Period, 464, 519
– absolute, 464
– relative, 465, 470, 553, 557
Periodic orbits, 21
– multiplicities, 82
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Pesin theory, 578
Petersson scalar product, 192
Picard group, 189, 190
Poisson process, 163
Poisson summation formula, 8
Poissonian, 203
Polish space, 249
Polygon
– rational, 446, 453
– rectangular, 525–528
Polygonal billiard, see Billiard in

polygon
Primitive character, 375
Principal boundary of the moduli

space, see Moduli space: principal
boundary

Q
Q-Lattice
– commensurable, 270
– invertible, 271, 339
– noncommutative geometry of com-

mensurability classe, see GL2-system
– quantum statistical dynamical

system, see BC system
Quadratic differential, see Holomorphic

quadratic differential
Quantum chaos, 5, 163
– arithmetic, 184
Quantum eigenvalues
– statistical distribution, 49
Quantum Field Theory
– renormalization, see Renormalization
Quasiconformal
– coefficient of quasiconformality, 537,

539
– extremal quasiconformal map, 448,

537, 539
Quaternion, 189
Quaternion algebras, 76
Quotient space, 186, 190

R
Random matrix, 108, 213
– characteristic polynomials, 120
– Gaussian, 238
– theory, 109
Rational observables, 281
Rational polygon, see Polygon: rational

Rational subalgebra, 272
Rauzy class, 492, 493, 501, 547, 549
– extended Rauzy class, 493
Rauzy diagram, 412, 429
– name, 412
– reduced, 413
– secondary name, 412
Rauzy–Veech induction, 447, 488
Rauzy-Veech
– algorithm, 404, 410, 429
– algorithm for suspension, 424, 426
Relative
– cycle, 463
– homology group, 463
Renormalization, 275, 447, 482–488, 570
– β-function, 278
– ’t Hooft relations, 277
– counterterms, 276
– minimal substration scheme, 276
– Tree formalism, 590
Riemann hypothesis, 125, 127, 129, 134,

159, 388
Riemann zeta function, 41, 108, 128,

158, 357, 358, 387
– Ξ-function, 352, 357, 358
– functional equation, 42
– zeros, 274, 351, 358, 360, 364
Riemann–Hilbert correspondance, 277
Roelcke-Selberg spectral resolution, 192

S
Saddle
– connection, 459, 470, 507–517,

519–525
– point, see Conical singularity
Schrödinger equation, 188
Selberg integral, 119
Selberg trace formula, 7, 26, 29
Selberg zeta function, 30, 357
– functional equation, 33
– zeros, 32
Semiclassical approximation, 274
Separatrix, 459
– diagram, 532
Shimura variety, 272, 339
Siegel’s problem, 588
Siegel–Veech
– constant, 510–517, 527
– formula, 448
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Singularity
– conical, see Conical singularity
Small divisors, 590
Space of interval exchange transfor-

mations, see Interval exchange
transformation: space of

Special values of zeta functions, see
Zeta function

Spectral fluctuations, 202
Spectrum, 192
Spontaneous symmetry breaking, 271,

280
Square integrable, 192
– normalization, 193
Square-tiled surface, 448, 529, 550, 551,

553, 557, 559, 561, 567–569, 572
Steil’s lemma, 206
Steil’s theorem, 203
Stieltjes
– constants (γn), 352
– cumulants (γc

n), 352, 360, 363
Stirling expansion, 357
– generalized, 355, 359
Stratum
– connected component, see Moduli

space: connected components of the
strata

– in the moduli space, 464–467, 469,
470, 476, 497, 502–504, 509, 514, 517,
519–522, 524, 528, 529, 544, 546, 548,
549, 572

Stratum in the moduli space, 446
Sum rules, see Zeta function
Surface
– Fermi-surface, 446, 450, 456, 458
– flat, 445, 459, 461
– half-translation, 445, 538–539, 548,

571
– square-tiled, 448, 529, 550, 551, 553,

557, 559, 561, 567–569, 572
– translation, see Very flat
– Veech, 448, 449, 524, 549–553,

559–569, 571
– very flat, 444, 453–455, 459
Symmetries, 195

T
Tannakian category, 277
Tau functions, 215

Teichmüller
– disc, 449, 541, 543, 550
– geodesic flow, 447, 448, 467, 469, 470,

476, 496–505, 537, 540, 541, 573
– metric, 448, 539
– theorem, 448
Teichmüller flow, 428
Then’s conjecture, 207
Theorem
– multiplicative ergodic, 447, 449, 494,

576–578
– Teichmüller, 448
Theory
– Pesin theory, 578
Theta sums, 169
Trace formula, 7
– chaotic system, 36
– for Riemann zeros, 43
– Gutzwiller, 38
– integrable dynamical systems, 33
– Selberg, see Selberg trace formula
Trajectory
– billiard trajectory, 451, 525–528, 570
– Fagnano trajectory, 451
Translation surface, see Surface: very

flat
Tree formalism, 590

U
Uniquely ergodic, 417
Unit hyperboloid, 466, 467, 469, 470,

476, 514, 520, 528, 529, 541, 549
Universal matrix, 256
Upper half-plane, 185
Upper half-space, 189

V
Vandermonde determinant, 214
Veech
– group, 549, 550
– surface, 448, 449, 549–553, 559–569,

571
– – nonarithmetic, 568
Vertical direction, see Direction: vertical
Very flat surface, see Surface: very flat
Volume, 188, 192
– element, 188, 191
Volume element
– in the moduli space, 465
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– on the “unit hyperboloid”, 466
Volume of a stratum, see Moduli space:

volume of the moduli space
von Neumann algebra, 234, 239

W
WDVV equations, 219
Weierstrass product, see Infinite

product
Weil’s explicit formula, 45, 129, 360
Weyl Integration Formula, 110
Weyl’s law, 198

Z
Zero, 463, 465
– degree of zero, 463

Zeros of ζ(s), see Riemann zeta function
Zeta function, 353, 364
– dynamical, 381
– generalized, 351, 353, 354
– Hurwitz, 353, 356, 358, 362
– over the Riemann zeros, 351, 356,

358–363
– over the trivial zeros (Z), 356, 358
– Riemann, see Riemann zeta function
– Selberg, see Selberg zeta function
– special values, 357, 360–363
– sum rules for special values, 361–363
Zeta-regularization, see Infinite product
Zippered rectangle, 447, 480, 488, 492,

493, 497–501
Zorich’s accelerated algorithm, 404, 429



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




